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CLASSIFICATION OF RINGS SATISFYING SOME

CONSTRAINTS ON SUBSETS

Moharram A. Khan

Abstract. Let R be an associative ring with identity 1 and J(R) the Jacob-
son radical of R. Suppose that m ≥ 1 is a fixed positive integer and R an
m-torsion-free ring with 1. In the present paper, it is shown that R is commu-
tative if R satisfies both the conditions (i) [xm, ym] = 0 for all x, y ∈ R\J(R)
and (ii) [x, [x, ym]] = 0, for all x, y ∈ R\J(R). This result is also valid if (ii)
is replaced by (ii)’ [(yx)mxm − xm(xy)m, x] = 0, for all x, y ∈ R\N(R). Our
results generalize many well-known commutativity theorems (cf. [1], [2], [3],
[4], [5], [6], [9], [10], [11] and [14]).

1. Introduction

Throughout, R represents an associative ring with identity 1, Z(R) the centre
of R, U(R) denotes the group of units of R, J(R) the Jacobson radical of R, N(R)
the set of nilpotent elements of R, and C(R) the commutator ideal of R. As usual,
for any x, y ∈ R, the symbol [x, y] will stand for the commutator xy − yx. Let
m ≥ 1 be a fixed positive integer and a non-empty subset S of R. We consider
the following ring properties.

C1(m, S) [xm, ym] = 0 for all x, y ∈ S.

C2(m, S) [x, [x, ym]] = 0 for all x, y ∈ S.

C3(m, S) (xy)m = xmym for all x, y ∈ S.

C4(m, S) (xy)m − xmym ∈ Z(R) for all x, y ∈ S.

C5(m, S) (xy)m − ymxm ∈ Z(R) for all x, y ∈ S.

C6(m, S) [(xy)m ± ymxm, x] = 0 = [(yx)m ± xmym, x] for all x, y ∈ S.

C7(m, S) [(yx)mxm − xm(xy)m, x] = 0 for all x, y ∈ S.

Q(m) For any x, y ∈ R, m[x, y] = 0 implies [x, y] = 0.

2000 Mathematics Subject Classification : 16U80, 16D70.
Key words and phrases : Jacobson radical, nil commutator, periodic ring.
Received April 18, 2005, revised November 2006.



20 M. A. KHAN

A celebrated theorem of Herstein [9] states that a ring R which possesses the
property C3(m, R) must have a nil commutator ideal. Many authors have extended
Herstein’s result in several ways (see [1], for references). One of the interesting
generalisations of this result is due to Abu-Khuzam et. al. [4]. They established
commutativity of m-torsion-free ring R satisfying C1(m, R) and C3(m + 1, R).
Motivated by these observations, a natural question in this context is: What can
we say about the commutativity of R if the property C3(m + 1, R) in the above
result is replaced by C2(m + 1, R)?

The aim of the present paper, in Section 2, is to establish that an m-torsion-free
ring R satisfy C1

(

m, R\J(R)
)

and C2(m, R\J(R)) must be commutative. Also
commutativity of rings satisfies C7(m, R\J(R)) has been investigated. Finally,
in Section 3, commutativity of a periodic ring satisfies C7

(

m, R\N(R)
)

has been
studied.

2. Commutativity of rings with 1

Theorem 2.1. Let R satisfy C1

(

m, R\J(R)
)

, C2

(

m, R\J(R)
)

and Q(m). Then

R is commutative.

We begin with

Lemma 2.2 ([12, p.221]). If [x, y] commutes with x, then [xn, y] = nxn−1[x, y]
for all positive integers n ≥ 1.

Lemma 2.3 ([13, Theorem 1]). Let f be a polynomial in n non-commuting indeter-

minates x1, x2, x3, . . . , xn with integer coefficients. Then the following statements

are equivalent:

(i) For any ring R satisfying the polynomial identity f = 0, C(R) is nil.

(ii) For every prime p, (G(F (p))2 fails to satisfy f = 0.

Lemma 2.4 ([8, Theorem]). Let R be a ring in which for given x, y ∈ R there

exist integers m = m(x, y) ≥ 1, n = n(x, y) ≥ 1 such that [xm, yn] = 0. Then the

commutator ideal of R is nil.

Lemma 2.5 ([6, Lemma 4]). Let R be an m-torsion-free ring with unity 1 satis-

fying C1(m, R). Then

(i) a ∈ N(R), x ∈ R imply [a, xm] = 0.

(ii) a ∈ N(R), b ∈ N(R) imply [a, b] = 0.

Lemma 2.6 ([15, Lemma]). Let R be a ring with unity 1. If kxm[x, y] = 0 and

k(x + 1)m[x, y] = 0 for some integers m ≥ 1 and k ≥ 1, then k[x, y] = 0 for all

x, y ∈ R.

Lemma 2.7 ([11, Theorem 1]). Let R be a ring without non-zero nil right ideal.

Suppose that, given x, y ∈ R, there exist positive integers s = s(x, y) ≥ 1,
m = m(x, y) ≥ 1 and t = t(x, y) ≥ 1 such that

[

xs, [xt, ym]
]

= 0. Then R is

commutative.



CLASSIFICATION OF RINGS SATISFYING SOME CONSTRAINTS ON SUBSETS 21

Lemma 2.8 ([14, Step 2.2]). Let R be a ring. Suppose that N(R) is commutative

and assume that a2 = 0 and r ∈ R imply that ra ∈ N(R). Then N(R) is an ideal.

