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To Jiř́ı Rosický, on his sixtieth birthday

Abstract. The dual of the category of pointed objects of a topos is semi-
abelian, thus is provided with a notion of semi-direct product and a corre-
sponding notion of action. In this paper, we study various conditions for
representability of these actions. First, we show this to be equivalent to
the existence of initial normal covers in the category of pointed objects of
the topos. For Grothendieck toposes, actions are representable provided the
topos admits an essential Boolean covering. This contains the case of Boolean
toposes and toposes of presheaves. In the localic case, the representability of
actions forces the topos to be bi-Heyting: the lattices of subobjects are both
Heyting algebras and the dual of Heyting algebras.

1. Introducing the problem

Given a semi-abelian category V (see [3] or [12]), consider for every object G ∈ V
the category Pt(G) of points over G, that is, of split epimorphisms with codomain
G. The ‘kernel functor’

Ker : Pt(G) - V , (q, s : A ⇆ G, qs = idG) - Ker q

is monadic (see [11]); let us write TG for the corresponding monad on V . For every
object X ∈ V we have thus a notion of G-action on X , namely, a structure (X, ξ)
of TG-algebra on X . This yields a functor

ActX : Vop - Set

mapping an object G to the set of G-actions on X . By monadicity, this functor is
thus isomorphic to the functor

SplExtX : Vop - Set

mapping an object G ∈ V to the set of isomorphism classes of points over G with
kernel X , that is, the set of isomorphism classes of split exact sequences

0 - X
k

- A �
s

q
- G - 0

with prescribed kernel object X .
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Definition 1.1. Given an object X of a semi-abelian category V , we say that
actions on X are representable when the functor ActX is representable, that is
equivalently, when the functor SplExtX is representable.

The representability of the functor SplExtX is a rather strong property, and
when it holds, the representing object is often highly interesting (see [6] and [7]):
for example

• the group Aut(X) of automorphisms of X when V is the category of groups;
• the Lie algebra Der(X) of derivations of X when V is the category of Lie

algebras;
• the ring End(X) of X-linear endomorphisms of X , when V is the category

of Boolean rings or the category of commutative von Neumann regular
rings;

• the crossed module Act(X) of actors on X when V is the category of
crossed modules.

Of course, in the general case, the functor SplExtX may be representable only for
certain objects X , not for all of them.

Like every contravariant set-valued functor, the functor ActX ∼= SplExtX is
representable when its category of elements has a terminal object, that is, when
there exists a terminal split exact sequence with fixed kernel object X . One is
naturally tempted to compare this result with the corresponding non-split result:
the existence of a terminal short exact sequence with kernel object X . In general,
those two problems — even if they look similar — are of a totally different nature.
For example in the abelian case, both problems become trivial, the first one with
a positive answer (ActX is always represented by the zero object) and the second
one with a negative answer (except when X is the zero object).

Nevertheless, it was proved in [5] that

Theorem 1.2. If the semi-abelian category V is arithmetical, for every object
X ∈ V the following conditions are equivalent:

(i) there exists a terminal split exact sequence with fixed kernel X;
(ii) there exists a terminal short exact sequence with fixed kernel X.

We recall that arithmetical means that for every object X , the lattice of equiva-
lence relations on X is distributive. The categories of commutative von Neumann
regular rings, of Boolean rings and of Heyting semi-lattices are examples of semi-
abelian arithmetical categories; in the first two cases, actions are thus known to
be representable (see [7]).

For every topos E , the dual Eop
∗ of the category E∗ of pointed objects is semi-

abelian (see [4], 5.1.8); and it is arithmetical, since lattices of equivalence relations
in Eop

∗ correspond to lattices of subobjects in E∗, and these inherit distributivity
from E . The representability of actions in Eop

∗ is thus equivalent to the existence in
E∗ of an initial short exact sequence with fixed cokernel object X , or equivalently
again to the existence of an ‘initial normal cover’ of X , that is:
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Definition 1.3. By an initial normal cover of a pointed object X in a topos E ,
we mean an initial object in the full subcategory Nml(X) of E∗/X whose objects
are normal epimorphisms with codomain X .

We shall give a direct topos-theoretic proof of this equivalence in section 2 below,
by exploiting an adjunction between the categories of short exact sequences and
of split exact sequences with given cokernel object.

The purpose of the present paper is to investigate situations where the condi-
tions of Theorem 1.2 are satisfied for objects of Eop

∗ , where E is a topos. We prove
that it is trivially the case when the basepoint of X is decidable in the topos E :
so it is the case for every X when the topos E is Boolean. In a non-Boolean E ,
there may be nontrivial examples of initial normal covers, as we show by com-
puting them explicitly in the Sierpiński topos. When E is a Grothendieck topos,
we show that the problem may be reduced to some limit–colimit property, and
we observe that this property is certainly satisfied when the topos E is localic and
completely distributive, or when there exists an essential surjection p : B → E , with
B a Boolean Grothendieck topos. As a corollary, we obtain the existence of initial
normal covers in E∗ for every topos E of presheaves.

Various arguments show the relevance, for the existence of initial normal covers,
of what we call bi-Heyting toposes, that is, toposes in which each lattice of subob-
jects is both a Heyting algebra and the dual of a Heyting algebra. All our examples
are of this type and in the case of localic toposes, this bi-Heyting property is even
necessary, as we show in the final section of the paper.

2. The categories Ext(X) and SplExt(X)

From now on, E will always denote a topos and E∗ its category of pointed
objects. Since it will never lead to any confusion, we use the same notation ∗ for
the basepoint of every pointed object of E . And to avoid too heavy notation, we
often say ‘the pointed object X ’ to mean the object (X, ∗) ∈ E∗ and ‘the object
X ’ to mean the object X ∈ E . We reserve the notation ∐ for the coproduct in
the topos E and the notation + for the coproduct in the category E∗ of pointed
objects.

