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PARABOLIC GEOMETRIES

AS CONFORMAL INFINITIES OF EINSTEIN METRICS

OLIVIER BIQUARD AND RAFE MAZZEO

The study of Einstein metrics is a central area of research in geometry and
analysis, for both mathematical and physical reasons. The simplest examples of
Einstein metrics are symmetric spaces. In this article, we study symmetric spaces
of noncompact type and their Einstein deformations in the spirit of the physi-
cal AdS/CFT correspondence, i.e. focusing on the relationship between Einstein
metrics and (generalized) conformal structures on the boundary at infinity.

For real hyperbolic space Hn+1
R

and the associated class of asymptotically real
hyperbolic geometries, this has been intensively studied. Let Mn+1 be a compact
smooth manifold with boundary Xn = ∂Mn+1. By definition, a metric g on the
interior of a compact manifold with boundary is called conformally compact if it
has the form g = ρ−2g where ρ is a nonnegative function which vanishes simply
precisely on the boundary and g is nondegenerate (and of some specified regularity)
up to the boundary. Note that any such g is complete. The conformal class of the
restriction of g to the boundary is well defined and called the conformal infinity
of g. If |∇ρ| = 1 at ρ = 0 (all quantities taken with respect to g), then g is also
called asymptotically hyperbolic (AH), since in that case its sectional curvatures
all tend to −1 at infinity. Real hyperbolic space is the simplest example; its
conformal infinity is the standard conformal class on the sphere Sn. Fefferman
and Graham [15] introduced a program to use these AH ‘filling’ metrics to obtain
conformal invariants. More specifically, if one can associate to a conformal class on
X a “canonical” AH filling, then the Riemannian invariants for that interior metric
give conformal invariants of the boundary structure. They showed that at a formal
level, the requirement that the filling metric be Einstein is (almost) well-posed.
The first general examples of AH Einstein metrics were constructed by Graham
and Lee [17] as perturbations of Hn+1

R
. This program has been quite successful

and has received considerable impetus through the AdS/CFT correspondence [27]
in physics.

This theory was extended by the first author [2] to Einstein metrics obtained
by deforming the other rank one noncompact symmetric spaces (complex and
quaternionic hyperbolic spaces); the conformal infinities for these are CR struc-
tures and quaternionic contact structures on the boundary at infinity, respectively.

The paper is in final form and no version of it will be submitted elsewhere.
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The present article is an announcement of an ongoing project toward a very gen-
eral correspondence between ‘asymptotically symmetric’ Einstein metrics and their
conformal infinities. We explain here how this study can be extended to all sym-
metric spaces G/K of noncompact type: the role of the boundary at infinity of
the symmetric space is played by the Furstenberg boundary, and the conformal
infinity structure is a “parabolic geometry”, i.e. a geometry modeled on G/P where
P is a parabolic subgroup of G.

The correspondence between Einstein metrics and the conformal infinities has
deep consequences in the rank one case. We refer to the recent book [5] for more
about the mathematics of the AdS/CFT correspondence and the real AH setting,
and the survey [6] for a discussion of the complex hyperbolic case. These examples
strongly suggest that the extended correspondence in higher rank is the beginning
of a similarly rich story, which should provide new insights on parabolic geometries
as well as Einstein metrics.

The first author thanks J. Slovak and the organizers of the Srní meeting for their
invitation to this wonderful conference. The second author is partially supported
by NSF Grant DMS-0204730.

1. Symmetric spaces of noncompact type

Let M = G/K be a symmetric space of noncompact type, where K is a max-
imal compact subgroup in the connected semisimple Lie group G. The Cartan
involution on the Lie algebra g induces the Cartan decomposition1

(1) g = k ⊕ m .

The space m contains a maximal abelian subalgebra a, the dimension of which
is denoted r and is called the rank of M . Then exp(a) is a maximal flat in M .
We choose a positive Weyl chamber a+ ⊂ a, and denote by areg the set of regular
elements of a, and K0 the stabilizer in K of an element of areg. A dense open set
M reg of M is identified with a

reg
+ × K/K0, via the map

(2) Φ : a
reg
+ × K/K0 → M reg, (a, k) → k exp(a) .

We are interested here in the Furstenberg boundary of M ,

(3) B = K/K0 = G/P ,

where P is a minimal parabolic subgroup in G. Note that dim M = n + r where
n = dimB, so this is not a topological boundary except when the rank is one. It
is a classical fact of harmonic analysis on symmetric spaces (see [20, chapter V,
§3]) that bounded harmonic functions on M are in 1-1 correspondence with their
“boundary values” on B. The Poisson transform carries a function on B to the
unique bounded harmonic function on M which is asymptotic to that function on
B; we wish to generalize this to the (nonlinear) Einstein problem on M .

We recall here some basic facts about the root theory for the symmetric pair
(g, k). Since a is abelian, the endomorphisms (ad a)a∈a of g are simultaneously

1The authors (especially the first one, from the French school) apologize for not using the
standard Cartan notation k⊕ p, but we reserve the symbol p here for a parabolic subalgebra.
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diagonalizable; their eigenvalues are elements of a∗ called the roots. Let ∆ be the
set of all roots, and for α ∈ ∆ denote by gα ⊂ g the eigenspace corresponding to
α. We distinguish the zero root and its eigenspace g0 ⊃ a. Since we have chosen
a Weyl chamber in a, there is a decomposition ∆ = ∆+ ∪ ∆− into positive and
negative roots.

The metric on the symmetric space can be written down explicitly, at least on
Mreg, in terms of the root data. To describe this, note that if a ∈ a, then (ad a)2

preserves m, so there is a decomposition

(4) m = a ⊕
( ⊕

α∈∆+

mα

)
,

where mα ⊂ m is the eigenspace with eigenvalue α2 for (ada)2. The metric at the
identity coset is given as

(5) g = κa +
∑

α∈∆+

sinh2(α)κmα
,

where κa and κmα
are the restrictions of the Killing form κ to a and mα, respec-

tively, see [19, chap. II, lemma 5.25]. The differential of the map Φ defined in (2)
identifies the tangent space at any regular point of M with m. This trivializes TM
(at least over M reg ≃ a

reg
+ × B), and determines the metric everywhere.

