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NATURAL WEAK FACTORIZATION SYSTEMS

MARCO GRANDIS∗ AND WALTER THOLEN†

Dedicated to Jiř́ı Rosický at the occasion of his sixtieth birthday

Abstract. In order to facilitate a natural choice for morphisms created by
the (left or right) lifting property as used in the definition of weak factoriza-
tion systems, the notion of natural weak factorization system in the category
K is introduced, as a pair (comonad, monad) over K2. The link with existing
notions in terms of morphism classes is given via the respective Eilenberg–
Moore categories.

1. Introduction

Weak factorization systems (L,R) play a key role for Quillen model categories,
defined in terms of (cofibrations, trivial fibrations) and (trivial cofibrations, fibra-
tions). While the two players L and R have good stability properties under some
colimits and limits, respectively, unlike the counterparts appearing in the orthogo-
nal factorization systems, they fail to be closed under the formation of all colimits
and limits, coequalizers and equalizers among them. The general reason for that,
of course, lies in the fact that morphisms provided by the (right or left) lifting
property are not chosen naturally, even in the presence of a functorial realization
for the system.

While the notion of lax factorization algebra presented in [8] leads to a natural
extension of the presentation of orthogonal factorization systems as Eilenberg–
Moore algebras for the “squaring monad” on CAT (see [4], [7], [10]) it does not
give a remedy for the defect just described. This paper, therefore, takes a new look
at what “functorial weak factorization systems” ought to be and, after a careful
recollection of the existing notions, proposes to define such systems in the category
K by a pair (comonad, monad) in K2, under suitable conditions.

A first step in the passage towards a pair of morphism classes in K is made
by considering the respective Eilenberg–Moore categories. Their (co)algebras are
morphisms in K that come with a (co)algebraic structure, and it is that structure
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that contains all information to construct “liftings” naturally. Of course, as in all
Eilenberg–Moore categories, all (co)limits are now created over K2. If both the
comonad and monad are idempotent, the structures become properties, and the
approach takes us back to the traditional presentation of orthogonal factorization
systems in terms of two subclasses of morK.

Those results are presented in Sections 2 and 3, and examples follow in Section
4. These encompass the examples treated in [8]. Furthermore, all cofibrantly
generated weak factorization systems in locally finitely-presentable categories are
natural, but we must leave a presentation of the rather lengthy and cumbersome
proof to a later paper.

2. Natural weak factorization systems

2.1. Morphisms (u, v) : f → g in the category K2 are commutative squares

u //

f

��
g

��
v

//

of morphisms in the category K. The two projections give the (vertical) domain
and the codomain functors dom, cod: K2 → K, and there is a natural transfor-
mation κ : dom → cod with κf = f . According to [8], a functorial realization of
a weak factorization system of K is given by a functor F : K2 → K and natural
transformations λ : dom → F , ρ : F → cod such that

F
ρ

!!C
CC

CC
CC

C

dom

λ

==zzzzzzzz
κ // cod

commutes and, for all f ∈ obK2,

λf ∈ LF := {g | ∃s : λg = s · g, ρg · s = 1} ,

ρf ∈ RF := {g | ∃p : ρg = g · p, p · λg = 1} .

Now, (LF ,RF ) is indeed a weak factorization system (wfs) of K in the sense
of [1], and any wfs (L,R) that admits a functorial realization (F, λ, ρ) (so that all
properties above are satisfied, with LF , RF traded for L, R) necessarily satisfies
L = LF , R = RF (see Theorem 2.4 of [8]). These data provide for every morphism
f a commutative diagram

FLf
ρLf // Ff

ρf

%%LLLLLLLLLLL

λRf // FRf

ρRF

��
A

λLf

OO

λf

99rrrrrrrrrrr

f
// B
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where we have written Lf for λf (considered as an object of K2), and Rf for ρf ,
and where ρLf , λRf have splittings s, p with

(1) λLf = s · λf , ρLf · s = 1 , ρRf = ρf · p, p · λRf = 1 .

Unfortunately, these splittings (that are used for constructing “liftings”) need to
be chosen each time and add a non–constructive aspect to the notion of functorial
realization of wfs.

2.2. The natural transformation λ in 2.1 is equivalently described by a functor
L : K2 → K2 with

(2) domL = dom , codL = F , κL = λ .