By a short exact sequence in E∗

1 - K-
k

- A
q

-- X - 1

we mean the usual conditions k = Ker q and q = Coker k. The object X is then
the quotient of A by the equivalence relation

(
(K × K) ∪ ∆A

)
⊆ A × A

where ∆A denotes the diagonal of A.
We shall frequently argue informally in the internal language of E (see [14],

section D1.2). The following characterization of normal epimorphisms will often
be useful.
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Lemma 2.1. Let q : A → X be a morphism in E∗. Then q is a normal epimor-
phism if and only if it is an epimorphism and the formula

(qx = qy)⇒
(
(x = y) ∨ (qx = ∗ = qy)

)

is valid for variables x, y of sort A.

Proof. This is just the translation into the internal language of the observation
above that the kernel-pair of q is the union of the diagonal and K × K. �

We recall also that a morphism f : A → B in E is epic iff it is ‘surjective in the
internal language’, i.e., the formula (∀y ∈ B)(∃x ∈ A)(fx = y) is satisfied. The
following consequence of Lemma 2.1 will also be used frequently.

Corollary 2.2. Let q : A ։ X be a normal epimorphism and m : B  A a mono-
morphism in E∗. Then the composite qm is a normal epimorphism provided it is
epimorphic.

Proof. Given variables x, y of sort B, from qmx = qmy we may deduce either
mx = my or qmx = ∗ = qmy. But since m is monic the first alternative implies
x = y. So the condition of 2.1 is satisfied. �

A further useful consequence of Corollary 2.2 is:

Corollary 2.3. Suppose a pointed object X of E∗ has an initial normal cover
q : A ։ X. Then no proper subobject of A which contains the basepoint can map
epimorphically to X.

Proof. Suppose m : B  A is a subobject which contains the basepoint and maps
epimorphically to X . By Corollary 2.2, the composite qm is a normal epimorphism,
so by the initiality of q there must exist a morphism r : A → B in E∗/X , and the
composite mr must be the identity. So m is epic, and hence an isomorphism. �

The dual of Corollary 2.2 is a well-known result in semi-abelian categories (see
[4], 3.2.7), but it seemed worth giving a direct topos-theoretic proof of it here.
Similarly, the next result is the dual of a well-known fact about semi-abelian
categories (see [4], 4.2.4.2 and 4.2.5.2), but we give a topos-theoretic proof.

Lemma 2.4. In the following diagram in E∗, suppose the row is a short exact se-
quence and the square is a pushout. Then there is a canonical normal epimorphism
r : B ։ X with kernel v.

1 - K
k

- A
q

- X - 1

L

f

? v
- B

u

?

Proof. We define r to be the unique morphism satisfying ru = q and rv = 0 (the
‘zero map’ which sends everything to the basepoint). Since q factors through r,
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the latter is epic; we show that it satisfies the condition of 2.1. For any x ∈ B we
have

(∃y ∈ A)(uy = x) ∨ (∃z ∈ L)(vz = x) ,

so given x, x′ ∈ B with rx = rx′, we have

(∃z ∈ L)(vz = x) ∨ (∃z′ ∈ L)(vz′ = x′) ∨ (∃y, y′ ∈ A
(
(uy = x) ∧ (uy′ = x′)

)
.

The first two alternatives both yield rx = ∗ = rx′, and the third yields qy = qy′

and hence (y = y′)∨(qy = ∗ = qy′), from which we obtain (x = x′)∨(rx = ∗ = rx′).
It remains to show that v is the kernel of r. It is certainly monic, by a well-

known property of pushouts in a topos (see [2], 5.9.10 or [14], A2.4.3). And, given
x ∈ B with rx = ∗, we have either (∃z ∈ L)(vz = x) or (∃y ∈ A)(uy = x): the
first alternative is what we want, and from the second one we deduce qy = ∗, so
that (∃w ∈ K)(kw = y) and hence x = ukw = vfw. �

Now fix an object X of E∗. We wish to investigate the relationship between the
category Ext(X) of extensions of X , that is, the category whose objects are short
exact sequences

1 - K-
k

- A
q

-- X - 1

and whose morphisms are commutative diagrams

1 - K-
k

- A
q

-- X - 1

1 - K ′

g

?

-
k′

- A′

f

? q′
-- X

wwwwwwwwww
- 1

and the category SplExt(X) whose objects are those short exact sequences for
which the kernel k has a retraction s : A → X, and whose morphisms are addi-
tionally required to commute with the retractions. We note that, for a morphism
(f, g) of Ext(X), the component g is uniquely determined by f ; hence Ext(X) is
equivalent to the full subcategory Nml(X) of E∗/X whose objects are normal epi-
morphisms. We shall feel free to pass back and forth between these two categories
without further comment.

Our next Lemma is more conveniently stated in terms of the category Nml(X),
rather than Ext(X).

Lemma 2.5. The category Nml(X) is closed under finite limits in E∗/X; in par-
ticular, it has finite limits.

Proof. It is clear that the terminal object idX : X → X of E∗/X is a normal
epimorphism. Consider next a pair of normal epimorphisms q : A ։ X ,r : B ։ X;
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their product in E∗/X is of course given by the pullback

P
f

- A

B

g

? r
- X

q

?

and the latter maps epimorphically to X since epimorphisms are stable under
pullback in a topos. We must verify that the composite qf = rg satisfies the
condition of Lemma 2.1. But if x, y ∈ P satisfy qfx = qfy, then we obtain
(fx = fy) ∨ (qfx = ∗ = qfy) since q is normal, and similarly we have (gx =
gy) ∨ (rgx = ∗ = rgy). So we have

(
(fx = fy) ∧ (gx = gy)

)
∨ (qfx = ∗ = qfy) ,

and the first alternative implies x = y since the pair (f, g) is jointly monic.
Finally, we must consider equalizers. Suppose given a diagram in E∗/X

E-
e

- A
f

-

g
- B

X

q

?�

rp
-

where the row is an equalizer and q and r are normal epimorphisms. By Lemma
2.2, it suffices to prove that p is epic. But, given x ∈ X , we have (∃y ∈ A)(qy = x),
and the pair (fy, gy) ∈ B×B satisfies rfy = x = rgy. So we have either fy = gy,
in which case (∃z ∈ E)(ez = y) as required, or rfy = ∗ = rgy, in which case x = ∗
and so the basepoint ∗ ∈ E satisfies p∗ = x. �

Given an object (q, k) of Ext(X), let us apply the pushout construction of
Lemma 2.4 in the particular case when f = k, so that (u, v) is the cokernel-pair of
k. We shall write D(A) for the common codomain of u and v in this case. Thus
we have a short exact sequence

1 - A-
v
- D(A)

r
-- X - 1 ;

but in this case v is easily seen to be split by the codiagonal map ∇ : D(A) → A,
i.e. the unique morphism satisfying ∇u = ∇v = idA. It is straightforward to
verify that this construction defines a functor Ext(X) → SplExt(X), which we
shall denote by D.