2. Parabolic structures on the boundary

As indicated in (3), the Furstenberg boundary B is identified with K/K0 and
also G/P , where P is the parabolic subgroup with Lie algebra

(6) p = g0 ⊕
(
⊕α∈∆+ gα

)
.

This latter identification is independent of basepoint, while the identification with
K/K0 is not. There are several other purely geometric descriptions of B, as a G-
homogeneous space: for example, B is also identified as the space of equivalence
classes of Weyl chambers [28].

From this point of view, B is the model space for the so-called parabolic ge-
ometry of type (g, P ). B is the base of the P -frame bundle G → G/P ; the total
space G carries a Cartan connection ω, which is a g-valued one form. (More specif-
ically, this Maurer-Cartan form gives an identification of TG with right-invariant
vector fields on G, ω : TG → G × g.) In general, a Cartan connection on X is
a P -equivariant g-valued one form on a P -frame bundle G → X , the restriction
of which to the vertical (fibre-tangent) subbundle gives an isomorphism with p at
each point, and which satisfies other assumptions which we do not list here. In
particular, one gets an identification

(7) TX ≃ G ×P g/p ≃ G ×P n,

where n is the nilpotent Lie algebra defined by

(8) n =
⊕

α<0

gα .
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We also use the nilpotent ideal of p,

(9) n∗ =
⊕

α>0

gα ,

which is the dual of n via the Killing form.
The decreasing sequence

(10) n∗ = n∗
0 ⊃ n∗

1 ⊃ · · · , n∗
i+1 = [n∗, n∗

i ] ,

induces an associated increasing filtration of n by

(11) ni = (n∗
i )

⊥ , i ≥ 1

and associated graded spaces

(12) Gri n = ni/ni−1 .

This corresponds in the tangent space of B = G/P to an increasing filtration of
TB by distributions Di, such that the vector field bracket satisfies [Di, Dj ] ⊂ Di+j .
(This of course means that if Xi and Xj are sections of Di and Dj, then [Xi, Xj] is
a section of Di+j .) There is an induced bracket [Gri D, Grj D] → Gri+j D which
corresponds precisely to the P -equivariant Lie algebra bracket [Gri n, Grj n] →
Gri+j n. Moreover, the subgroup G0 of P with Lie algebra g0, which is called the
Levi subgroup, acts on each Gri n; this induces a G0-structure on ⊕Gri D.

The filtration {Di} has a refinement which will be important for us. The de-
composition (8) is invariant with respect to K0, but not P , and hence corresponds
to a decomposition of the tangent bundle of B = K/K0 into subbundles which
depends on the choice of a basepoint in the symmetric space. On the other hand,
the subspaces ⊕β≤αgβ ⊂ n are P -invariant, and thus give rise to G-invariant (and
in particular basepoint independent) distributions Dα on B. The relation with
the previous filtration {Di} is that

(13) D1 = ⊕r
1Dαi

,

where α1, . . . , αr are the simple roots, and more generally Di is the sum of the Dα

for all roots α of length at most i.
Usually, a parabolic structure is given from the more primitive data of a set of

distributions Di and G0-structures, satisfying constraints on the brackets of vector
fields. After a complicated process called “prolongation”, one sometimes arrives at
a Cartan connection satisfying nice conditions (regular, normal. . . ). In this article,
we do not need any precise fact about Cartan connections, but we keep this in
mind as a general setting for these geometries. In fact, we introduce several simple
concepts from parabolic geometry, but shall not try to interpret them in terms of
Cartan connections.

3. Hyperbolic spaces

In this section, we review the geometry of rank one symmetric spaces of non-
compact type. These are the real, complex and quaternionic hyperbolic spaces



PARABOLIC GEOMETRIES AND EINSTEIN METRICS 89

and the Cayley hyperbolic plane. As homogeneous spaces G/K, these are

(14)
Hm

R = SO1,m/SOm , Hm
C = SU1,m/Um ,

Hm
H = Sp1,m/Sp1Spm , H2

O = F−20
4 /Spin9 .

Note that

(15) dimR Hm
K = m dimR K := n + 1 .

As above, the boundary at infinity, Sn, can be represented either as G/P for some
minimal parabolic P ⊂ G, or as K/K0, where

(16) K0 = SOm−1, Um−1, Sp1Spm−1 or Spin7 ,

respectively.
The nilpotent Lie algebra n in (8) is the K-Heisenberg algebra

(17) K
m−1 ⊕ Im(K) ,

with bracket [x, y] = Im (
∑m−1

1 x̄iyi), for x = (xi), y = (yi) ∈ Km−1. The Levi
component of p is g0 = k ⊕ a = k ⊕ RA, where we may take A to be the unique
element of a such that ad A acts with eigenvalues 0 on g0, 1 and 2 on n∗, and −1
and −2 on n. (In fact, write g = ⊕+2

i=−2gi where ad(A)|gi
= i; then n = g−1 ⊕ g−2

with n1 = g−1 = Km−1 and g−2 = Im(K).) The Levi group G0 is the semidirect
product of K0 with exp(RA). In the real case, G0 is the conformal group COm−1,
with its standard action on n = Rm−1; in the complex and quaternionic cases, G0

is the conformal extension CUm−1 and CSpm−1Sp1 of the corresponding group
Um−1 and Spm−1Sp1, with the standard action on n1 = Km−1. For more details
on the complex hyperbolic case (the quaternionic case being similar), we refer to
[18].

