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AN ANALOG OF THE FEFFERMAN CONSTRUCTION

FLORIAN WISSER

ABSTRACT. The Fefferman construction associates to a manifold carrying a
CR~-structure a conformal structure on a sphere bundle over the manifold.
There are some analogs to this construction, with one giving a Lie contact
structure, a refinement of the contact bundle on the bundle of rays in the
cotangent bundle of a manifold with a conformal metric. Since these struc-
tures are parabolic geometries, these constructions can be dealt with in this
setting.

1. INTRODUCTION

The Fefferman construction associates to a given manifold equipped with a
CR-structure a manifold with conformal structure. Both, CR- and conformal
structures are examples of parabolic geometries. The construction of the Fefferman
space using the description of these structures as parabolic geometries was done
in [2].

In [3] the authors show, that the unit tangent bundle of a conformal manifold
inherits a Lie contact structure. Since Lie contact structures are another exam-
ple of parabolic geometries we will give the construction using the description as
parabolic geometries.

A Lie contact structure of an odd dimensional manifold is a refinement of a
contact structure. As in [3], we will view Lie contact structures as a structure
modeled after the classical Lie sphere geometry of oriented hyperspheres. Let us
briefly sketch how to define a Lie contact structure directly.

Let M be a manifold of dimension 2n + 1, with a contact bundle HM C T M.
A contact bundle is a maximally non—integrable subbundle of the tangent bundle
of corank 1. We define the Levi bracket for two sections &,&' € T'(HM) as the
projection of the Lie bracket to the quotient TM/HM, so in a point € M the
Levi bracket reads like

L,:N°H,M — T,M/H,M .
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Suppose that this subbundle decomposes into HM = L* M@ RM , where rank(L* M)
= 2 and rank(RM) = n and RM is equipped with a metric of signature (p,q).
A manifold

(M, HM =L*M ® RM C TM, (RM,g))
carries a Lie contact structure of signature (p, q) if the Levi bracket is O(RM)—

invariant, i.e. for all §,,¢., € L(L,M, R, M) and any A € O(R, M) we have
Em(&maglz) = Em(A o fz,A © 6;) .

In the case considered here, we will use the canonical contact structure on the
bundle of rays in the cotangent bundle. Starting with an arbitrary manifold M of
dim(M) = n + 1 we define

P My :={lpllp e T"M,p ~ ¥ <= o =X, ARy}

forx € M and P"T*M = UzemP"TEM, so dim(P"T*M) = 2n+1. The bundle of
rays is a 2—fold cover of the projectivised cotangent bundle and hence carries a nat-
ural contact structure which is closely related to the natural symplectic structure
of the cotangent bundle. The contact subbundle is given by

H,P"T*M :={£ € T,P"T*M|p(T,p - €) = 0}

where ¢ denotes a class in P"T*M.

We will stick to the viewpoint of parabolic geometries in the sequel and do the
construction in this picture. So a Lie contact structure will be a regular normal
parabolic geometry of type (G‘,Is) and a conformal structure will be a normal
parabolic geometries of type (G, P) for the groups defined below.

2. THE HOMOGENEOUS MODEL

2.1. The homogeneous model of Lie contact structures. Let

‘7 = (Rn+4a <7 >;D+2,q+2>

be a real vector space with an inner product of signature (p + 2,q + 2), where
n = p+q. We will call a vector v in V' positive, null or negative if (v, v} is positive,
zero or negative respectively. When referring to an explicit basis we will use the

standard base {e1,...,en44} with the inner product given by
p+2 n+2
(0, W) pr2,g+2 = VIWnta + W1Vn1a + V2Wnt3 + Walnt3 + E ViW; — E Vi W; -
i=3 i=p+3

So the matrix associated to this inner product reads like

o o0 J

J=10 I, O where I, := (Hg 7(])1 ), J = ((1) (1)) )
J 0 0 a
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Define G = PSO(p + 2, ¢ + 2), which is just SO(p + 2,q + 2) in case that n is
odd, whereas for n even SO(p + 2, ¢ + 2) is a 2-fold cover of PSO(p +2,q +2).
Take a look at the Lie algebra of G, which is g = so(V') and realize g as

a b R e 0

c d S 0 —e
Vv w A -Jst —JR!
F0 W' —d b
0 —f -V —¢c —a

with respect to the standard basis, where <CCL Z) € gl(2,R), Z € o(p,q), V,IW €

R*, R,Se€R" ande, f € R.