Theorem 2.6. The functor D just defined is left adjoint to the forgetful functor
U : SplExt(X) → Ext(X).
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Proof. Consider a morphism

1 - K-
k

- A
q

-- X - 1

1 - K ′

g

?

-
k′

- A′

f

? q′
-- X

wwwwwwwwww
- 1

where k′ has a retraction s. We claim that there is a unique morphism

1 - A �
∇

-

v
- D(A)

r
-- X - 1

1 - K ′

g′

?

�
s

-

k′

- A′

f ′

? q′
-- X

wwwwwwwwww
- 1

in SplExt(X) such that f ′u = f . Indeed, commutativity of f ′ and g′ with the
leftward arrows forces g′ = g′∇u = sf ′u = sf , and commutativity with the
rightward arrows then forces f ′v = k′g′ = k′sf , so that f ′ is uniquely determined.
But it is readily verified that if we set g′ = sf and f ′ to be the morphism induced
by the pair (f, k′sf), then the diagram does commute.

This establishes a bijection between morphisms (q, k) → U(q′, k′, s) and mor-
phisms D(q, k) → (q′, k′, s); the verification that it is natural is easy. �

Corollary 2.7. If Ext(X) has an initial object, then so does SplExt(X).

Proof. Left adjoints preserve initial objects when they exist. �

To obtain the converse to Corollary 2.7, we need to establish a further fact
about the adjunction (D ⊣ U).

Proposition 2.8. The unit of the adjunction of Theorem 2.6 is a cartesian natural
transformation, i.e. its naturality squares are pullbacks.

Proof. It is easy to see that the component of the unit at an object (q, k) is given
by the diagram

1 - K-
k

- A
q

-- X - 1

1 - A

k

?

-
v
- D(A)

u

? r
-- X

wwwwwwwwww
- 1



342 F. BORCEUX, D. BOURN AND P. JOHNSTONE

So suppose we are given a morphism (f, g) : (q, k) → (q′, k′) in Ext(X). It is clear
that the square

K
g

- K ′

A

k

?

?

f
- A′

k′

?

?

is a pullback, since k and k′ are respectively the pullbacks of the basepoint of X
along q = q′f and q′. We need to show that the square

A
f

- A′

D(A)

u

? D(f)
- D(A′)

u′

?

is also a pullback. For this, we argue in the internal lanuguage. Suppose given
variables x ∈ D(A) and y′ ∈ A′ satisfying D(f)x = u′y′. We have

(∃y ∈ A)(uy = x) ∨ (∃z ∈ A)(vz = x) ,

as noted in the proof of Lemma 2.4. From the first alternative we deduce u′fy =
D(f)uy = u′y′, whence fy = y′ since u′ is monic, so we have found an element of
A mapping to both x and y′. From the second, we obtain v′fz = D(f)x = u′y′,
so since the pushout square

K ′-
k′

- A′

A′

k′

?

?

-
v′
- D(A′)

u′

?

?

is also a pullback, we obtain (∃w′ ∈ K ′)(k′w′ = fz = y′). Then since the first
square above is a pullback we have (∃w ∈ K)

(
(gw = w′) ∧ (kw = z)

)
, so that

uz = ukw = vkw = vz = x. Thus the second alternative reduces to the first. �

The following result from general category theory may well be known, but we
have not been able to find a reference for it

Lemma 2.9. Let (D : C → D ⊣ U : D → C) be an adjoint pair of functors. Suppose
also that C has finite limits, and that the unit of the adjunction is cartesian. Then
C is equivalent to a (full) coreflective subcategory of D/DT , where T is the terminal
object of C.
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Proof. D clearly induces a functor D̃ : C ∼= C/T → D/DT . Given an arbitrary
object (B → DT ) of D/DT , we may form the pullback

V B - UB

T
?

- UDT
?

in C, where the bottom arrow is the unit of (D ⊣ U). It is straightforward to

verify that V defines a functor D/DT → C, right adjoint to D̃; and the condition

that the unit of (D ⊣ U) is cartesian says precisely that the unit of (D̃ ⊣ V ) is an

isomorphism, i.e. that D̃ is full and faithful. So it induces an equivalence between
C and its image, which is a coreflective subcategory of D/DT . �

Corollary 2.10. If SplExt(X) has an initial object, then so does Ext(X).

Proof. The adjunction (D ⊣ U) of Theorem 2.6 satisfies the hypotheses of Lem-
ma 2.9, by Lemma 2.5 and Proposition 2.8. But SplExt(X)/DT clearly inherits an
initial object from SplExt(X), and so does any coreflective subcategory of it. �

3. The decidable case

In this section we investigate the ‘trivial’ case when the terminal object of
Ext(X) is also initial. Our first significant observation is:

Proposition 3.1. In the category E∗ of pointed objects of a topos, if a normal
epimorphism q : A ։ X admits a section, this section is necessarily unique.

Proof. If s and t are two sections of q, then for every x ∈ X we have

(qsx = x = qtx)⇒(sx = tx) ∨ (x = qsx = qtx = ∗)

⇒(sx = tx) ∨ (sx = ∗ = tx)

⇒(sx = tx)

which proves s = t. �

Once again, Proposition 3.1 is the dual of a result which holds in any arithmeti-
cal semi-abelian category, see [9], Theorem 3.16. However, it seemed worth giving
a topos-theoretic proof.