All of this carries over to the geometry of Sn = G/P . This sphere carries a
distribution D1 induced by n1 = Km−1 which is equipped with a G0-structure,
or in other words, a real, complex or quaternionic conformal structure. As in §2,
there is no G-invariant supplement to D1, but there is a K-invariant one, namely
D2, induced by g−2 = Im(K). Furthermore, Lie bracket induces a map

[ , ] : D1 × D1 −→ TSn/D1 ≃ D2

which is isomorphic to the corresponding Lie algebra bracket in n.
The conformal structure on D1 can also be seen from the formula (5) for the

metric: normalizing the invariant form on g so that |A| = 1 yields that

(18) g = dα2 + sinh2(α)κ1 + sinh2(2α)κ2

where κ1 and κ2 are the metrics on the distributions D1 and D2 and α is a linear
coordinate on the one-dimensional flat. (With this normalization, the sectional
curvatures take values between −4 and −1.) Define Sn

α to be the sphere of radius
α; then the limit

(19) lim
α→∞

4e−2αg
∣∣
Sn

α

is finite only on the subbundle D1 ⊂ TSn, and equals κ1 there. There is no
natural origin in the symmetric space, so e−2α and κ1 are defined only up to a
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multiplicative factor; this explains why D1 inherits a conformal structure but not
an actual metric.

To see this from a slightly different point of view, denote by η ∈ Ω1(Sn)⊗Im(K)
the connection 1-form of the Hopf bundle

(20)
Sdim K−1 −→ Sn

↓
Pm−1

K

Then D1 = ker η while D2 is the vertical tangent bundle for this fibration, and
(18) can be rewritten as

(21) g = dα2 + sinh2(α)γ + sinh2(2α)η2,

where γ is the pullback to D1 of the invariant metric on Pm−1
K

. Moreover, γ and
η satisfy the following compatibility conditions:

• in the complex case, the complex structure I, the metric γ on D1 and the
restriction of dη to D1 are related by dη(·, ·) = γ(I·, ·) on D1;

• in the quaternionic case, the quaternionic structure on D1 is given by three
complex structures (I1, I2, I3), with I3 = I1I2, and if η = (η1, η2, η3) is
the Im(H)-valued contact form, then dηi(·, ·) = γ(Ii·, ·) on D1.

(There is a similar formula in the octonionic case). Therefore, in each case, there
is a compatibility between the G0-structure on the pair (D1, D2) and the bracket
structure [ , ] : D1×D1 → D2. This compatibility is the essential point in defining
more general “asymptotically hyperbolic” metrics.

4. Asymptotically rank one symmetric Einstein metrics

In this section we recall the Einstein deformations of rank one symmetric spaces,
as studied in [17, 2], cf. also [8].

Fix the (n+1)-dimensional hyperbolic space Hm
K

= G/K, with boundary Sn =
G/P = K/K0; the parabolic subgroup P has a Levi subgroup G0 = K0 ⋊ R. We
define a G-conformal structure on a manifold Xn to be a distribution D ⊂ TX
of codimension dim K − 1, equipped with a conformal class [γ] on D, such that:

(i) at each point, the nilpotent Lie algebra D⊕TX/D induced by the vector
field bracket [ , ] : D × D → TX/D is isomorphic to the K-Heisenberg
algebra;

(ii) there is a G0-structure on D⊕TX/D, compatible with the aforementioned
bracket and inducing the conformal class [γ] on D.

Let us see what the definition means in each case.
When K = R, one has D = TX , so one simply has a G0 = COn-structure on

TX , i.e. a conformal class.
When K = C, D is a distribution of codimension 1. By condition (i), D is a

contact distribution. If η is a 1-form such that ker η = D, then dη|D is a symplectic
form; condition (ii) prescribes a pair (γ, η), defined only up to conformal change
(γ, η) → (fγ, fη), for any smooth f > 0, satisfying γ(·, ·) = dη(·, I·) for some
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complex structure I (which depends on the choice of conformal representative).
(Note that the metric η2 on TX/D becomes f2η2 under this conformal change.)

This is precisely the usual definition of an abstract strictly pseudoconvex CR
structure. By Moser’s lemma, any small deformation of the contact distribution D
is equivalent to D by a diffeomorphism. Hence a deformation of the G-conformal
structure in this case can always be reduced to a (dη|D-compatible) deformation
of the metric γ on D.

When K = H, D is a distribution of codimension 3, called a quaternionic

contact structure, as introduced in [2], cf. also the survey [3]. Condition (i) is
much stronger in this setting. Fixing a metric γ on D in the conformal class, we
can choose an orthonormal basis η = (η1, η2, η3) of (TX/D)∗ = D⊥ ⊂ Ω1X such
that γ(·, ·) = dηi(·, Ii·) for a triple of complex structures (I1, I2, I3) on D satisfying
the usual quaternion commutation relations. Again, the conformal equivalence is
that (γ, η) ∼ (fγ, fη).

A very significant difference from the complex case is that in this setting the
metric γ is completely determined by the distribution D; this is because the 3-
dimensional subspace Ω+ ⊂ Ω2D generated by the dηi|D uniquely fixes the G0 =
CSpm−1Sp1-structure on D. Hence condition (ii) becomes superfluous. On the
other hand, the existence of such distributions is far from clear since they are
solutions of a complicated differential system. It is true, but by no means obvious,
that they exist and come in infinite dimensional families (see the references above).

Dimension 7 is a special case: then D is 4-dimensional, and Sp1Sp1 = SO4,
so G0 = CO4 and the G0-structure on D is just a conformal class of metrics.
Condition (i) reduces to a positivity condition, namely, that the wedge product on
Ω+ ⊂ Ω2D must be positive. Any such subspace of Ω2D defines a conformal class
on D (see [12, 11] for more about 7-dimensional quaternionic contact structures).

Finally, although the definition makes sense in the octonionic case, the differen-
tial system corresponding to condition (i) for the distribution D is so strong that
there are no deformations of the standard structure on the sphere S15 (this follows
from [34]).

Note that in each case, the G0-structure is determined by the bracket and the
conformal metric, i.e. by the data (D, [γ]).