Now ρ may be described by a natural transformation Φ: L → 1K2 with

(3) domΦ = 1dom , codΦ = ρ ;

explicitly, Φf is the commutative square

A
1A //

λf

��

A

f

��
Ff

ρf // B

Likewise, when we present ρ as a functor R : K2 → K2 with

(4) domR = F , codR = cod , κR = ρ ,

then λ may be presented as a natural transformation Λ: 1K2 → R with

(5) domΛ = λ , codΛ = 1cod ;

hence, Λf is the commutative square

A
λf //

f

��

Ff

ρf

��
B

1B // B

Now, let us suppose that there is a natural choice for the splittings s, p satis-
fying (1). Hence, we suppose that there are natural transformations σ : F → FL,
π : FR → F with

(6) λL = σ · λ , ρL · σ = 1F , ρR = p · π , π · λR = 1F .

Equivalently, σ and π can be described by natural transformations Σ: L → LL
and Π: RR → R with

(7)
domΣ = 1dom , codΣ = σ , ΦL · Σ = 1L ,
codΠ = 1cod , domΠ = π , Π · ΛR = 1R .
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Explicitly, Σf and Πf are respectively the commutative diagrams

A
1A //

λf

��

A

λLf

��
Ff

σf // FLf

FRf
πf //

ρRf

��

Fr

ρf

��
B

1B // B

It seems natural to assume that (L, Φ, Σ) and (R, Λ, Π) actually form a comonad
and a monad on K2, respectively, so that in addition to (7) one has

(8)
LΦ · Σ = 1L , ΣL · Σ = LΣ · Σ ,
Π · ΛR = 1R , Π · ΠR = Π · RΠ .

Alternatively, in addition to (6) one requires

(9)
F (1a, ρf ) · σf = 1Ff , σLf · σf = F (1A, σf ) · σf ,
πf · F (λf , 1B) = 1Ff , πf · πRf = πf · F (σF , 1B) .

This leads to the Definition 2.4 below, for which the following setting is consid-
ered.

2.3. Let CAT//K be the 2–category whose objects are functors with values in K,
whose arrows F : U → V are commutative triangles

A
F //

U ��@
@@

@@
@ B

V����
��

��

K

of functors, and whose 2-cells are natural transformations α : F → G with V α =
1U . A monad (T, η, µ) on U in CAT//K is simply a monad (T, η, µ) on A in CAT

with UT = U , Uη = 1U , Uµ = 1U . A comonad on U in CAT//K is described
analogously.

Definition 2.4. A natural weak factorization system (natural wfs) in a category
K is a pair (L, R) such that

(1) L = (L, Φ, Σ) is a comonad on dom in CAT//K,

(2) R = (R, Λ, Π) is a monad on cod in CAT//K,

(3) codL = domR, codΦ = κR, domΛ = κL.

From our discussion in 2.1, 2.2 one sees immediately:

Proposition 2.5.

(i) Let us be given a functor F : K2 → K and natural transformations

λ : dom → F , ρ : F → cod , σ : F → FL , π : FR → F ,

(where L, R : K2 → K2 respectively represent λ, ρ as in 2.2). If ρ · λ =
κ : dom → cod and (6) holds, then (F, λ, ρ) is a functorial wfs (with a
natural choice of splittings).
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(ii) There is a bijection between natural wfs (L, R) = (L, Φ, Σ; R, Λ, Π) on K,
as in 2.4, and systems (F, λ, ρ, σ, π) as in (i) which satisfy ρ · λ = κ and
the conditions (6), (9). Given a natural wfs (L, R), one defines the system:

F := codL = domR , λ := domΛ , ρ := codΦ , σ := codΣ , π := domΠ .

Conversely, given such a system, one defines the associated natural wfs as in 2.2.

2.6. For a natural wfs (L, R), let LL and RR denote the Eilenberg–Moore cate-
gories of L and R, respectively. Hence, an object in LL is a pair (f, (i, s) : f → Lf)
such that

f

1

����
��

��
��

(i,s)

��

(i,s) // Lf

Σf

��
f Lf

Φf

oo
L(i,s)

// LLf

commutes in K2. Since necessarily i = 1, with 2.5 we can simply write

obLL = {(f : A → B, s : B → Ff) | λf = sf, ρf ·s = 1B, σf ·s = F (1A, s)·s} ;

a morphism (u, v) : (f, s) → (g, t) in LL is a morphism (u, v) : f → g in K2 which
satisfies t · v = F (u, v) · s. Hence, objects in LL are, in the setting of 2.1, simply
morphisms of LF (see 2.1) that come with a given splitting s which, in addition,
must be compatible with the (co)multiplicative structure of L; morphisms of LL

must respect the given splittings.