Theorem 3.2. In the category E∗ of pointed objects of a topos E, the following
conditions are equivalent for a pointed object X:

(i) the basepoint ∗ : 1 → X is decidable, that is complemented as a subobject
of X;

(ii) every normal epimorphism with codomain X admits a section;
(iii) the terminal object (1 → X → X) of Ext(X) is also initial.
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Proof. First assume condition (i) and consider a normal epimorphism q : A ։ X.
We have X ∼= {∗} ∐ X ′ for some X ′; thus taking the inverse images along q, we
obtain A ∼= K ∐ A′ for some A′. But the restriction of q to A′ is an isomorphism
A′ → X ′ by normality of q. Taking the inverse of this isomorphism on X ′ and
sending the basepoint of X to that of A yields the required section.

Now assume (ii). By Proposition 3.1, every normal epimorphism q : A ։ X
admits a unique section; equivalently, there is a unique morphism idX → q in
Nml(X). So (iii) holds.

Finally, assume (iii). Consider the morphism

q = (0, idX) : A = 1 ∐ X - X

where A is made into a pointed object by taking the added singleton as basepoint.
The morphism q is trivially an epimorphism, since its second component is so.
And it is normal because, given x, y ∈ A with qx = qy, we have

(
(x ∈ X) ∧ (y ∈ X)

)
∨ (x = ∗) ∨ (y = ∗)

(where ∗ denotes the basepoint of A). From the first alternative, we deduce x = y;
from the other two we obtain qx = ∗ = qy (where ∗ now denotes the basepoint
of X). By assumption, this epimorphism admits a (unique) section s : X → A.
Pulling back the coproduct decomposition of A along s, we obtain X ∼= s−1{∗} ∐
s−1X . Since s is monic, the first summand must be a subobject of 1; but it
contains the basepoint of X (since s preserves the basepoint), and so must be
exactly the subobject {∗} of X . So the latter is complemented. �

Corollary 3.3. Let E be a Boolean topos. In the category E∗ of pointed objects of
E, every object is its own initial normal cover. �

Next, we establish the ‘idempotency’ of the initial normal cover process in a
topos:

Lemma 3.4. Let E be a topos. In the category E∗ of pointed objects of E, the
composite of two normal epimorphisms is still a normal epimorphism.

Proof. Consider a composable pair

A
f

-- B
g

-- C

of normal epimorphisms. The composite gf is certainly an epimorphism; moreover,
given x, y ∈ A we have

gfx = gfy⇒(fx = fy) ∨ (gfx = ∗ = gfy)

⇒(x = y) ∨ (fx = ∗ = fy) ∨ (gfx = ∗ = gfy)

⇒(x = y) ∨ (gfx = ∗ = gfy) ,

so that gf is normal by Lemma 2.1. �

It is proved in [10] that the dual of a topos E is strongly protomodular in the
sense of [8], which implies easily the strong protomodularity of Eop

∗ . This strong
protomodularity means that ‘some’ composites of normal monomorphisms are still
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normal (see [4]): Lemma 3.4 reinforces this statement by showing that in Eop
∗ all

composites of normal epimorphisms are normal.

Proposition 3.5. Let E be a topos. If a pointed object X admits an initial normal
cover χ : [X ] ։ X, then the basepoint of [X ] is decidable and therefore [X ] is its
own initial normal cover.

Proof. If θ : Y ։ [X ] is a normal epimorphism, the composite χθ is a normal
epimorphism by Lemma 3.4. By initiality of χ, we get a unique α such that
(χθ)α = χ. But then θα = id[X] by initiality of χ. Thus θ has the section α and
we conclude by Theorem 3.2. �

At this point, it seems appropriate to give an example of a topos in which initial
normal covers exist but are not all trivial. Perhaps the simplest example of a non-
Boolean topos is the Sierpiński topos, that is the category [2,Set] of diagrams of
shape (• → •) in Set. We shall see later (Corollary 6.6) that all pointed objects
have initial normal covers in any topos of presheaves; so this applies in particular
to the Sierpiński topos. But the explicit calculation of the form of an initial normal
cover is of some interest.

Example 3.6. In the Sierpiński topos, the initial normal cover of a pointed object
(α : X0 → X1) is given by

χ : ([α] : [X ]0 → [X ]1) - (α : X0 → X1)

where [X ]0 = X0 (and χ0 is the identity map), [X ]1 = X1 + Ker α (here +, as
usual, denotes coproduct of pointed sets), χ1 sends each element of X1 to itself
and each element of Ker α to the basepoint, and

[α](x) = x ∈ Ker α if α(x) = ∗;

= α(x) ∈ Y if α(x) 6= ∗.

for x ∈ X0.
It is trivial that χ is a morphism of E , i.e. that αχ0 = χ1[α]. The kernel

of χ is simply the pointed object ({∗}  Ker α) and χ is indeed the quotient
which identifies to the basepoint all the elements in this kernel and leaves the rest
unchanged. Thus χ is a normal epimorphism.

Now consider another normal epimorphism between pointed objects

(q0, q1) : (β : A0 → A1) - (α : X0 → X1) .

We must prove the existence of a unique morphism of pointed objects

(f0, f1) : ([α] : [X ]0 → [X ]1) - (β : A0 → A1)

such that qf = χ. Let us write respectively s0, s1 for the unique sections of q0, q1

in Set∗ (see Theorem 3.2). Since χ0 is the identity, we have necessarily f0 = s0.
Since χ1 is the identity on X1, we get as well that f1 must agree with s1 on this
subset of [X ]1. And the equality βf0 = f1[α] forces finally f1(x) = βs0(x) for
x ∈ Ker α ⊆ [X ]1. This proves the uniqueness of f . And it is trivial to observe
that f defined in this way is indeed a morphism of E∗ and qf = χ.
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Of course, the non-decidability of objects in the Sierpiński topos arises from
the fact that distinct elements of X0 may have the same image in X1 (cf. [14],
A1.4.16). The construction of [X ] above has the effect of ‘pulling apart’ X1 just
sufficiently to make the basepoint decidable; this is what we should have expected
from Proposition 3.5.

Similar calculations may be performed in other toposes of presheaves on simple
categories: for example, in the topos [3,Set] of diagrams of shape (• → • → •),
we find that the initial normal cover of a pointed object

X0
α

- X1
β

- X2

has the form

X0
- X1 + Ker α - X2 + Ker β + Ker α .