Let Mn+1 be a manifold with boundary Xn, and identify a neighborhood of
X in M with (α0,∞) × X , with linear coordinate α on the first factor (so the
boundary is α = ∞). Let G/K be a rank one noncompact symmetric space. We
say that a metric g on M is asymptotically rank one symmetric (or just
asymptotically symmetric) of type G/K if there exists a G-conformal structure on
X so that, as α → ∞,

(22) g = dα2 + e2αγ + e4αη2 + O(e−α) ,

where (γ, η2) is a choice of metric on D⊕TX/D compatible with the G0-conformal
structure. To be more precise, if g0 denotes the metric given as the sum of the first
three terms on the right here, then the error term decays at the rate e−α when
measured with respect to g0. We say that the G0-conformal class of (γ, η) is the



92 O. BIQUARD AND R. MAZZEO

conformal infinity of g. In this rank one setting, we also call these asymptotically
real, complex, quaternionic, or octonionic hyperbolic.

There are several main problems concerning asymptotically rank one symmetric
Einstein metrics of type G/K with prescribed conformal infinity on X :

a) The formal problem. Determine the complete (formal) series expansion
for Einstein metrics of the form (22) corresponding to a given (γ, η);

b) The deformation problem. Given an asymptotically symmetric Einstein
metric g with conformal infinity (γ, η), determine all nearby metrics g′ of
this same type, presumably in terms of deformations of the G-conformal
structure on X ;

c) The global existence problem. Given any G-conformal structure on X ,
determine if there is an asymptotically symmetric Einstein metric (either
specifying the filling M or not) with this as its conformal infinity;

d) Regularity. Given any asymptotically symmetric Einstein metric g with
(smooth) conformal infinity (γ, η), prove that in an appropriate ‘gauge’
(i.e. choice of coordinates near the boundary) it has an expansion as in
a).

There are, of course, a host of related questions concerning finer aspects of the
geometry and analysis of these special metrics.

The formal problem was studied first in the complex case: Fefferman [14] de-
scribed a high order asymptotic expansion for the solution of the Monge-Ampère
equation leads to a Kähler-Einstein metric on a strictly pseudoconvex domain of
C

m, (see the Cheng-Yau metric below). In the real case, LeBrun [22] constructed
local selfdual real asymptotically hyperbolic Einstein metric in a small neighbour-
hood of any 3-manifold with prescribed conformal class, assuming all data is real
analytic. A complete description of the formal asymptotics in the real case in all
dimensions (with C∞ data) was obtained by Fefferman and Graham [15].

As for existence, there are a number of explicit examples of asymptotically real
hyperbolic Einstein metrics beyond the obvious cocompact quotients of hyperbolic
space itself. The most natural ones are the SU2-invariant selfdual Einstein metrics
on B4. Explicit formulæ for these (in terms of ϑ functions) were found by Hitchin
[21], generalizing earlier work by Pedersen [33], who determined the metrics with
an extra U1-symmetry, which have the Berger metrics on S3 as their conformal
infinities. Quite a few other 4-dimensional examples appear in the physics litera-
ture, as the so-called Taub-Bolt metrics, the AdS toral black hole metrics, see [1]
for some of these.

In the complex case, if the CR structure arises as the boundary of a strictly
pseudoconvex domain Ω ⊂ Cm, then by the work of Cheng and Yau [10], Ω admits
a complete Kähler-Einstein metric; this Cheng-Yau metric is asymptotically com-
plex hyperbolic with conformal infinity the given CR structure on ∂Ω. The first
constructions of asymptotically quaternionic hyperbolic Einstein metrics (actually,
quaternionic-Kähler metrics) can be found in the works of Galicki [16] and LeBrun
[23].
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The deformation theory was first studied in the real case in [17], and in the
other rank one cases in [2], leading to the

Theorem A. Any small deformation of the standard G0-conformal structure on

the sphere Sn is the conformal infinity of a complete asymptotically rank one sym-

metric Einstein metric on the ball Bn+1. Moreover, this metric is locally unique

modulo diffeomorphisms which act as the identity on the boundary. The same

result holds for perturbations of any nondegenerate asymptotically hyperbolic Ein-

stein metric.

Here, non degenerate means that the infinitesimal Einstein operator has triv-
ial L2-kernel, modulo the infinitesimal action of diffeomorphisms fixing the bound-
ary. This condition is fulfilled when the metric has negative sectional curvature,
but can be verified under less restrictive hypotheses too [24]. We refer to [2] for
more details.

Anderson (see, for example, [1]) has also established a more global deformation
theory for asymptotically real hyperbolic metrics with scalar positive conformal
infinity in four dimensions.

To understand the ramifications of the deformation theory in the complex case,
note that when n ≥ 5, all integrable CR deformations of Sn are embeddable in Cm,
so for these, the corresponding asymptotically complex hyperbolic Einstein metrics
are already known by the Cheng-Yau theorem; if the CR structure is not integrable,
however, this theorem constructs new Einstein metrics which are not Kähler. The
case of dimension 3 is special since the CR integrability condition is empty, but not
all CR structures on S3 are embeddable. Embeddable CR deformations of S3 were
studied in the 90’s in various papers of Lempert, Epstein and Bland [25, 13, 7].
In this case, the filling Einstein metric is actually Kähler-Einstein. Left-invariant
CR structures on S3 provide examples of nonembeddable CR structures; explicit
formulæ for the corresponding Einstein metrics were determined by Hitchin [21].

In the quaternionic setting, there is again a difference between the 7- and higher
dimension cases. For n > 7, the Einstein metric is actually quaternionic Kähler [4],
i.e. its holonomy group is SpmSp1, as is the case for the quaternionic hyperbolic
metric itself. For n = 7, this is no longer true, and in fact there is a local ob-
struction on a quaternionic contact structure on any X7 to be the local conformal
infinity of a quaternionic Kähler metric [12, 11].

Finally, the true (nonformal) regularity theory has been obtained in the real
setting [9] and for the Cheng-Yau metrics [26].

5. G-conformal structures

Fix a symmetric space G/K of noncompact type of rank r > 1, with Furstenberg
boundary Bn = G/P . We let G0 be the Levi component of P , and fix a flat a ⊂ m,
as well as a Weyl chamber, and define the associated root system as in section 1.