We look at the space N of null-planes in V. The choice of a fixed null-plane
Ny gives a filtration on V, explicitly VI =V for all | < —1, VO = Ng-, V! = N,
and V! = {0} for all I > 2. By P we denote the stabilizer of this null-plane in G.

Choosing the fixed null-plane to be Ny = span{ej, ez} the filtration on g in-
duced by the filtration of the representation space is easy to see. We get a filtration
of g, with the associated |2|-grading, where g_» corresponds to f, g—1 to V,W, go
to (CCL Z) ,Z, g1 to X, Y and gs correspondstoe. Sog=g_2Pg-1DgoD g1 Do
with the parabolic subalgebra p = go @ g1 ® g2 containing all block upper diagonal
matrices, with V., W and f zero.

Note that g_o @ g—1 is Heisenberg, i.e.: the Lie bracket [, | : g—1 X g—1 — g—2
is non—degenerate. Furthermore g_; may be identified with L(R?,R"), where R™
carries an inner product of signature (p,q) and the Lie bracket [, ] is invariant
under the action of O(p,q) on R™. Using this one concludes that a regular par-
abolic geometry of type (é / P) has an underlying structure as described in the
introduction, see [2] for further discussion.

To see that P is the parabolic subgroup characterized by the fact that the
adjoint action of the group preserves the filtration of the respective Lie algebra,
ie.

P={geG|Ad(g)(§") Cc §'} forall i,
we can write a generator of g2 as a map, which takes v € V to (v,ea)er — (v, e1)es.
Applying the adjoint action Ad(g) we get v — (g(v), ea)g(e1) — (g(v), e1)g(e2) and
for this to be in §* we need g(e1), g(e2) € No. This is equivalent to g(Nog) C Ny
and hence P is exactly the stabilizer of Ny in G.

We want to identify the homogeneous space G / P with the space of null-planes
in V. To see that G acts transitively on A’ we take an arbitrary null-plane

M = span{my,m2} € N and Ny =span{ej,ea} € N.

By non—degeneracy of (,) we find m,4 € V with (Mpta, Mpys) = 0 and
(m1,Mpyq) = 1. We find a similar element for mg which we denote by m,, 13 and
again by non—degeneracy it is clear, that span{my, ms}Nspan{m, 13, mpy4} is triv-
ial. Choosing an orthonormal basis of the complement of span{m1, ma, my+3, Mmyta}
and denoting it {ms, ..., my4+2} the map A mapping e; — m; for alli € {1,... n+
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4} lies in O(p+2,q+2). To find an element A € SO(p + 2, ¢ + 2) we may choose
to map es — —mg and since the class [A] € PSO(p + 2,q + 2) is either {A} or
{A, —A} all members of this class map A(Ny) = M. Now G acts transitively on
N with P being the stabilizer of Ny € A and we identify the homogeneous space
G/P~N.

The homogeneous space (p : G — G/P,w™C) as a P-principle bundle with
@MC the Maurer—Cartan form on G is the homogeneous model of Lie contact
structures of signature (p,q). Since Cartan connections are a generalization of
the Maurer—Cartan form, ®"¢ is a Cartan connection and since the curvature of
a Cartan connection is an obstruction against the Maurer—Cartan equation, it is
flat.

2.2. The construction in the homogeneous model. We fix the vector vy =
£27°n43 with the property (g, %) = —1 and denote the orthogonal complement

V = 93 and the orthogonal projection o : V-V. Having chosen the subspace V
there are two kinds of null-planes in V, the ones lying in V' and transversal ones.
We denote the set of transversal null-planes by A;. In case of ¢ = 0 all null-planes
are transversal, if ¢ > 0 then N; C A is an open subset.