And if one considers more involved examples, like presheaves on a poset having
infinite ascending or descending chains, or having ‘diamonds’, it is quite easy in
each case to describe explicitly the initial normal cover of a pointed object. One
uses if necessary a coequalizer to force the commutativity of a ‘diamond’, or limits
and colimits to take care of the infinite chains.

However, it should be noted that in these examples, the construction of the
initial normal cover introduces ‘at the lower level’ the elements of Ker α, which
‘live at the upper level’. Such a construction seems to be opposite to what the
constructions in the internal logic of the topos generally do. Therefore, it seems
unlikely that the construction of initial normal covers – when these exist – could
be handled in the internal logic of the topos.

4. The functor ExtX

In this section we present an alternative approach to the problem of finding
an initial normal cover of a pointed object X , via the functor which to a pointed
object K assigns the set of isomorphism classes of short exact sequences with
kernel K and cokernel X . In order to show that these isomorphism classes form a
set, we need the following lemma.

Lemma 4.1. Suppose given a short exact sequence

1 - K
k

- A
q

- X - 1

in E∗, for some topos E. Then the morphism

(q, Ωk{}) : A - X × ΩK

is a monomorphism.

Proof. As usual, we argue in the internal language of E . Suppose given x, x′ ∈ A
satisfying (qx = qx′) ∧ (Ωk{x} = Ωk{x′}). From the first equation we deduce
(x = x′) ∨ (qx = ∗ = qx′); but the latter alternative implies (∃y, y′ ∈ K)

(
(ky =

x) ∧ (ky′ = x′)
)
. Now we have

Ωk{x} = Ωk(∃k){y} = {y}
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since k is monic (cf. [14], A2.2.5), and similarly Ωk{x′} = {y′}. So we deduce
{y} = {y′}; but the singleton map {} : K → ΩK is also monic ([14], A2.2.3), so
this implies y = y′ and hence x = x′. �

Corollary 4.2. Let E be a locally small topos and E∗ its category of pointed objects.
For every pointed object X ∈ E∗, there exists a covariant functor

ExtX : E∗ - Set

mapping a pointed object K to the set of isomorphism classes of short exact se-
quences with prescribed kernel K and prescribed cokernel X.

Proof. We make ExtX into a covariant functor by means of the ‘pushout construc-
tion’ of Lemma 2.4: given (q, k) ∈ ExtX(K) and f : K → L, we define ExtX(f)(q, k)
to be (r, v) in the notation of that Lemma. It is easy to verify that this construction
is well-defined up to isomorphism and functorial. Lemma 4.1 ensures that it takes
values in Set, since any locally small topos is well-powered (isomorphism classes
of subobjects of an object B correspond bijectively to morphisms B → Ω). �

The key observation linking the functor ExtX to the existence of initial normal
covers is the following.

Proposition 4.3. Let E be a locally small topos. A pointed object X ∈ E∗ admits
an initial normal cover if and only if the functor ExtX is representable.

Proof. A set-valued functor is representable if and only if its category of elements
has an initial object. But the category of elements of ExtX is exactly the category
Ext(X), which as we have already noted is equivalent to Nml(X). And the existence
of an initial object in this last category means precisely the existence of an initial
normal cover of X . �

For a Grothendieck topos, the problem can be further reduced, using classical
arguments:

Corollary 4.4. Let E be a Grothendieck topos. A pointed object X ∈ E∗ admits
an initial normal cover if and only if the functor ExtX preserves limits.

Proof. We use the ‘representability version’ of the Special Adjoint Functor The-
orem (see [15], corollary to V.8.2). For this we need to know that E∗ is complete
and well-powered, and has a small coseparating family. The first two conditions
are trivially satisfied. The topos E itself has a coseparating family (in fact a sin-
gle coseparator G; see [14], B3.1.13), thus the set of pointed objects obtained by
equipping G with all its possible basepoints constitutes a coseparating family in
E∗. �

In fact Corollary 4.4 can be further improved. By a slight modification of
(the dual of) a result from [7], one can show that the functor ExtX always pre-
serves equalizers of cokernel-pairs. But a functor on a finitely complete Barr-exact
Mal’cev category which preserves finite coproducts and coequalizers of kernel-pairs
preserves all finite limits [7]. Applying the dual of this result to ExtX , we deduce:
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Corollary 4.5. Let E be a Grothendieck topos. A pointed object X ∈ E∗ admits
an initial normal cover if and only if the functor ExtX preserves products.

We omit the details of the proof, since we shall not use this result.
We conclude this section with a slight digression, inspired by an observation in

the proof of Corollary 4.4. We know that every Grothendieck topos E has a single
coseparator, but, in order to get a coseparating family for E∗, we have to equip
this object with all its possible basepoints — which will in general produce many
non-isomorphic objects. Is it possible to find a single coseparator for E∗? The
following result, which extends that of [1], shows that the answer is ‘yes’ at least
when E is localic.

Proposition 4.6. For a localic topos E, (Ω,⊤) is a coseparator in the correspond-
ing category E∗ of pointed objects.

Proof. Let E be the category of sheaves on the frame L. Given a sheaf F and
two elements a 6= b ∈ F (u) for some u ∈ L, we consider the following truth values
(= elements of L)

• α = [[a = ∗]], the truth value of a = ∗;
• β = [[b = ∗]], the truth value of b = ∗;
• δ = [[a = b]], the truth value of a = b.

We cannot have both

α ∨ δ = u, β ∨ δ = u

because then a and b would have equal restrictions on the two pieces of the covering

u = (α ∨ δ) ∧ (β ∨ δ) = (α ∧ β) ∨ δ

and thus a, b would be equal. Let us assume that α ∨ δ 6= u.
Consider now the subsheaf S ⊆ F generated by ∗ ∈ F (1) and b ∈ F (u). In

terms of truth values we have

[[a ∈ S]] = [[(a = ∗) ∨ (a = b)]] = [[a = ∗]] ∨ [[a = b]] = α ∨ δ .

