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IDEAL TUBULAR HYPERSURFACES IN REAL SPACE FORMS

JOHAN FASTENAKELS

ABSTRACT. In this article we give a classification of tubular hypersurfaces in
real space forms which are §(2,2,...,2)-ideal.

1. IDEAL IMMERSIONS

Let M be a Riemannian n-manifold. Denote by K (7) the sectional curvature of
M associated with a plane section m# C T,M, p € M. For any orthonormal basis

e1,..., e, of the tangent space 1, M, the scalar curvature 7 at p is defined to be
(1) T(p) =Y Kl(eiAej).
i<j

When L is a 1-dimensional subspace of T, M, we put 7(L) = 0. If L is a subspace
of T, M of dimension r > 2, we define the scalar curvature 7(L) of L by

(2) T(L)=> K(eahes), 1<a,f<r,
a<f
where {e1, ..., e} is an orthonormal basis of L.
For an integer k& > 0, denote by S(n, k) the finite set consisting of unordered
k-tuples (nq,...,ny) of integers > 2 satisfying nqy < n and ny +--- + nx < n. Let

S(n) be the union U>o S(n, k). If n = 2, we have k = 0 and S(2) = {0}.
For each (nq,...,nk) € S(n), the invariant d(nq,...,nk) is defined in [3] by:

(3) o(n1,...,ng)(p) = 7(p) — S(n1,...,n%)(p),

where

S(ny,...,ng)(p) = inf {T(Ll) +- T(Lk)}

and Lq,...,L; run over all k¥ mutually orthogonal subspaces of T, M such that
dimL; = nj, j = 1,..., k. Clearly, the invariant 6(@) is nothing but the scalar
curvature 7 of M.
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For a given partition (ny,...,nx) € S(n), we put
1 k
(4) b, one) = 5 (n(n = 1) = > ns(n; — 1)) |
j=1

n2(n+k71—2nj).

5 e =
( ) c(nla ank) 2(n+k—zn3)
For each real number ¢ and each (ng,...,nx) € S(n), the associated normalized
invariant A.(nq,...,ny) is defined by
d(ni,...,nk) —b(ng,...,nK)c
6 Ac(ng, ..., =
( ) (nl nk) C(?’Ll,. ..,nk)

We recall the following general result from [3].

Theorem 1. Let M be an n-dimensional submanifold of a real space form R™(c)
of constant sectional curvature c. Then for each (ni,...,n;) € S(n) we have

(7) H2ZAc(nla"'7nk)a

where H? is the squared norm of the mean curvature vector.

The equality case of inequality (7) holds at a point p € M if and only if, with
respect to a suitable orthonormal basis e, ..., €epn, €nt1,--.,Em at p, the shape op-
erators Ar = A, r=n+1,....,m of M in R™(c) at p take the following forms:

aa 0 O -+ 0
0 az 0 --- O
(8) Apiq = 0 0 az3 --- O 7
O 0 0 --- ay
A7 0 O 0
10 Ay 0 0 _
(9) A’l"i 0 0 0 0 Y Tﬁn+25 7m7
0 0 O 0
where ay,...,a, satisfy
(10) a1+ ap, = = Apytong g 4+1 T T Qg
= 0ny+..np+1 = " = 0an

and each A; is an n; X n; submatriz such that

(11) trace(A}) =0, (A;)t:Ag, r=n+2,....,m; j=1,.... k.
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For an isometric immersion z : M — Rm(c) of a Riemannian n-manifold into
R™(c), this theorem implies that

(12) H?(p) = Ac(p),
where A, denotes the invariant on M defined by
(13) A.= max {Ac(n1,...,nk) | (n1,...,n,) € S(n)}.

In general, there do not exist direct relations between these new invariants.
Applying inequality (12) B. Y. Chen introduced in [4] the notion of ideal im-
mersions as follows.

Definition 1. An isometric immersion x : M — R™(c) is called an ideal im-
mersion if the equality case of (12) holds at every point p € M. An isometric
immersion is called (ny,...,ng)-ideal if it satisfies H*> = A.(ny,...,ng) identi-

cally for (n1,...,n;) € S(n).

Physical Interpretation of Ideal Immersions. An isometric immersion z :
M — R™(c) is ideal means that M receives the least possible amount of tension
(given by A.(p)) at each point p € M from the ambient space. This is due to (12)
and the well-known fact that the mean curvature vector field is exactly the tension
field for isometric immersions. Therefore, the squared mean curvature H?(p) at
a point p € M simply measures the amount of tension M is receiving from the
ambient space R™(c) at that point.