The construction starts off with the homogeneous model of conformal struc-
tures. The inner product on V restricts to an inner product of signature (p+2,q+1)
on V. Take G = SO(p+2,9+1) actingon V' C V with respect to this inner prod-
uct. Let C := {v € V|(v,v) = 0,v # 0} be the null-cone in V' with PC the quadric
— its projectivization. Define P to be stabilizer of the null-line Iy := No NV in
G. lp is just the line through e; with our choices of Ny and 7. G acts tran-
sitively on C, which can be seen by a similar argument as above, so we identify
G/P = PC = S"*1. The tangent space T},)S™, which is just v*/Rv inherits
an inner product of signature (p 4+ 1,¢) from V, which depends on the choice
of v € [v]. This gives a conformal class, so S™ is the conformal sphere. The
tangent space in the identity T.pG/P = I3 /lop = g/p. The homogeneous space
(p: G — G/P,wM®) with wM® the Maurer-Cartan form is the homogeneous
model of conformal structures.

We embed G — SO(p + 2,q + 2) as the subset fixing ¥p. In a basis of the

form {0, ...} an element A € SO(p + 2, g+ 2) has the form ((1) 81) Projecting

the image of G to PSO(p + 2,q + 2) is still injective, since A and —A are in
different classes. The inclusion on the level of Lie algebras is easy to see, since
g=so(p+2,q+1) C g is just the subset annihilating ¥g:

a e R e 0
f 0 S 0 —e
vV W 7 -Jst —JIR!
f 0 Wi 0 —e

0 —f -V —f —a
This Lie algebra admits a |1|-grading where g_; corresponds to V and f, go to a,
S, W and Z, and g; corresponds to R and e. p = go & g1 the set up block upper
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matrices with respect to this grading is a parabolic subalgebra. The parabolic
subgroup P is characterized by the fact, that the adjoint action on g preserves the
respective filtration.

Now we define Q := P N G where G is in fact the embedding of G in G. P
stabilizes Ny and G stabilizes V, so () stabilizes [o = Ny NV and hence Q C P.
We now consider the action of G' on the space of transversal planes N, which is
an open subset of G / P. Take an arbitrary null-plane N € N;. We can choose a
basis {n1,na}, such that ny € V and ny = o(ng) + 9 with (o(n2),o(n2)) =1 and
(n1,0(n2)) = 0. We find an element of G mapping ny to e; and o(nz) to o(ez)
and hence mapping N to Ng. So G acts transitively on N;.

The projection Fy := o(Np) is a plane in V containing the null-line Iy, with
all other directions positive. In the basis of Ny from above we get o(e1) = e; €
V, so lp = Re; and (o(ez),0(e2)) = 1. By construction @ stabilizes Ey C V,
o|n, : No — Ep defines a linear isomorphism and 7(e) := (67! (e), @) is a linear
functional on Ejy, which gives an orientation on Ey preserved by the action of Q.
But this is equivalent to preserving the class of o(e2) in I3 /ly with its orientation.
So @ is the orientation preserving stabilizer of the positive line Fy/ly in lOL /lo.

Now g/p carries a conformal class of inner products of signature (p + 1, ¢) with
an oriented positive line Ey/ly which is preserved by @, and this characterizes Q.
Using the conformal class on g/p an oriented line in g/p gives an oriented line
in py = (g/p)* as the annihilator of the orthogonal complement. Since via this
identification we get a conformal class on p; we have seen, that @) is the stabilizer
of a positive line in p.

The action of P on p4 has 3 orbits in case of non—trivial signature corresponding
to negative, null and positive directions, whereas in definite signature there is only
one orbit of positive directions. Since @ is the stabilizer of a positive line in
p+ preserving its orientation, we identify P/Q with the set of rays of positive
directions P (p) in py.