Since α ∨ δ 6= u, a 6∈ S(u) while b ∈ S(U). Thus S is a pointed subobject of F
which contains a but not b. Therefore its characteristic mapping

ϕ : (F, ∗) - (Ω,⊤)

is a morphism of pointed objects which separates a and b. �

5. Generalized pullbacks

Given an arbitrary familly of morphisms (qi : Ai → X)i∈I in a complete cate-
gory E , the product of the qi in E/X is an object P equipped with morphisms
pi : P → Ai for all i ∈ I, such that the composite q = qipi is independent of i,
and satisfying the appropriate universal property. We shall call this morphism q
the generalized pullback of the morphisms qi (it is also sometimes called a wide
pullback).

We may now state a necessary condition for the existence of initial normal
covers.
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Proposition 5.1. Let E be a complete topos. If a pointed object X ∈ E∗ admits an
initial normal cover, then in E∗, the generalized pullback of every family of normal
epimorphisms with codomain X is still an epimorphism.

Proof. Let χ : [X ] ։ X be the initial cover of X . Given a family (qi : Ai → X | i ∈
I) of normal epimorphisms, χ factors through each of the qi, and hence through
their generalized pullback q : P → X. But χ is an epimorphism, so q must be
epic. �

For a Grothendieck topos, we have a sufficient condition which appears very
similar.

Proposition 5.2. Let E be a Grothendieck topos. Let X ∈ E∗ be a pointed object
such that the generalized pullback of every family of normal epimorphisms with
codomain X is still a normal epimorphism. Then X admits an initial normal
cover.

Proof. This time we use the General Adjoint Functor Theorem in its ‘initial-
object’ form ([15], Theorem V 6.1). The hypothesis says that Nml(X) is closed
under arbitrary products in E∗/X ; but we already know it is closed under equal-
izers, by Lemma 2.5, and hence it is complete. It is locally small since E is,
so it remains only to verify the solution-set condition. For this we use a local
presentability argument, as follows.

Any Grothendieck topos is locally presentable ([14], D2.3.7), so we may choose a
regular cardinal κ such that both X and the terminal object of E are κ-presentable.
Now, given any normal epimorphism q : A ։ X, we may express A as an epimor-
phic image of a coproduct

∐
i∈I Gi of members of some separating set for E . The

union of the images of the composites Gi → A → X is the whole of X ; so by
κ-presentability we can find a subset I ′ ⊆ I of cardinality less than κ such that
the union of the images of the Gi → X with i ∈ I ′ is still the whole of X , and
additionally such that the union of the images of the Gi → A with i ∈ I ′ contains
the basepoint of A. Now let A′

 A be the union of the images of the Gi → A for
i ∈ I ′. Then the composite A′

 A ։ X is epimorphic, so by Corollary 2.2 it is a
normal epimorphism. Thus we may obtain our solution set for Nml(X) by taking
a representative set of quotients of coproducts of fewer than κ generators, and
equipping them with all possible choices of basepoints and normal epimorphisms
to X . �

An alternative proof of Proposition 5.2 may be given using Corollary 4.5; we
omit the details.

Propositions 5.1 and 5.2 thus very clearly delimit the problem. The necessary
and sufficient condition for an object X ∈ E∗ to admit an initial normal cover is
‘squeezed’ between the condition that any generalized pullback of normal epimor-
phisms with codomain X is a normal epimorphism, and the condition that any
such generalized pullback should be simply epimorphic.

We do not know any actual instance where the necessary condition holds but
the sufficient one fails. However, in order to prove them equivalent, we need to
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assume a rather strong additional property of our topos E , which we introduce in
the next section.

6. Bi-Heyting toposes

Definition 6.1. A topos E is called bi-Heyting when the duals of its Heyting
algebras of subobjects are again Heyting algebras.

In other words, a topos is bi-Heyting when the union with a subobject admits
a left adjoint. In particular, in the Grothendieck case, or more generally in the
presence of arbitrary intersections:

Lemma 6.2. A Grothendieck topos E is bi-Heyting when finite unions distribute
over arbitrary intersections:

S ∪
( ⋂

i∈I

Ti

)
=

⋂

i∈I

(S ∪ Ti) .

Obviously Boolean toposes are bi-Heyting, since the dual of a Boolean algebra
is again a Boolean algebra. For future reference, we also note:

Lemma 6.3. Let E be a Grothendieck topos, and {Gi | i ∈ I} a separating set of
objects of E. Then E is bi-Heyting if and only if each Gi has bi-Heyting subobject
lattice.

Proof. For an arbitrary object X of E , we have an epimorphism
∐

j∈J

Gf(j)
-- X

for some set J and function f : J → I. Pulling back along this epimorphism yields
an injection

Sub(X)--

∏

j∈J

Sub(Gf(j))

which preserves arbitrary unions and intersections; so the domain of this map
inherits the distributive law of Lemma 6.2 from its codomain. �

Proposition 6.4. Let E be a bi-Heyting Grothendieck topos. Given a family
of normal epimorphisms (qi : Ai ։ X | i ∈ I) between pointed objects and their
generalized pullback q : P → X, the following conditions are equivalent:

(i) q is an epimorphism;
(ii) q is a normal epimorphism.

In particular, X ∈ E∗ admits an initial normal cover if and only if these equivalent
conditions are satisfied.

Proof. Of course it suffices to prove that (i) implies (ii). For this we again use
the criterion of Lemma 2.1: given x, y ∈ P with qx = qy, we have for each i ∈ I

(pix = piy) ∨ (qipix = ∗ = qipiy)
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(where pi denotes the projection P → Ai). But the second alternative is indepen-
dent of i, so by the infinite distributive law of Lemma 6.2 we obtain

( ∧

i∈I

(pix = piy)
)
∨ (qx = ∗ = qy) .

And the first alternative here is equivalent to x = y, since the family (pi | i ∈ I)
is jointly monic. �

It appeared that in Proposition 6.4 we did not use the full strength of the
bi-Heyting axiom, but only the special case

u ∨
( ∧

i∈I

vi

)
=

∧

i∈I

(u ∨ vi), provided ∀i, j ∈ I u ∨ vi = u ∨ vj .