Similarly one obtains

obRR = {(f : A → B, p : A → Ff) | ρf = fp, pλf = 1A, pπf = p · F (p, 1B)} ,

with morphisms (u, v) : (f, p) → (g, q) in RR satisfying u · p = q · F (u, v).

Corollary 2.7. Let (L, R) be a natural wfs of K. Then, in the notation of 2.1
and 2.2, every morphism f : A → B factors as

Ff
ρf

  B
BB

BB
B

A

λf
>>}}}}}} f // B

with (λf , σf ) ∈ LL and (ρf , πf ) ∈ RR. Furthermore, for all (f, s) ∈ LL and
(g, q) ∈ RR and (u, v) : f → g in K2, there is a naturally chosen diagonal morphism
w as in

A
u //

f

��

C

g

��
B v

//

w

>>~
~

~
~

D

namely: w = q · F (u, v) · s. If K has colimits (resp. limits) of a given type, then
LL (resp. RR) also has them, formed as in K2.

Proof. The forgetful functors LL → K2 and RR → K2 create colimits and limits,
respectively. �
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3. Orthogonal factorization systems

3.1. Recall that an orthogonal factorization system in a category K may be given
by a pair (L,R) of classes of morphisms of K, both closed under composition with
isomorphisms, such that K = R · L, and for all f ∈ L, g ∈ R and (u, v) : f → g in
K2 there is a unique morphism w with wf = u and gw = v.

Equivalently, it may be described by a functor F : K2 → K with FE = 1K and

F (1, f) ∈ L1
F := {g | F (g, 1) iso} ,

F (f, 1) ∈ R1
F := {g | F (1, g) iso}

(see Theorem A of [7]); here E : K → K2 is the full embedding with A 7→ 1A, and
the morphisms (1, f), (f, 1) stem from the generic factorization

f
(f,1B)

��?
??

??
??

1A

(1A,f)
??�������

Ef=(f,f)
// 1B

in K2, for every f : A → B in K.
Note that such a functor F gives rise to a natural wfs, with λf = F (1, f), ρf =

F (f, 1) and σf , πf both isomorphisms. Since orthogonal factorization systems are
weak factorization systems ([2], [1]), one has L1

F = LF and R1
F = RF .

Theorem 3.2. Orthogonal factorization systems of K are equivalently described
as those natural wfs (L, R) for which L and R are idempotent. In this case the
Eilenberg–Moore categories LL and RR are equivalent to LF and RF , considered
as full coreflective and reflective subcategories of K2, with F as in 2.5.

Proof. It is clear that an orthogonal factorization system gives rise to a natural
wfs (L, R) with L, R idempotent, see 3.1. Conversely, having such a natural wfs,
in the notation on 2.5 one has σ, π iso. In order to be able to apply Theorem A
of [7], we just have to show FE = 1K; in fact, it is sufficient to show FE ∼= 1K
(see 2.2 of [7]). Hence, we must show that for every object A in K, the morphisms
l = λ1A

and r = ρ1A
are isos (see 2.6 of [8]).

To this end, one considers the morphism (l, 1A) : 1A → r in K2 and notices that
F (l, 1A) is iso since π1A

is iso (by (9) of 2.2). Now we factor (l, 1A) as

1A

(1A,l) // l
(l,r) //r .