With @ C P we get a natural projection G/Q — G/P. Since G/Q is identified
with the set N, which is an open subset of A identified with G/ P, we get an open
embedding G/Q — G/P. On the level of Lie algebras this gives an isomorphism
g/p — g/q and with the natural projection we get a projection v : §/p — g/p.
Since G/Q can be equivalently described as the associated bundle G x p P/Q, G/Q
is a fiber bundle over G//P with fiber P/Q. Since G/Q is an open subset of G/ P
it inherits the geometry of G/ P.

2.3. The interplay of the gradings. g is included in g as the subalgebra anni-
hilating the line through 9y and we denote this inclusion by i : g — g. The Killing
form B on g is just the restriction of B|gxg = B. Since B is non-degenerate,
we get the decomposition § = g @ n with n = g*. By invariance of B this is a
Z2-grading of g, with g = gg and n = g7 (i.e. [g,n] C n and [n,n] C g). We will
denote the respective decomposition of an element A € g by A = A% + A", The
Killing form B is non-degenerate on p, x g—, so we can choose dual bases with
nice properties:
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Lemma 2.4. There are dual bases Z; € py and X; € g/p with B(Z;, X;) = 4y,
for i,j € {1,...,2n + 1}, with the following properties:

(i) Z €giforic{l,....2n}, Zoni1 € go

(i) Xl, X € ker(i/))

(iii) B( f, (X;)) =04 fori,je{n+1,...,2n+1}
(iv) Z} =0 (ie: Z; €g) fori € {n+1,...,2n}

Remark. By property (ii) {¢(Xn+1), e ,w(XgnJrl)} is a basis of g/p and (iv)
implies that dim(g; Ng1) = n.

Such bases are easily chosen explicitly in the matrix representation of g from
above. We choose

Zi:Si,Zi_,_n:Ri for i=1,...,n and Zgn_H:e

where S;, R; and e should denote the matrix with all entries trivial, except for the
respective entry being 1. The dual basis consists of {Wy,..., W, , Vi,...,Vy, f},
where we do not explicitly mark, that these are in fact just classes in g/p. By
elementary calculations one proves the properties, which we will use in the sequel
to obtain a general result for non—flat geometries.

3. THE GENERAL CASE OF NONTRIVIAL CURVATURE

Let (M, [g]) be a n 4+ 1-dimensional manifold with a conformal structure. By a
classical result of Elie Cartan a conformal manifold can be equivalently described
by a normal parabolic geometry of type (G, P), with G and P from above. So
we have a P—principle bundle (p : G — M,w) together with a normal Cartan
connection w. Note that regularity is vacuous in this case, since g is |1|-graded.

Define the Fefferman space of M as M := G/Q = G xp P/Q. This obviously
is a Q-principle bundle (p : G — M). Since the cotangent space of the base
manifold of a parabolic geometry is G xp p = T*M we identify the Fefferman
space M =G Xp P/Q with the space of positive rays PLT*M in T*M.

The properties for a connection to be Cartan (equivariance, reproduction of
generators of fundamental vector fields and absolute parallelism) are weaker for
G — M), so w is still a Cartan connection. Define G := G XQ 15, which by
definition is a P-principal bundle over M. So G C G and by the defining properties
of Cartan connections it is easy to see, that there exists a unique Cartan connection
@ such that ©|rg = w. We get a Lie contact structure underlying the parabolic
geometry (p : G— M, @) if @ is regular. Furthermore, the question arises whether
(p: G — M,&) even coincides with the unique regular normal parabolic geometry
associated to a Lie contact structure on M. So we investigate whether normality
of w implies regularity and normality of @.

3.1. The curvature of @. The curvature form K € Q%(G, g) is given by

K(&n) = dw(&,n) + [w(&),w(n)]

for vector fields &, € X(G). The Maurer—Cartan equation states, that the curva-
ture vanishes for the Maurer-Cartan form w™¢ on the homogeneous model. The
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curvature of a Cartan geometry is a complete obstruction against local flatness,
i.e. being locally isomorphic with the homogeneous model.