However, this particular case is equivalent to the general one. Given arbitrary
elements u and (vi | i ∈ I) of a distributive complete lattice, let us write w =∧

i∈I(u ∨ vi) and set v′i = vi ∧ w for all i. (Note that u = u ∧ w, since u ≤ w.)
Then u ∨ v′i = (u ∨ vi) ∧ w = w for all i, but

u ∨
( ∧

i∈I

v′i

)
=

(
u ∨

( ∧

i∈I

vi

))
∧ w = u ∨

( ∧

i∈I

vi

)

since u∨
∧

vi ≤
∧

(u∨vi) is true in any complete lattice. Thus the particular case
of the distributive law, applied to u and the v′i, yields the general case for u and
the vi.

Next, we show that possession of universal normal covers ‘descends’ in a suitable
sense along essential surjections. Recall that a geometric morphism f : F → E is
said to be surjective if the inverse image functor f∗ : E → F is faithful, and essential
if f∗ has a left adjoint f! (as well as its usual right adjoint f∗).

Proposition 6.5. Let f : F → E be an esssential surjective morphism between
Grothendieck toposes. Then

(i) if F is bi-Heyting, so is E;
(ii) if F is bi-Heyting and pointed objects of F have initial normal covers, then

the same is true in E.

Proof. (i) For every object X of E , applying f∗ to subobjects of X yields a
mapping Sub(X) → Sub(f∗X) which is injective since f∗ is faithful, and preserves
arbitrary meets and joins, since they can be defined in terms of limits and colimits,
and f∗ preserves these. So Sub(X) inherits the infinite distributive law of Lemma
6.2 from Sub(f∗X).

(ii) By Proposition 6.4, it suffices to show that E inherits the property that an
arbitrary generalized pullback of normal epimorphisms is epimorphic. But f∗ pre-
serves normal epimorphisms (since the property of being a normal epimorphism
is expressible by geometric sequents in the internal language of a topos) and arbi-
trary limits; and it reflects epimorphisms because it is faithful. So E inherits this
property from F . �
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Note that we could have stated Proposition 6.5(ii) in ‘local’ form: given f as in
the statement, if (F is bi-Heyting and) X is an object of E∗ such that f∗X has a
universal normal cover in F∗, then X has one in E∗.

Corollary 6.6. For any small category C, the topos E = [Cop,Set] of presheaves
on C is bi-Heyting, and every object of E∗ has an initial normal cover.

Proof. The inclusion C0 → C, where C0 denotes the discrete category with the
same objects as C (or simply the set of objects of C) induces an essential surjection

Set/C0 ≃ [Cop
0 ,Set] - [Cop,Set] .

But Set/C0 is Boolean, so it is bi-Heyting; and its category of pointed objects has
initial normal covers by Corollary 3.3. �

It would of course be easy to prove Corollary 6.6 directly from Proposition 6.4,
using the facts that unions, intersections, generalized pullbacks and epimorphisms
are all computed ‘pointwise’ in a presheaf topos.

Another class of Grothendieck toposes where initial normal covers exist may
be obtained using a strengthening of the bi-Heyting condition. Let us recall that
a complete lattice L is completely distributive when, given any doubly-indexed
family (xi,j | i ∈ I, j ∈ Ji) of elements of L, one has

∧

i∈I

( ∨

j∈Ji

xi,j

)
=

∨

φ∈F

( ∧

i∈I

xi,φ(i)

)

where F denotes the set of choice functions φ for the family of sets (Ji | i ∈ I),
that is functions such that φ(i) ∈ Ji for all i ∈ I.

Definition 6.7. We call a Grothendieck topos completely distributive when its
lattices of subobjects are completely distributive.

It is clear that any completely distributive topos is bi-Heyting. Also, the ana-
logues of Lemma 6.3 and Proposition 6.5(i) both hold for complete distributivity,
with the same proofs as for the bi-Heyting property.

The following result is probably known, but we did not find an explicit reference
for it.

Proposition 6.8. In a completely distributive localic topos, the generalized pull-
back of a family of arbitrary epimorphisms is still an epimorphism.

Proof. Let (qi : Ai ։ X | i ∈ I) be a family of epimorphisms in a completely
distributive localic topos E . By working in the slice category E/X , we may reduce
to the case when X is the terminal object 1. Suppose E is the topos of sheaves
on a frame L; then the assertion that Ai → 1 is epimorphic means that the set
Ji = {u ∈ L | Ai(u) 6= ∅} is a covering sieve on the top element of L, i.e. that∨

Ji = 1. So we have
∧

i∈I(
∨

Ji) = 1, and hence by complete distributivity

∨

φ∈F

( ∧

i∈I

φ(i)
)

= 1 ,
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where F is as before the set of choice functions for (Ji | i ∈ I). But for every
φ ∈ F , if we write uφ for

∧
i∈I φ(i), we have Ai(uφ) 6= ∅ for all i, and hence

(∏

i∈I

Ai

)
(uφ) =

∏

i∈I

(
Ai(uφ)

)
6= ∅ ,

so this implies that
∏

i∈I Ai → 1 is epimorphic. �

Corollary 6.9. Let E be a completely distributive étendue. Then E is a bi-Heyting
topos in which every pointed object X ∈ E∗ admits an initial normal cover.

Proof. We recall that a Grothendieck topos E is called an étendue if there is
an object A of E such that A → 1 is epic and the topos E/A is localic. In this
event, the induced morphism E/A → E is essential and surjective; and E/A inherits
complete distributivity from E . So it satisfies the conclusion of Proposition 6.8;
but since, as we already remarked, complete distributivity implies the bi-Heyting
property, this suffices by Proposition 6.4 for the existence of initial normal covers
in (E/A)∗. Their existence in E∗ then follows from Proposition 6.5. �

The localic assumption is essential to the proof of Proposition 6.8. If G is a
topological group, then the topos Cont(G) of continuous G-sets (cf. [14], A2.1.6)
is completely distributive, since its subobject lattices are complete atomic Boolean
algebras. But if G has an infinite family of open normal subgroups (Hi | i ∈ I)
whose intersection is not open, then the transitive G-sets G/Hi (are continuous
and) map epimorphically to 1 in Cont(G), but their product in this category is
empty. We note that this topos is Boolean, so it does not provide a counterexample
to the assertion that every completely distributive Grothendieck topos has initial
normal covers for all its pointed objects; indeed, we do not know any example of
a completely distributive Grothendieck topos where this property fails. Note also
that presheaf toposes are completely distributive, by the same argument which
shows that they satisfy the bi-Heyting property.