Our next goal is to give a precise formulation of the boundary structures
which serve as the conformal infinities for asymptotically symmetric metrics in
this higher rank setting. Fixing the model symmetric space G/K, we shall define
a G-conformal structure on an arbitrary n-manifold X (so the dimension of X is
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the same dimension as that of the Furstenberg boundary of G/K). Analogous to
the rank one case, this consists of a set of distributions Dα on X , one for each
positive root α, and a conformal class of metrics on each Dα, such that this entire
set of data is compatible with the Lie-theoretic relations.

We say that a system of distributions {Dα} (indexed by the positive root system
∆+ associated to G/K) is transverse ordered if for each α, β ∈ ∆+,

Dα ∩ Dβ =
∑

γ≤α

γ≤β

Dγ .

In particular, α ≤ β implies Dα ⊂ Dβ. To any such system we associate the
graded vector bundle Grα D = Dα/(⊕β<αDβ). When α + β is not a root, we also
define Dα+β = Dα + Dβ.

Definition. A G-conformal structure on a manifold Xn consists of:

• a transverse ordered system (Dα)α∈∆+
of distributions on X , and

• a G0-structure on the graded bundle GrD = ⊕α∈∆+
Grα D,

satisfying the following properties:

(i) at each point, and for each α, β ∈ ∆+, the vector field bracket sat-
isfies [ , ] : Dα × Dβ → Dα+β , and the induced algebraic bracket
[Grα D, Grβ D] → Grα+β D coincides with the Lie algebra bracket [ , ] :
gα × gβ → gα+β ;

(ii) the G0-structure is compatible with the bracket structure.

Condition (i) is a local integrability condition for the G-conformal structure.
Condition (ii) means that at each point we get an (algebraic) identification of Gr D
with the graded space constructed from the model g/p, so that the bracket and
the G0-structure coincide.

The family of distributions (Dα) may be recovered from the G0-structures and
the rougher filtration (11), but we have stated the definition in such a way as to
make explicit the interactions of the distributions under the bracket condition (i).

The Furstenberg boundary of G/K has a canonical G-conformal structure, as
described in §2. What we are calling a G-conformal structure is a parabolic struc-
ture of type (g, P ), with the additional local integrability condition (i) on the
bracket. It would be of interest to understand the meaning of this extra condition
from the point of view of parabolic geometry (it corresponds to something between
regular and torsion free).

We now illustrate this definition through several examples. In the rank one
case, the roots are α and 2α (only α occurs in the real hyperbolic case), so the
definition reduces exactly to the one in §4.

Now pass to the rank two case. There are two standard examples to under-
stand: the product of two rank one spaces and SL3/SO3. In the case of a product
of two rank one spaces, G/K = G1/K1×G2/K2, there are four positive roots, α1,
2α1, α2, 2α2 (or fewer if at least one of the factors is real hyperbolic). Therefore
a G-conformal structure consists of the data of four distributions Dα1

⊂ D2α1
,

Dα2
⊂ D2α2

, with D2α1
and D2α2

transverse and intersecting trivially. By condi-
tions (i) and (ii), both D2α1

and D2α2
are integrable; the leaves of D2αi

carry a
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Gi-conformal structure with corresponding distribution Dαi
, and the brackets of

sections of Dα1
and Dα2

lie in Dα1
+ Dα2

. This last restriction means that Dα1

is invariant along the leaves of D2α2
and vice versa.

To be even more specific, consider the symmetric space Hn1+1
R

×Hn2+1
R

, corre-
sponding to the group G = SO1,n1+1 ×SO1,n2+1, and with Furstenberg boundary
Xn = Sn1 × Sn2 . A G-conformal structure on X consists of two transverse inte-
grable distributions Di of dimension ni, i = 1, 2, each endowed with a conformal
class [γi] over X .

The other rank 2 case we discuss is SL3/SO3. This has three positive roots
α1, α2 and α1 + α2; the Lie algebra n is realized as the lower triangular 3× 3 real
matrices, and G0 can be identified with the group of diagonal matrices in SL3.
An SL3-conformal structure on X3 consists of two one-dimensional distributions
Dα1

and Dα2
such that Dα1

+ Dα2
is a contact distribution. Condition (ii) gives

no extra information since any two conformal structures on a line are equivalent.
To state this slightly differently, an SL3-conformal structure consists of a contact
distribution on X3 along with two one-dimensional subbundles of the contact
plane field which are everywhere transverse. For SL3/SO3 itself, the Furstenberg
boundary is X3 = K/K0 = SO3/(SO3∩G0) (which is a quotient of P 3

R
by Z2×Z2);

this can also be thought of as the manifold of complete flags D ⊂ P ⊂ R3. There
are two natural maps B → P 2

R
, given by (D, P ) → D and (D, P ) → P , which can

be identified with finite quotients of two different Hopf fibrations on S3, and the
two line bundles on B are the tangent spaces to the fibres of the two maps.

6. Asymptotically symmetric metrics of higher rank

We wish to formulate a generalization of (5) for an asymptotically symmetric
metric g with conformal infinity c = {Dα, [γα]}α∈∆+

, which is a G-conformal
structure on a manifold X . In the rank one setting, such a metric is defined on the
collar neighbourhood [α0,∞) × X , and there are no other a priori restrictions on
the filling manifold M , so long as it has this as its end. In higher rank, however,
as a first step we shall define this metric on a

reg
+ × X , where a is the Cartan

subspace of the symmetric space G/K. This is only a very small neighbourhood
of infinity in the “filling manifold” M , as we shall illustrate below even when
M = G/K. In general, we would need to assume that the filling manifold M has
a compactification M as a manifold with corners, which has the property that the
arrangement of boundary faces (of all codimension) has the same combinatorics of
intersection as the system of boundary faces of the symmetric space G/K itself.
The precise definition is formulated inductively, but is sufficiently complicated to
state that in the following discussion we shall mostly assume that M = G/K, with
a metric which is a deformation of the exact symmetric one.