2. TUBULAR HYPERSURFACES

Recall the definition of the exponential mapping exp of a Riemannian manifold
M. Denote by v, v € T,M, the geodesic of M through p such that 4'(p) = v.
Then we have that

exp: TM — M : (p,v) — exp,(v) = 7,(1)

for every v € T, M for which =, is defined on [0, 1].

Let B’ be a topologically imbedded /¢-dimensional (£ < n) submanifold in an
n + 1-dimensional real space form R"*!(c). Denote by v;(B*) the unit normal
subbundle of the normal bundle T+ (B*) of B in R"!(c). Then, for a sufficiently
small r» > 0, the mapping

R Vl(Bé) — R"(c) : (p,e) — exp,(re)

is an immersion which is called the tubular hypersurface with radius r about BY.
We denote it by T;.(B).

In this article, we consider r > 0 such that the map is an immersion only. Thus,
the shape operator of the tubular hypersurface 7.(B?) is a well defined self-adjoint
linear operator at each point.
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Now take an arbitrary point p in B and a vector u in v;(B*). Denote with
k1(u), ..., ke(u) the eigenvalues of the shape operator of B in R"*!(c) with re-
spect to u at the point p. Then we can give an expression for the principal cur-
vatures R1, ..., Rm of the tubular hypersurface in the point exp(p,u). We consider
three cases.

(i) ¢=0. In the Euclidean case, we find

_ Ki(u) .
14 s= — —1,...,0,
(14) MEIT ri;(u) ‘
B 1
(15) Ra(r)=——, a=L0+1,...,n.
r
(ii) ¢ = 1. For the unit sphere, we can simplify the expressions by denoting
k1(u) = tan(fy),...,ke(u) = tan(fy) with —F < 0; < 5. Then we have
(16) Ri:tan(QiJrr), ’L':L...,g,
(17) Ra(r) = —cot(r), a=0+1,...,n.

(iii) ¢ = —1. In the hyperbolic space we have

_ Ki(u)coth(r) — 1 .
(18) Ki = coth(r) — ri(w) i=1,...,¢,

(19) Ra(r) = — coth(r), a=~L+1,...,n.

More details can be found in [2].

3. 6(2,2...,2)-IDEAL TUBULAR HYPERSURFACES

In this section we will give a complete classification of tubular hypersurfaces
in real space forms for which the immersion defined in the previous section is a
d(2,2...,2)-ideal immersion. We again consider three cases.

In the Euclidean space E"*1.

Theorem 2. A tubular hypersurface T,.(B) in E"t1 (n > 2) satisfies equality in
(7) for k-tuple (n1,...,nk) = (2,...,2) if and only if one of the following three
cases occurs:

(1) £ =0 and the tubular hypersurface is a hypersphere.
(2) £ =k € {1,...,[5]} and the tubular hypersurface is an open part of a
spherical hypercylinder: E¢ x S™"~¢(r).
(3) n is even, { =k =2 and B* is totally umbilical.
Proof. Let sy(u),...,ke(u) be the eigenvalues of the shape operator of B’ in
En+! with respect to a unit normal vector v at p. Then we find, according to the
previous section, that the principal curvatures of the tubular hypersurface T,.(B)
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at p + ru are given by

_ Ki(u) .
20 1;:7, :17"'56,
(20) " 1 —rri(u) '
_ 1
(21) Fa(r) = ——, a=0+1,...,n.
r

Suppose now that T,.(B) satisfies equality in (7) for a k-tuple (ni,...,ng) =
(2,...,2).

If £ = 0, the tubular hypersurface is an open part of an hypersphere. This gives
us the first case in the theorem.

If ¢ = 1, the multiplicity of —% is n — 1. From (8) and (10) we find the following
three cases:
e %1+ (—2) = —1, which implies that &, = 0.

f — 11 _ 2 4, we have that re; = 2. This gives a contradiction

1—rk1 r r?

with the fact that k1 (—u) = —k1(u).

o L 4 (,l) = f%, from which we also get a contradiction.

1—rk1 T

So we see that k1 = 0 and that k = 1. Thus B! is an open part of a line segment
and the tubular hypersurface is an open part of E! x S"~1(r). This gives a special
case of case (2) of the theorem.