By idempotency of R and L, we may assume ρl = 1B and λr = 1B (with
B = F1A), so that an application of F to the factorization of (l, 1A) leads to the
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following commutative diagram

A
1A //

l

��

A

1

l //

l

��

B

1B

��
B

2

F (1A,l) //

r

��

B
F (l,r) //

1B

��

B

r

��
A

l
// B r

// A

Now one has:

l · r = F (l, r) · l · r (commutativity of 1 )

= F (l, r) · F (1A, l) (commutativity of 2 )
= F (l, 1A) (since r · l = 1A)

Hence, l · r is an isomorphism, and then both l, r must be isos. �

Remarks 3.3. Here are three related open problems.
1. The proof of 3.2 uses idempotency of both players of the natural wfs (L, R).
We do not know whether idempotency of one of them implies idempotency of the
other.
2. In a wfs (L,R), one class determines the other. We do not know if, for a natural
wfs (L, R), L and R determine each other.
3. Are there distinct natural wfs inducing the same functorial wfs, that is: do there
exist distinct natural wfs (L, R), (L′, R′) with (in the notation of 2.5) F = F ′,
λ = λ′, ρ = ρ′, but σ 6= σ′ or π 6= π′?

4. Examples

4.1. In a category K with binary products, every map f : X → Y has a well-known
graph-factorization

(10) f = ρf · λf = p2〈1, f〉 : X → X × Y → Y ,

where p2 is the second projection of the cartesian product.

Dually, in a category K with binary sums, a map f : X → Y has a cograph-
factorization

(11) f = ρf · λf = [f, 1]i1 : X → X + Y → Y ,

where i1 is the first injection of the sum and ρf = [f, 1] : X + Y → Y has co-
components ρf · i1 = f , ρf · i2 = 1Y .

Plainly, both factorizations are functorial. Furthermore, they can be made into
natural wfs, by dual procedures: below, we describe the second, which, when K is
lextensive [3], leads to the weak factorization system (coproduct injections, split
epimorphisms), recently considered in [9].
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For the first, it is well-known that, when K = Set, LF coincides with the
class of split monos, which amounts to the injective mappings except the empty
embeddings in non-empty sets, while RF contains all the surjective mappings and
empty inclusions.

Proposition 4.2 (The cograph factorization). Let K be a category with binary
sums. The cograph factorization of a map, recalled above in (11), can be made into
a natural wfs, so that, if K is lextensive, the maps of LF ,RF can be characterised
as coproduct injections and split epimorphisms, respectively.

Proof. The cograph factorization is functorial, with

(12)
F : K2 → K ,
F (f : X → Y ) = X + Y , F

(

(u, v) : f → g
)

= u + v ,

and the natural transformations λ, ρ defined above, in (11). In order to make it
into a natural wfs, let us define the following two natural transformations, related
with the factorization of Lf = i1 and Rf = [f, 1] displayed in the diagram below

(13)
σ : F → FL , σf = [i1, i3] : X + Y → X + X + Y ,
π : FR → F , πf = [i1, i2, i2] : X + Y + Y → X + Y ,

X

i1

��

X

i1

��

X + Y

[i1,i2]

��

X + Y

1

��
X + Y

σf //

1

��

X + X + Y

[i1,i1,i2]

��

X + Y + Y

[f,1,1]

��

πf // X + Y

[f,1]

��
X + Y X + Y Y Y

The last axiom (9) is easily verified.
Let now K be lextensive [3], and let us proceed to characterise the sets LF ,RF .

In the left diagram below

(14)

X
f // Y

s

{{v
v

v
v

X
g // Y1

s1

~~|
|

|
|

Y2

j2
��

s2

~~}
}

}
}

X
i1

// X + Y
[f,1]

// Y X g
// Y Y Y

the morphism s decomposes as a sum s1 + s2 : Y1 + Y2 → X + Y, and f is the
composition of a map g : X → Y1 with the injection; but this g is an isomorphism,
since the previous diagram restricts to the central diagram above; thus, f : X → Y
is a coproduct-injection. One easily sees that an L-coalgebra is precisely a pair
(f, s) as above, since the last condition, σf · s = F (1X , s) · s, is automatically
satisfied. Moreover, taking into account the right diagram above, s is determined
by the injections f : X → Y and j2 : Y2 → Y . Therefore, an L-coalgebra can be
equivalently described as a pair of maps (f : X → Y, f ′ : X ′ → Y ) which are the
injections of a sum-decomposition of Y .
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Finally, in the diagram

(15)

X
f // Y

X
i1

// X + Y

t
eeJ

J
J

J

[f,1]
// Y

the map t must be of the form [1X , t′], with ft′ = 1Y , whence RF coincides
with the set of split epis (and this holds in an arbitrary category K). Again, an
R-algebra is just such a pair (f, t), which amounts to a splitting ft′ = 1Y . �

4.3. We consider now two dual factorizations of a functor, for the category CAT

(cf. [6], I, 1.11)

(a) First, we can factor an arbitrary functor f : X → Y through the comma
category Ff = (f ↓ Y ), via a left adjoint right inverse i and a functor q

(16) X
i // (f ↓ Y )
p

oo_ _ _
q // Y qi = f (i ⊣ p) ,

(17) i(x) = (x, fx; 1 : fx → fx) , q(x, y; b : fx → y) = y ,

(18)
p(x, y; b : fx → y) = x , η : 1X = pi ,

ε : ip → 1Ff , ε(x,y; b) = (1x, b) : (x, fx; 1fx) → (x, y; b) .

(b) Dually, we can also factor an arbitrary functor g : Y → X through the comma
category Gg = (X ↓ g), via a right adjoint right inverse j and a functor p

(19) Y
j // (X ↓ g)
q

oo_ _
p // X pj = g (q ⊣ j) ,

(20) j(y) = (gy, y; 1 : gy → gy) , p(x, y; b : x → gy) = x ,

(21)
q(x, y; b : x → gy) = y , ε : qj = 1Y ,

η : 1Gg → jq, η(x,y; b) = (b, 1y) : (x, y; b) → (gy, y; 1gy) .

We prove below that these factorizations can be made into natural wfs. If f ⊣ g,
then we can identify (f ↓ Y ) with (X ↓ g), and find a factorization of adjunctions;
the latter is not functorial on the category of adjunctions, but on a suitable double
category of functors and adjunctions (see [5], 3.5) in a sense which will be dealt
with in a sequel.

4.4. Let us construct a natural wfs for the factorization 4.3(a), through (f ↓ Y )
(the other can be obtained by duality). With the previous notation, we have a
functor

(22)

F : CAT
2 → CAT , F (f : X → Y ) = (f ↓ Y ) ,

F ((u, v) : f → g) : Ff → Fg ,

F (u, v)(x, y; b : fx → y) = (ux, vy; vb : vfx = gux → vy) ,
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and a functorial factorization, defined by the natural transformations:

(23)

λ : dom → F , λf = i : X → (f ↓ Y ) ,

ρ : F → cod , ρf = q : (f ↓ Y ) → Y ,

ρλ = κ : dom → cod .

First, the functor Lf = i : X → (f ↓ Y ) factors as follows through the comma
category FLf = (Lf ↓ (f ↓ Y )), whose general object is of type (x′, x, y; a : x′ →
x; b : fx → y)

(24)

Lf = (RLf) · (LLf) : X → (Lf ↓ (f ↓ Y )) → (f ↓ Y ) ,

LLf(x) = (x, x, fx; 1x, 1fx) ,

RLf(x′, x, y; a : x′ → x; b : fx → y) = (x, y; b : fx → y) .

The natural transformation σ, related with the previous factorization of Lf , is
defined as:

(25)
σ : F → FL , σf : (f ↓ Y ) →

(

Lf ↓ (f ↓ Y )
)

,

σf (x, y; b : fx → y) = (x, x, y; 1x, b : fx → y) ,

X

Lf=i
��

X

LLf
��

(f ↓ Y )
σf //

1
��

(Lf ↓ (f ↓ Y ))

RLf

��
(f ↓ Y ) (f ↓ Y )

Second, we factor Rf = q : (f ↓ Y ) → Y through FRf = (q ↓ Y ), whose general
object is of type (x, y, b : fx → y; y′; b′ : y → y′),

(26)

q = Rf = (RRf) · (LRf) : (f ↓ Y ) → (q ↓ Y ) → Y ,

(LRf)(x, y; b : fx → y) = (x, y, b : fx → y; y, 1: y → y) ,

(RRf) = Rq : (q ↓ Y ) → Y ,

(RRf)(x, y, b : fx → y; y′, b′ : y → y′) = y′ ,

and we define the natural transformation π, related with the previous factorization
of Rf

(27)
π : FR → F , πf : (q ↓ Y ) → (f ↓ Y ) ,

(πf )(x, y, b : fx → y; y′, b′ : y → y′) = (x, y′; b′b : fx → y′) ,

(f ↓ Y )

LRf

��

(f ↓ Y )

1
��

(q ↓ Y )
πf //

RRf

��

(f ↓ Y )

q

��
Y Y
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Verifying the remaining axioms is straightforward, if long.