In this section we begin by defining this initial approximation to a locally sym-
metric metric modelled on that of G/K and with conformal infinity c. As stated
above, this will be defined on a

reg
+ × X . We also note a few of its geometric prop-

erties. We then need to discuss the compactification of M = G/K and show how
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to extend this metric to an entire neighbourhood of infinity. We build up to this
in stages, first discussing the two simple rank two cases and then the general case.

So, fix the G-conformal structure c on X . We first choose metrics γα repre-
senting the prescribed conformal classes on each Grα D. More abstractly, this
is a reduction of the G0-structure on Gr D to a K0-structure. The G0-structure
intertwines the various conformal classes on each Grα D. In particular, the rela-
tionship between two different reductions (or choices of conformal representatives)
is determined by a set of positive functions {f1, . . . , fr} which are the conformal
factors relating the two choices of metric on each distribution Dαi

associated to
the simple roots α1, . . . , αr only. The conformal factor relating the two metrics on
any other component Grα D, α =

∑r

1 niαi, is
∏r

1 fni

i .
In order to consider the γα as metrics on subbundles of TX , we must choose a

family of supplementary subbundles for every inclusion Dα ⊂ Dβ , α < β, which
are all mutually compatible, so as to identify TX with GrD. Having made these
choices, we define the asymptotically symmetric metric as a multi-warped product

(23) gc = κa +
∑

α∈∆+

e2αγα ,

where the first term on the right is the Euclidean metric on a (restricted to a
reg
+ ).

It is necessary to understand the effect on gc of the various choices we have
made. First, alterating the various supplementary subspaces gives a new metric
g′c. It is not hard to check that

|g′c − gc|gc

= O
(
e−α1 + . . . + e−αr

)
.

In other words, the difference between these two metrics tends to zero (when
measured with respect to either one of them) when approaching infinity in a

reg
+ in

such a way that all the positive roots tend to infinity. Next, under the conformal
change γ′

α =
∏r

1 fni

i γα (as described above) where α =
∑r

1 niαi, then defining
α′ = α − 1

2
log fi yields

gc =
∑

κij

(
dα′

i +
dfi

2fi

)(
dα′

j +
dfj

2fj

)
+

∑

α∈∆+

e2α′

γ′
α

=
∑

κijdα′
idα′

j +
∑

α∈∆+

e2α′

γ′
α + O(e−α1 + e−α2 + · · · + e−αr) ,

(24)

so the error term again tends to 0 in the regular directions of a. A further cal-
culation shows that the curvature tensor of gc differs from that of the symmetric
metric by a term which is O(e−α1 + e−α2 + · · · + e−αr ). We have only stated
this loosely since, in this general setting, these tensors live on different manifolds.
However, this has a precise consequence which is easy to state and most relevant
for our purposes:

Theorem B. Let −λ be the Einstein constant for the symmetric metric on G/K.

Then for any G-conformal structure c,

Ric(gc) + λgc = O
(
e−α1 + e−α2 + · · · + e−αr

)
.
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As already indicated, the error terms which appear in each of these statements
show that gc is only a suitable asymptotically symmetric metric when all of the
roots αi are large. We explain how to go further, starting with the rank 2 examples.

Product spaces: Suppose that M is the product of two rank one symmetric
spaces M1 × M2. Slightly more generally, and because it involves no extra work,
we allow the factors Mi to be any asymptotically rank one symmetric space of
dimension ni + 1, with metric gi and boundary Xi = ∂Mi. For simplicity of
exposition here, we shall assume that these are asymptotically real hyperbolic (i.e.
Poincaré-Einstein), but all of the discussion below extends immediately to the
other asymptotically rank one settings. Let gi be the metric on Mi, normalized
so that the sectional curvatures approach −1 at infinity, and denote by [γi] its
conformal infinity. Then

(25) g = n1g1 + n2g2

is an Einstein metric on M with Ric(g) = −g. Its conformal infinity on the corner
X = X1×X2 is the G1×G2-conformal structure (with Gi = SO(ni+1, 1)) consists
of the pair of distributions D1 = TX1 × {0}, D2 = {0} × TX2, along with the
conformal classes [γi] on Di.

Write the initial asymptotically hyperbolic metric on each factor as

gj =
dx2

j + γj

x2
j

,

where xj > 0 is a boundary defining function for Mj and is related to the root αj

by xj = e−αj . The product metric is then

(26) g = n1

dx2
1 + γ1

x2
1

+ n2

dx2
2 + γ2

x2
2

,

or equivalently

n1dα2
1 + n2dα2

2 + n1e
2α1γ1 + n2e

2α2γ2 ;

since we can rescale, replacing αi by
√

niαi, we see that this is indeed of the correct
form (23) when α1, α2 → ∞, i.e. as x1, x2 → 0.

The manifold M has two codimension one boundary faces,

∂1M = M1 × X2, ∂2M = X1 × M2 .

Each of these faces has a product structure, which we think of as a fibration with
fibres the manifold with boundary Mi and base the boundary of the other factor.
The metric g induces the nondegenerate metric nigi on the fibres of the face ∂iM .
Said differently, there is an integrable distribution D̃i on each of these boundary
hypersurfaces ∂iM which “fills” Di, and which is precisely the subspace of T∂iM
on which g is finite.