Suppose now that ¢ > 2, then (8) and (10) imply that we have one of the
following five cases:

(a) for all unit normal vectors u of B, we have
(22) ki(u) =+ =ke(u) =0
and £ =k < 3
(b) for all unit normal vectors u of B, we have
(23) Ri(u) = - = Re(u) # 0,
nis even and k = { = 3;
(c) for alli e {1,...,¢} there exists a j € {1,...,¢} such that ¢ # j and such
that:
1—rri(u)  1—rkrj(u)

Ly
r’
(d) for alli € {1,...,¢} there exists a j € {1,..., £} such that ¢ # j and such
that:
_milw) 1 s
L—rri(w) v 1—rk;i(u)’
(e) L=k=2,n=4and
(26) mw | re) 2

1—rki(u) 1—rra(u) r’
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Case (a) implies that B’ is totally geodesic. Thus the tubular hypersurface is
an open part of a spherical hypercylinder E’ x S"~*(r), which gives case (2) of the
theorem.

Case (b) gives us case (3) of the theorem because &; = &; if and only if k; = k;.
Next we want to proof that cases (c), (d) and (e) cannot occur.
From (24), we find that

(27) 1= T2I€i(u)1€j (u)

for every u. This is impossible since the codimension of B in E"*! is at least 2.
We can see this in the following way. Because the codimension is at least 2, we
can take a plane in the normal space which contains u. If x;(u) = 0, then we have
a contradiction at once. Otherwise k;(u) is strict positive or strict negative. Then
we have that k;(—u) is strict negative or strict positive respectively. Now we ro-
tate u in the chosen plane to —u. Because the principal curvature is a continuous
function, there exists a normal vector ¢ for which k;(£) = 0. Putting ¢ in equation
(27) gives a contradiction.

From (25) we find analogously that

(28) 1 —2rki(u) — r’ri(u)kj(u) = 0.
Because k;(—u) = —k;(u) we have also that
(29) 14 27k, (u) — r?ri(u)r;(u) = 0.
Combining (28) and (29) then gives

dre;(u) =0,

which gives a contradiction unless all the principal curvatures of B¢ are zero. But
then we are again in case (a).

Similarly case (e) gives a contradiction since we find from (26) that r1+ ke = 2.
The converse is trivial. g

In the sphere S""1(1). First we recall the definition of an austere submanifold
in the sense of Harvey and Lawson [5].

Definition 2. We call a submanifold M of a Riemannian manifold M austere if
for every normal € € T+M the set of all eigenvalues of the shape operator counted
with multiplicities is invariant under multiplication with —1.

Theorem 3. A tubular hypersurface T,.(B*) in S"T1(1) (n > 2) satisfies equality
in (7) for a k-tuple (n1,...,ng) = (2,...,2) if and only if one of the following
four cases occur:

(1) £ = 0 and the tubular hypersurface is a geodesic sphere with radius r €
10, «].

2)n>l>%, k=n—L, r=7 and B is a totally umbilical submanifold in
SnH(1).
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(3) =2k <n,r=72 and B’ is an austere submanifold in S"T1(1).

(4) n is even, { = k = 2 and B* is totally umbilical.

[

Proof. Let B’ be an {-dimensional submanifold inbedded in S"*!(1). For every
unit normal vector u of B at a point p we denote by 1 (u),...,xe(u) the eigen-
values of the shape operator of Bf in S"*1(1) with respect to u. Suppose now
that

(30) ki(u) = tan(0;), —g<9i<g, 1<i<d.

Then we know from the previous section that the principal curvatures of the tubu-
lar hypersurface T}.(B*) in S"*1(1) at cos(r)p + sin(r)u are given by
(31) ki = tan(0; +r), i=1,...,¢,

Ra(r) = —cot(r), a=0+1,...,n.

Suppose that T,.(BY) satisfies (7) for a k-tupple (n1,...,n) = (2,...,2).

If £ = 0, the tubular hypersurface is totally umbilical in S™*!(1). Then the-
orem 1 implies that 7,(B%) with radius r € ]0,n[ satisfies (7) for a k-tuple
(n1,...,ng) = (2,...,2) if and only if k = 0 or k = Z. So we find that 7,.(B*) is a
geodesic sphere. This gives us case (1).

If ¢ =1, then (8) and (10) imply that we are in one of the following cases:

o {LERAL + (= cot(r)) = — cot(r), which implies that x;(u) = — tan(r) for
every unit normal vector u of B! in S"*1(1). This gives a contradiction
with the fact that k1 (—u) = —k1(u).

° % = —2cotr, so we find k1 tanr = 2 + tan?r. Because ki(—u) =
—#k1(u) we have 2 + tan? r = 0 which also gives a contradiction.

. % + (= cotr) = —2cotr, which becomes tan?r = —1. This clearly

also gives a contradiction.