Proposition 4.5. This structure defines a natural wfs.

Proof. We will use various comma categories, among which

(28)
C = (f ↓ Y ) , C′ = (g ↓ Y ′) ,

C′′ = (Lf ↓ C) , C′′′ = (LLf ↓ C′′) ,

writing their projections as follows

(29)

p : C → X , q : C → Y , ω : C → Y 2 ,

p′ : C′ → X ′ , q′ : C′ → Y ′ , ω′ : C′ → Y ′2 ,

p′′ : C′′ → X ′′ , q′′ : C′′ → C , ω′′ : C′′ → C2 ,

P : C′′′ → X , Q : C′′′ → C′′ , Ω: C′′′ → C′′2 .

Computing the components of the transformations introduced above (in 4.4)
quickly becomes heavy and confusing. Therefore, let us note that the functor F
defined above is determined as follows by the projections of C′ = (g ↓ Y ′):

(30)
p′ · F (u, v) = up : (f ↓ Y ) → X ′ , q′ · F (u, v) = vq : (f ↓ Y ) → Y ′ ,

ω′ · F (u, v) = vω : vfp → vq (vfp = gup) .

Again, the natural transformation σf is determined by the projections of C′′ =
(

Lf ↓ (f ↓ Y )
)

:

(31)
p′′ · σf = p : (f ↓ Y ) → X , q′′ · σf = 1: (f ↓ Y ) → (f ↓ Y ) ,

(ω′′ · σf )(x, y; b : fx → y) = (1x, b) : (x, fx; 1) → (x, y; b) ,

and also the last equation can be made free of components, rewriting it as:

(32) p · ω′′σf = 1p , q · ω′′σf = ω : fp → q ,

(which amounts to using the 2-dimensional universal property of the comma (f ↓
Y )).

Now, to test the condition F (1X , ρf ) · σf = 1Ff we use the projections p, q, ω
of (f ↓ Y ), together with the characterisation (30) of the functors of type F (u, v)

p · F (1X , ρf )σf = p′′σf = p = p · 1Ff ,

q · F (1X , ρf )σf = ρfq′′σf = q = q · 1Ff ,

ω · F (1X , ρf)σf = ρfω′′σf = qω′′σf = ω = ω · 1Ff .

Similarly, to verify that σLf · σf = F (1X , σf ) · σf : Ff → FLLf , we use the
projections P, Q, Ω of C′′′ = FLLf =

(

LLf ↓ (Lf ↓ (f ↓ Y ))
)

, further replacing
Ω with its projections p′′Ω, q′′Ω (as in (32))

P · F (1X , σf )σf = p′′σf = P · σLfσf ,

Q · F (1X , σf )σf = σf q′′σf = σf = Q · σLfσf ,

p′′Ω · F (1X , σf )σf = p′′σfω′′σf = pω′′σf = 1p = 1p′′σf = p′′Ω · σLfσf ,

q′′Ω · F (1X , σf )σf = q′′σfω′′σf = ω′′σf = q′′Ω · σLfσf .
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We end with verifying the remaining two conditions of (9) on π. For the first:

πf · (F (λf , 1Y )(x, y; b) = (πf )
(

λf (x), y, b
)

= (πf )(x, fx, 1fx, y, b)

= (x, y; b) .

For the second, after computing

πq : (Rq ↓ Y ) → (q ↓ Y ) ,

(πq)(x, y, b : fx → y; y′, b′ : y → y′; y′′, b′′ : y′ → y′′)

= (x, y, b : fx → y; y′′, b′′b′ : y → y′′) ,

we have (working on components):

(πf · πq)(x, y, b; y′, b′; y′′, b′′) = (πf )(x, y, b; y′′, b′′b′)

= (x, y′′; b′′b′b : fx → y′′) ,

πf · F (πf , 1Y )(x, y, b; y′, b′; y′′, b′′) = (πf )
(

πf (x, y, b; y′, b′), y′′, b′′
)

= (πf )(x, y′; b′b, y′′, b′′) = (x, y′′; b′′b′b : fx → y′′) .
�
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