While it is not unreasonable to call any metric of the form (26) asymptotically
product hyperbolic (or asymptotically symmetric of type G1/K1 × G2/K2), we
shall reserve this name for any metric of this form which has the additional prop-
erty that it is finite on some distribution D̃i ⊂ T∂iM , and that this distribution
is integrable and D̃i|X ∩ TX = Di.
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Now consider the problem of whether a small deformation of the initial product
G1 × G2-conformal structure (D1, D2, [γ1], [γ2]) on X can be filled by asymptot-
ically product hyperbolic metrics in the preceding sense. This deformation com-
prises a small perturbation of the two distributions and a small perturbation of the
conformal classes on each. In order for this to remain a G1 ×G2-conformal struc-
ture, it is clearly necessary that the perturbed distributions remain integrable.
This is already a strong hypothesis. For example, on B = Sn1 × Sn2 , assuming
that both n1, n2 ≥ 2, this implies that (D1, D2) remains diffeomorphic to the
standard pair (TSn1 ×{0}, {0}×TSn2). Hence for such a deformation we may as
well assume that (D1, D2) remains fixed and only the conformal classes vary. In
this case, we can clearly extend these distributions to the integrable distributions
D̃i over ∂iM so that these hypersurface boundaries are fibred by their leaves, as
required. This same local rigidity holds for distributions on X = X1×X2 provided
this space is simply connected. If X is not simply connected, we must impose the
extra condition on the perturbations of D1 and D2, that not only do they remain
integrable, but their leaves remain compact, so that X is still a product. Thus
we shall need to impose on this deformed G-conformal structure on X that it is
also globally integrable in the sense that the two distributions D1 and D2 are
the tangent spaces for the factors in X = X1 × X2. (This global integrability
is to be distinguished from the local integrability condition in the definition of
G-conformal structures.) In other words, the globally integrable deformations of
the G-conformal structure on X reduce simply to deformations of the pair of con-
formal classes ([γ1], [γ2]) on the fixed pair of distributions (D1, D2), and any one
of these is the conformal infinity of an asymptotically product hyperbolic metric.

An arbitrary asymptotically product hyperbolic metric of this type will usually
not be asymptotically Einstein near the entire boundary. We return to this point
in the next section.

The case of SL3/SO3:

Although we shall be more brief here, we again describe what we mean by an
asymptotically symmetric metric associated to a G-conformal structure, particu-
larly when it is a small deformation of the standard structure on the Furstenberg
boundary of M = SL3/SO3.

First note that M has a compactification as a manifold with corners of codimen-
sion 2, which we denote M . At least in the regular part, this is obtained by adding
boundary faces where each simple root equals infinity; setting xj = e−αj , j = 1, 2,
then we add the faces {x1 = 0} and {x2 = 0}. It must be verified that this defi-
nition extends across the Weyl chamber walls, and we refer to [31] for all further
details on this. The corner of M is the Furstenberg boundary, B = SO3/(Z2×Z2).
The standard G-conformal structure on B consists of a pair of one-dimensional
distributions D1 and D2 such that their sum is contact. There are two hypersur-
face boundaries of this manifold, ∂iM , i = 1, 2. These faces are again the total
spaces of fibrations, with fibre a closed disk (which realizes the compactification
of the two-dimensional hyperbolic space) and base P 2

R
. The symmetric metric on
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M is finite along these boundaries precisely on the tangent spaces of these fibres,
and the induced metric is the standard one on the hyperbolic plane.

Following the same reasoning as in the product case, we require that the one-
dimensional distributions in a more general SL3-conformal structure on B remain
integrable (which is immediate since they are one-dimensional), but also that they
extend to integrable rank 2 distributions on ∂iM with leaves diffeomorphic to the
disk. With this extra global integrability condition, we can construct an asymp-
totically symmetric metric with this prescribed conformal infinity, and which is
finite precisely along the tangent spaces of the fibres on each ∂iM .

The general case: The two special cases above motivate the general case. We
first compactify a general rank r symmetric space M = G/K to a manifold with
corners of codimension r. This is done by adding boundary faces {xj = 0}, j =
1, . . . , r, where xj = eαj . The Furstenberg boundary B is the highest codimension
corner, where all the xj = 0. See [32] for details on this. This compactification

M has a rich geometric structure. The most important point here is that each
boundary hypersurface ∂jM is the total space of a fibration, where the fibres are
the compactifications of symmetric spaces of lower rank and the base is a compact
locally symmetric space. By induction on the rank, one can ascertain that all
boundary faces of arbitrary codimension have a similar structure.

The full details on the extensions of the family of distributions {Dα} to the
entire boundary skeleton are complicated, but the main idea is clear: we require
that these extensions are integrable, with compact leaves diffeomorphic to those
in the model case. A metric is asymptotically symmetric if these fibres are the
leaves of the distributions determined by its successive levels of singularity.

7. Asymptotically symmetric Einstein metrics

Let M = G/K be an arbitrary symmetric space of noncompact type. The Furs-
tenberg boundary B = G/P has a canonical G-conformal structure. Our eventual
goal is to carry out the

Program. Given any G-conformal structure on B which is a small deformation of

the canonical one, and which satisfies the appropriate global integrability condition,

prove that there exists a complete, asymptotically symmetric Einstein metric on

M with this prescribed G-conformal structure as its conformal infinity.

This will establish the existence of a nonlinear Poisson transform for Einstein
metrics.

Even more ambitiously, one would like to prove existence and study properties
of these metrics on other manifolds, or for G-conformal structures which are far
from the standard one. However, this has proved to be extremely difficult even in
the real hyperbolic case, so we confine ourselves to this perturbative problem.

In this section we give some indication of the steps needed to accomplish this
program, focusing attention mostly on the product rank one case, where this has
already been carried out, cf. [8].
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The overall strategy is a familiar one: for each admissible G-conformal structure
on B we associate an asymptotically symmetric Einstein metric on M . Using the
implicit function theorem, these metrics are then perturbed to exact Einstein
metrics. Both steps require understanding the solvability of certain systems of
nonlinear elliptic PDE on asymptotically symmetric spaces. In this perturbative
setting, this reduces in turn to understanding the solvability of the corresponding
linearized equations. For this we draw on and extend some recent techniques in
geometric microlocal analysis developed by the second author and Andras Vasy
[30, 29, 31, 32].

We now provide more details in the product case. As in the last section, we
restrict to the real hyperbolic case, but simultaneously allow the factors to be more
general Poincaré-Einstein metrics. Recall from §4 that a Poincaré-Einstein metric
is nondegenerate if the infinitesimal (gauged) Einstein operator has no L2-kernel.
We shall assume that both factors (Mi, gi) are nondegenerate in this sense. Let
[γ̃i] be any conformal class on Xi near to the conformal infinity of gi.