In each case we get a contradiction, so £ = 1 cannot occur.
Suppose now that ¢ > 2, then theorem 1 implies that we are in one of the
following cases:

(a) for all unit normal vectors u of B’ we have that
(32) tan(f; +7) =0, j=1,...,¢
and £ =k < 5
(b) for any unit normal vector u of Bf we have that
(33) tan(6h +7)=--- =tan(fp+ 1) #£0,
nis even and k = { = 3;

(c) for alli e {1,...,¢} there exists a j € {1,...,¢} such that ¢ # j and such
that:

(34) tan(6; +r) — cot(r) = tan(f; +r);
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(d) for alli e {1,...,¢} there exists a j € {1,...,£} such that ¢ # j and such

that:
(35) tan(; +r) + tan(f; + 1) = —cot(r);
(e) t=k=2,n=4and
(36) tan(fy + r) + tan(d2 + r) = —2 cot(r) .

Suppose now that we are in case (a) and thus (32) holds. Then we see that
k;(u) cot(r) + 1 = 0 for any unit normal vector u of B in $"*1(1). This is impos-
sible since r;(—u) = —k;(u).

If case (b) holds, then we get case (4) of the theorem, since

k; +tanr  k; +tanr

1—kitanr 1—k;tanr
implies that
(ki — #j)(1 +tan?r) =0,

Suppose now that we are in case (c). Then we have from (34) that:

(37) cot®(r) — 2k cot?(r) + kikj cot(r) + (kj — ki) = 0.
We use again the fact that x;(—u) = —k;(u) and therefore we find
(38) cot(r)(cot?(r) + ki(u)rj(u)) =0

and

(39) 2k (u) cot?(r) + wi(u) — wj(u) = 0.

If cot(r) # 0, then (38) implies that cot?(r) = —r;(u)k;(u). Because £ < n we get
a contradiction with the same argument as in the preceding proof.

Thus we have cot(r) = 0, and thus » = . From (39) we also see that x;(u) =
kj(u). Without loss of generality, we may assume

ay = W, az =0, as = [, a4:05"'aa2k—1:,ua agy = 0, A2k+1 = My .oy Qn =

where py = fﬁ% and a1, ...,a, are given by theorem (1).

Furthermore we see that tan(f; + r) # 0 since =5 < 6; < 7 and from (31)
we find that cot(r) has multiplicity n — £. So theorem (1) implies that ¢ > % and
tan(fy +r) = --- = tan(fy + r). This implies also that tan(f;) = --- = tan(f,) and
thus that B’ is totally umbilical. Moreover we see that theorem (1) implies that
k =n — £. This gives rise to case (2).

Suppose now that we are in case (d) and thus that (35) holds. Then we have

(40) cot®(r) + 2 cot(r) — kikj cot(r) — (ki + k) = 0.
If we use that x;(—u) = —k;(u) we find

(41) cot(r)(cot?(r) + 2 — Kikj) =0

and

(42) Hi+lﬁj:0.
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Like in case (¢) we get a contradiction if cot(r) # 0. So we find cot(r) = 0 and thus

r = 5. Moreover we have k; = —r;. Without loss of generality, we may assume
1 1
ap =tan(f1 +r)=——, ag=tan(bo+r)=——,..., a, = —cot(r) =0
K1 K2

We also know that tan(6; 4r) # 0 (since =% < 6; < 7). Thus (31) and theorem 1
imply that B’ is an austere submanifold in S$"*1(1); in particular £ is even. This
gives case (3).
A similar computation as in case (d) shows that case (e) gives a contradiction.
The converse can be verified easily. ([

In the hyperbolic space H""!(—1).

Theorem 4. A tubular hypersurface T,(B*) in H"1(—1) (n > 2) satisfies equal-
ity in (7) for a k-tuple (n1,...,ng) = (2,...,2) if and only if we are in one of the
following three cases:

(1) £ =0 and the tubular hypersurface is a geodesic sphere with radius r > 0.

(2) ¢ =2k, B is totally geodesic and r = coth™ (v/2).

(3) n is even, { = k =2 and B* is totally umbilical.

Proof. Let B’ be an /-dimensional submanifold in the hyperbolic space H"!(—1)
and T.(B%) be the tubular hypersurface of B in H"**(—1). Suppose that T;.(B*)

satisfies (7) for a k-tuple (ny,...,nx) = (2,...,2). For any unit normal vector u
of BY at a point p of B denote with sy (u), ..., ke(u) the principal curvatures of
BY in H"1(—1) at p with respect to u. Then it follows from section 2 that the
principal curvatures &y, ..., R, of the shape operator of T,.(B*) are given by:

; th(r) — 1
(43) g = meoth() -1 =,

coth(r) — k;(u)
(44) Ra(r) = — coth(r), a=0+1,...,n.