Since K is horizontal (i.e.: vanishes upon insertion of vertical vectors) the
curvature can be equivalently expressed in terms of the curvature function

kG — A2g/p) @, w(u)(X,Y) = K (v, (X),w; (V).

u u
One can characterize regularity, as well as normality for a parabolic geometry
in terms of the curvature of the Cartan connection w as follows. The condition of
regularity for a parabolic geometry is, that x(u)(g;, g;) C g"™/ ! for all u € G and
all 7,j. Let X; € g, such that these descend to a basis of g/p and Z; € p be dual
with respect to the Killing form. Then normality reads like

1
(1) > (2, m(u) (X, A)] + 3 > k(u)((2;, A1, X;) =0
J J
forallu e Gand A€ g_.
Since we have an isomorphism g/p = g/q and we know that q C p we get a
natural projection ¢ : §/p — g/p. By construction of & as equivariant extension

of w we get the curvature function of @ in a point u € G as follows

L~ Ru)
(2) Ag/p—-—— >3
) Jb
9 K(u)
Ag/p———1

We analyze the relation between w and @ to get the following proposition.

Proposition 3.2. Let (p : § — M,w) be a normal parabolic geometry of type
(G, P), then the parabolic geometry (p: G — M) of type (G, P) on the Fefferman
space obtained by extension like above is regular and normal.

Proof. Since g is |1|-graded and & is horizontal the only condition for regularity
is k(g-1,9-1) C g—1, which is trivially fulfilled and so we do not ask for w to be
regular. It is well known that x has values in p and the its go—component is the
Weyl curvature and hence totally trace—free. By (2) we know, that for u € G,
R(u) has values in g and from the explicit description of g C g one reads off, that
p N g—2 = 0. This shows the only non-trivial condition for regularity of @ holds,
that is &(u)(g—1,8-1) C g—1 for u € G. Since @ is the equivariant extension this
holds for all u € G.

Our first observation concerning normality is, that the second sum of (1) van-
ishes if g is |1|-graded, since [Z;, X] € go C p and k is horizontal. So for a
connection w of a parabolic geometry of type (G, P) to be normal means vanish-
ing of both terms of the normality condition on their own. In general this is not
true for |2|-graded Lie algebras. However the claim is, that both sums vanish for
w in this situation.

We choose dual bases {Zl, ey ZQnJrl} for p, and {Xl, e X2n+1} for g/p with
respect to the Killing form satisfying properties 2.4 from above.



356 F. WISSER

We know use the special nature of & = iok(u)oA%) and the fact that w is normal
to see that huge parts of (1) vanish. From (ii) we know, that all summands which

contain &(u)(X;,.) for i = 1,...,n vanish. The rest {t)(Xpi1), ..., 9(X)ons1}

form a basis of g/p which is dual to {Zgﬂ, e Z§n+1} in g by property (iii), with

Zf = Z foralli=n+1,...,2n. By normality of w these terms sum up to 0.
The only non-trivial terms remaining are

(2311, R(u)(Xznt1, A)] + %%(U)([Z%H, AJ, X2n41)

The second of these vanishes, since ¢([Z5, 1, A]) € p for all A € g_. The first one
is a little trickier. In the explicit basis from above we can write Z§n 41 as

0 -+ 0 4% 0
) 0 0 0 0 —3
28 =€"=[0 0 0 0 0
o 0 00 1
00 00 0

We analyze the action of e® and #(u)(Xang1,4) on V =V & Rig. By (2) we
know that %(u)(Xon41,A) € g and therefore restricts to an action on V, vanishing
on ¥g. For the action of e" one explicitly calculates that its action vanishes on
V, and maps ¥ to a multiple of e;. So &(u)(Xani1,A) o e acts trivially and
e o &(u)(Xany1,A) acts trivially on V. The part remaining is the image of .
Now 79 goes to a multiple of e; under e".

We noted, that the go—part of the curvature of a conformal geometry is exactly
the totally trace—free part of the curvature. As one can read off the explicit
description of g this implies, that the curvature vanishes on multiples of e; and we
have shown, that @ is normal.
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