We begin with the initial asymptotically symmetric Einstein metric

(27) g̃ = n1

dx2
1 + γ̃1

x2
1

+ n2

dx2
2 + γ̃2

x2
2

;

by Theorem B this satisfies

(28) Ric(g̃) + λg̃ = O(x1 + x2) ,

and by construction has conformal infinity ([γ̃1], [γ̃2]). Our first task is to find a
better approximation, i.e. a metric ĝ which is asymptotically Einstein not only near
the corner but also near the hypersurface boundaries {xi = 0} = ∂iM , i = 1, 2.
The idea is that we define ĝ near ∂2M by

(29) ĝ2 = n1

dx2
1 + γ̂1

x2
1

+ n2h2 ,

where γ̂1 ∈ Γ(∂1M, S2T ∗D1) is a metric in the conformal class [γ̂1] on D1 ⊂
T∂1M = TX1 ⊕ TM2, and h2 ∈ Γ(∂1M, S2T ∗M2) is a metric along the M2 fibres
of ∂2M . Clearly, γ̂1 and h2 must be asymptotic near X to γ̃1 and (dx2

2 + γ̃2)/x2
2,

respectively. A calculation shows that ĝ2 satisfies

(30) Ric(ĝ2) + λĝ2 = O(x1)

if and only if ([γ̂1], h2) satisfies a coupled nonlinear system on ∂2M , which is elliptic
on each of the fibres {p1} × M2 (once an appropriate gauge has been chosen). A
minor generalization of Theorem A guarantees the existence of solutions to this
system with prescribed conformal infinity on each slice {p1}×M2, for all sufficiently
small deformations of the initial conformal infinity data. This uses crucially the
nondegeneracy of g2, as well as the global integrability of the G-conformal structure
(which ensures that the leaves of the distribution D2 appear as boundaries of the
slices {p1} × M2).
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On the other hypersurface boundary ∂1M we solve the analogous system of
equations, yielding a metric

(31) ĝ1 = n1h1 + n2

dx2
2 + γ̂2

x2
2

which is asymptotically Einstein near x2 → 0, and which has the correct asymp-
totic behaviour.

It follows rather simply from the construction that these metrics are compatible
as x1, x2 → 0, i.e. near the corner X , which shows that we may define a metric ĝ
by patching these together, and ĝ is the asymptotically Einstein metric we need.
It satisfies

(32) Ric(ĝ) + λĝ = O
(
inf(x1, x2)

)

along the entire boundary of M .
For the other step, we employ the implicit function theorem for the gauged

Einstein equation. We refer to [2] for a general description of the Einstein operator,
the Bianchi gauge, and the corresponding nonlinear gauged Einstein operator. Its
linearization is a geometric Laplacian of the form

L = ∇∗∇− 2
◦

R ,

where the second term is the curvature tensor acting as a self-adjoint operator on
symmetric 2-tensors.

By its geometric naturality, the linearization Lg computed at product metric
g splits into the sum of linearizations Lg1 + Lg2 , with the two terms acting on
the different factors of M . The basic problem is to show that Lg is Fredholm
acting between two weighted Hölder spaces, and in fact is an isomorphism if both
factors are nondegenerate. The corresponding statement for the action of Lg on
weighted Sobolev spaces is one of the main theorems of [30]. In order to obtain
the same conclusion on Hölder spaces, it is necessary to examine the pointwise
behaviour of the Schwartz kernel of the inverse of Lg. Fortunately, this behaviour
is also examined closely in [30]. We shall not describe this rather lengthy analysis
in much detail. The first key idea is to represent the inverse of Lg as a certain
contour integral in the spectral plane involving the resolvents (Lgi − λ)−1 of the
two factors. We then use the well-known structure of the resolvents of geometric
Laplacians on asymptotically hyperbolic spaces to analyze this contour integral.
We refer to [30] for details.

Altogether, this proves the

Theorem C. Let (M1, g1) and (M2, g2) be nondegenerate Poincaré-Einstein man-

ifolds. Then any sufficiently small globally integrable deformation of the G-confor-

mal structure on ∂M1×∂M2 is the conformal infinity of an Einstein asymptotically

symmetric deformation of the product metric on M1 × M2.

There are trivial examples of such deformations, namely where we vary the
asymptotically hyperbolic Einstein metrics on M1 and M2 independently. This
corresponds to a variation of the conformal class [γ1] on TX1 × {0} which is in-
variant in the X2 direction, and a variation of the conformal class [γ2] on {0}×TX2
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which is invariant in the X1 direction. However, there are many other admissible
deformations since [γ1] and [γ2] may depend on both factors of X . Hence this
theorem gives the existence of a large family of nonproduct Einstein metrics on
M .

In the other product rank one cases, the same ideas apply almost identically.
There are some additional technical complications when one of the factors is
quaternionic; these result from the fact that the various asymptotically symmet-
ric metrics corresponding to deformations of the initial G-conformal structure are
not necessarily mutually quasi-isometric. This necessitates the construction of the
inverse of the linearized operator Lg not only when g is exactly of product type
but also when it is a small perturbation of a product metric. This uses even more
strongly the full force of these geometric microlocal methods.

Finally, if we wish to carry out the same steps on a general symmetric space
G/K, we face several new complications. The first is combinatorial, though not
particularly easy. To construct the asymptotically symmetric metric with a pre-
scribed conformal infinity which is asymptotically Einstein metric near the entire
boundary of G/K, we must solve the appropriate coupled nonlinear elliptic sys-
tems on the fibres of each of the boundary faces of the compactification of G/K.
Since these fibres are all symmetric spaces of lower rank, this should be possible
using the main theorem and induction on the rank. The second complication is
of a more analytic nature. Unlike the product case, the asymptotically symmetric
metrics are no longer even approximately of product type near the (closed) bound-
ary faces of the compactification of G/K. In other words, it is no longer possible
to directly use the contour integral representation to understand the inverse of
the linearized Einstein operator. This complication already appears in [32]; as
is shown there, Lg is modeled by product operators in certain neighbourhoods
of each face (these are quite delicate to define), and one may patch together the
inverses of these product operators to obtain a good global parametrix for Lg. We
refer to [32] for all further details.
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