If £ = 0, then the tubular hypersurface is totally umbilical. So we find from
theorem (1) that k = 0 or k = 2 and 7,(B") is a geodesic sphere. Thus we are in
case (1).

If £ = 1, then from theorem 1 and (43) it follows that we are in one of the
following cases:

e K1 —cotr = — cotr, which implies immediately that &1 (u) = 0 for any unit
normal vector v of B in S"*1(1). Then (43) would imply that x1(u) =
— tanh(r) which gives a contradiction with the fact that k1 (—u) = —k1(u)
since r € R

° % = —2cothr, so we find kicothr = 2coth?r — 1. Because
k1(—u) = —k1(u) this implies that coth? r = % which gives a contradiction

since coth? r is always greater than 1.

% + (—cotr) = —2cotr, this implies coth?r = 1 which gives a

contradiction as above.
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Thus we see that the case £ = 1 cannot occur.
Suppose now that ¢ > 2, then theorem (1) implies that one of the following
cases occur:

(a) for all unit normal vectors u of B’ we have
(45) ki(u) coth(r) =1, for all i € {1,...4}
and L =k < 53
(b) for alle unit normal vectors u of B’ we have

(46) Fa(u) = -+ = Fe(u) #0,
nis even and k = { = 3;
(c) for all i € {1,...,¢} there exists a j € {1,...,£} such that i # j and such
that:
(47) Ki(u) coth(r) =1 coth(r) #j(u) coth(r) — 1
coth(r) — k;(u) coth(r) — kj(u) ’

(d) for alli e {1,...,¢} there exists a j € {1,...,£} such that ¢ # j and such

that:
ki(u)coth(r) —1 = kj(u)coth(r) —1 _
(48) coth(r) — ra() | coth(r) =y Ot
() {=k=2,n=4and
k1(u)coth(r) —1 = ma(u)coth(r) —1
(49) coth() — rn(a) T coth(r) — ma(w) . 2eoth(r)-
We see at once that (45) and thus case (a) cannot occur since k;(—u) = —k;(u).

Suppose now that we are in case (b). The condition &; = &; gives us
(ki — kj)(coth®r —1) = 0.

Because coth? r > 1 this implies &; = &; if and only if #; = ;. This is case (3) of
the theorem.
Suppose that we are in case (¢). Then from (47), we find

(50) coth®(r) — 2k coth?(r) + kikj coth(r) + Ky — #j = 0.

Because £;(—u) = —k;(u) we have

(51) coth®(r) 4 kik; coth(r) = 0,

(52) —2f;coth®(r) + k; — K = 0.

From (51), it follows that #;(u)k;(u) = — coth?(r) since coth(r) # 0. But this

gives a contradiction with the same argument as in the Euclidean case because
the codimension is at least 2.
Analogously from (48) we find:

(53) (ki + #7) tanh®(r) — (2 + kir;) tanh?(r) +1=0.
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By switching to —u we get:
(54) — (ki + #j) tanh® (r) — (2 + kir;) tanh?(r) +1 = 0.

This implies that s;(u) + £j(u) = 0. Substituting this in (53) gives r;(u)? =

2 — coth?(r). We can also substitute the other way round, then we find #;(u)? =

2—coth?(r). Thus x; must be zero for every i € {1,...,£}. We see that B’ is totally
geodesic. We see also that in this case 7 = coth™*(1/2). Thus we get as principal

curvatures for T,(BY) &; = —% = —@, it =1,....,0 and R, = —V2, a =
¢+ 1,...,n. From theorem (1) it follows that £ = 2k. So we get case (2).

Case (e) cannot occur since similar computations as in case (d) give a contra-
diction.

The converse can be verified easily. (I

REFERENCES

[1] B. Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch.
Math. 60 (1993), 568-578.

[2] B. Y. Chen, Tubular hypersurfaces satisfying a basic equality., Soochow Journal of Mathe-
matics 20 No. 4 (1994), 569-586.

[3] B. Y. Chen, Some new obstructions to minimal and Lagrangian isometric immersions,
Japan J. Math. 26 (2000), 105-127.

[4] B. Y. Chen, Strings of Riemannian invariants, inequalities, ideal immersions and their
applications, in Third Pacific Rim Geom. Conf., (Intern. Press, Cambridge, MA), (1998),
7-60.

[5] R. Harvey and H. B. Lawson, Jr., Calibrated geometries, Acta Math. 148 (1982), 47-157.

KATHOLIEKE UNIVERSITEIT LEUVEN, DEPARTEMENT WISKUNDE
CELESTIINENLAAN 200 B, B-3001 LEUVEN, BELGIUM
E-mail: johan.fastenakels@uis.kuleuven.be