Finally, let us remark that neither of the two classes of toposes for which we have
been able to show that all pointed objects have initial normal covers — completely
distributive étendues, and toposes admitting an essential surjection from a Boolean
topos — is included in the other. Indeed, a complete Boolean algebra is completely
distributive if and only if it is atomic (see [13], VII.1.16), so the topos of sheaves on
an atomless complete Boolean algebra provides a counterexample to one inclusion.
For the other, we have:

Example 6.10. Let X be the topological space whose points are those of the half-
open interval [0, 1) ⊆ R, and whose open sets are the intervals [0, a) for 0 ≤ a ≤ 1
(the case a = 0 being interpreted as the empty set). Let E be the topos of
sheaves on X . Then E is localic and completely distributive (the latter because
the subobject lattice of any representable functor is totally ordered). However,
we claim that E does not admit any essential geometric morphism from a non-
degenerate Boolean topos.

To prove this, suppose given an essential morphism f : B → E with B Boolean.
There is no loss of generality in supposing that B is localic, since we can replace
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it by its localic reflection: the latter is still Boolean (since it is equivalent to a full
subcategory of B closed under subobjects, cf. [14], A4.6.6) and the factorization
of f through the reflection morphism (which exists because E is localic) is still
essential. From now on, therefore, we assume that B is localic.

Now E is locally connected (indeed, totally connected in the sense of [14],
C3.6.16, since every nonempty open set in X contains the point 0) and hence
the unique geometric morphism E → Set is essential by [14], C1.5.9. Hence also
the morphism B → Set is essential, i.e. B is locally connected. But a Boolean lo-
calic topos can be represented as sheaves for the canonical coverage on a complete
Boolean algebra; and such a topos is locally connected iff the Boolean algebra is
atomic, since the only connected elements of a Boolean algebra are atoms. Thus
B is actually of the form Set/A, where A is the set of atoms. In particular, each
a ∈ A defines an essential point of a : Set → B, and hence by composition an es-
sential point fa : Set → E . But E has no essential points, since an essential point
p of a spatial topos has a smallest open neighbourhood (the image of p!1 → 1 in
the topos) and no point of X has this property. Thus we conclude that A is the
empty set, and B is degenerate; in particular, f is not surjective.

7. Is the bi-Heyting axiom necessary?

The previous section has underlined the role that the bi-Heyting property can
play in the existence of initial normal covers: in fact, as we have seen, it forces
our necessary condition to become sufficient. But is the bi-Heyting property itself
necessary, or even, necessary and sufficient? Here is a partial answer concerning
the possible necessity of the bi-Heyting axiom.

Proposition 7.1. Let E be a topos such that all pointed objects of E have initial
normal covers. Then the subobjects of 1 in E constitute a bi-Heyting algebra.

Proof. In the lattice of subobjects of 1, we must prove that given two subobjects
U , V , there exists a subobject U \ V such that for every subobject W

W ∨ V ≥ U iff W ≥ U \ V.

Notice at once that it suffices to check this property when U ≥ V ; indeed if that
is done and arbitrary U , V are given, it suffices to define

U \ V =def (U ∨ V ) \ V .

So consider two subobjects U, V of 1 with U ≥ V . The following pushout of
monomorphisms is thus also a pullback, by [14], A2.4.3.

V- - 1

U
?

?

-
u

- X

v

?

?

The domain of the initial normal cover of the pointed object (X, v) has a decidable
basepoint by Proposition 3.5, thus it has the form p : 1 ∐ A ։ X, with the first
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summand of 1 ∐ A mapped to v. It is tempting to conjecture that A should
be a subobject of 1, in which case one could easily prove that it had the required
property of a co-implication U \V ; however, there seems to be no reason in general
to suppose that A → 1 is monic. Nevertheless, we may show that the support σA
of A (that is, the image of A → 1) provides the required co-implication.

We observe first that σA ≤ U : for we may regard 1 ∐ (A × U) as a subobject
of 1 ∐ A (via the monic projection A × U  A × 1 ∼= A), and it still maps
epimorphically to X since its image contains both the subobjects v and u. So by
Corollary 2.3 it must be the whole of 1 ∐ A; in other words, A × U  A is an
isomorphism. Hence σA = σ(A × U) = σA ∧ U .

Moreover, since the pullback of p along u : U  X is epic, and the pullback of
1  1∐A ։ X along u is precisely V  U , we must have σA∨ V = U . To show
that σA = U \ V , we must prove that it is the smallest subobject of 1 with this
property.

Suppose W  1 also satisfies W ∨V = U . As before, we may regard 1∐(A×W )
as a subobject of 1 ∐ A; let q : 1 ∐ (A × W ) → X be the restriction of p to this
subobject. We claim that q is an epimorphism. Its image clearly contains the
point v, so its intersection with the subobject u certainly contains V  U . But

V ∨ σ(A × W ) = V ∨ (σA ∧ W ) = (V ∨ σA) ∧ (V ∨ W ) = U .

Thus by another application of Corollary 2.3, we deduce that A×W is the whole
of A, and hence that σA ≤ W . �

Corollary 7.2. If initial normal covers exist in a localic topos E, this topos is
necessarily a bi-Heyting one.

Proof. If Sub(1) is a bi-Heyting algebra, then so is Sub(U) for any subobject
U  1. So the result follows from Lemma 6.3. �

Thus we see that the possession of initial normal covers for pointed objects
is a rather rare property of localic toposes. In particular, if X is any Hausdorff
space in which not every intersection of open sets is open, one can show that the
distributive law of Lemma 6.2 fails in the lattice of open sets of X , and so the
topos of sheaves on X does not have initial normal covers.
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