Now we establish the following results.

Lemma 2.9. Let R satisfy C1(m, R), C7(m, R) and Q(m). Then R is commuta-

tive.

Proof. First, we claim that [a, xm] = 0 for all x ∈ R and a ∈ N(R). Since a is
nilpotent, there exists a minimal positive integer t such that [ak, xm] = 0 for all
integers k ≥ t. Let m > 2. Then

0 =
[

(1 + at−1)m, xm
]

=
[

1 + mat−1 + . . . + a(t−1)m, xm
]

= m
[

at−1, xm
]

.

By an application of Q(m), this gives [at−1, xm] = 0, which contradicts minimality
of m. Hence t = 1, and [a, xm] = 0. In view of [10, Lemma 10], there exists a
positive integer s, such that s[xm, y] = 0. Since C(R) ⊆ N(R) by a special case
of [8, Theorem], it follows from what is just shown above that [xm, [xm, y]] = 0.
Thus by Lemma 2.2, we have

[xms, y] = sxm(s−1)[xm, y] = 0 .

Further, let c, d be arbitrary elements of R. Then replacing x by c and y by
cms−1d in C7(m, R), and combining the above result, we get

[

(cms−1dc)mcm − cm(cmsd)m, c
]

= 0

or
[

(cms−1+ms(m−1)dmc)cm − cm(cm
2
sdm), c

]

= 0

that is
[

(cm
2
s−1dmc)cm − cm(cm

2
sdm), c

]

= 0 .

After simplification, this gives

cms−1
[

c, [cm+1, dm]
]

= 0 .

Using the commutator identity; [xy, z] = x[y, z] + [x, z]y, for all x, y, z ∈ R and
C1(m, R), we have

cm
2
s−1

[

c, cm[c, dm]
]

= 0

or

cm
2
s−1+m

[

c, [c, dm]
]

= 0 .

Therefore, by Lemma 2.6,
[

c, [c, dm]
]

= 0, and in view of Lemma 2.2 we obtain

0 = [cm, dm] = mcm−1[c, dm]. Also by Lemma 2.6 m[c, dm] = 0. Using the
property Q(m), we conclude that [c, dm] = 0. Hence commutativity of R follows
by [8, Theorem].

Lemma 2.10. Let R satisfy C1(m, R), C2(m, R) and Q(m). Then R is commu-

tative.
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Proof. By hypothesis, we have

(2.1)
[

x, [x, ym]
]

= 0 , for all x, y ∈ R .

From the hypothesis C1(m, R), and by Lemma 2.4, the commutator ideal is nil. It
follows that N(R) forms an ideal. In view of Lemma 2.5 (ii), N(R) is a commu-
tative ideal. This implies that (N(R))2 ⊆ Z(R). Next, for any a ∈ N(R), replace
y by 1 + a in (2.1) and use Q(m) to get

(2.2)
[

x, [x, a]
]

= 0 , for all x ∈ R and a ∈ N(R) .

From Lemma 2.5 (i), we have

(2.3) [a, xm] = 0 for all x ∈ R and a ∈ N(R) .

Using (2.2) and Lemma 2.2 together with (2.3), we get

mxm−1[a, x] = 0 .

Replacing x by x + 1 and using Lemma 2.6 together with Q(m), we get [a, x] = 0
for all x ∈ R and a ∈ N(R). But, then C(R) ⊆ N(R), and thus

(2.4) C(R) ⊆ N(R) ⊆ Z(R) .

Next, Lemma 2.2 and C1(m, R) yield that mxm−1[x, ym] = [xm, ym] = 0 for all
x, y ∈ R. Again, using Lemma 2.6 and Q(m), we get [x, ym] = 0 for all x, y ∈ R.
Similarly, we have mym−1[x, y] = [x, ym] = 0 and also [x, y] = 0 for all x, y ∈ R.
Hence R is commutative.

Lemma 2.11. Let R satisfy C1

(

m, R\J(R)
)

and Q(m). If
[

u, [u, vm]
]

= 0 for all

units u, v, then J(R)2 ⊆ Z(R).

Proof. Suppose that u, v are units in R. By hypothesis, we have

(2.5)
[

u, [u, vm]
]

= 0 , for all u, v ∈ U(R) .

Using the property C1

(

m, R\J(R)
)

, we obtain [um, vm] = 0. In view of (2.5) and

Lemma 2.2, we get mum−1[u, vm] = 0. This implies that

(2.6) [u, vm] = 0 , for all u, v ∈ U(R) .

Let a ∈ N(R). Then there exists a minimal positive integer l such that

(2.7) [u, an] = 0 , for all n ≥ l and u ∈ U(R) .

Let l > 1. Then 1+ al−1 ∈ U(R), and (2.6) yields that
[

u, (1 + al−1)m
]

= 0. Next

by (2.7), one gets m[u, al−1] = 0, and by the property Q(m), we get [u, al−1] = 0,
and hence contradicts the minimality of l in (2.7); thus l = 1. In view of (2.7), we
get

(2.8) [u, a] = 0 , for all u ∈ U(R) and a ∈ N(R) .

Let j1, j2 ∈ J(R). Then, by (2.6), we have

(2.9)
[

1 + j1, (1 + j2)
m

]

= 0 , for all j1, j2 ∈ J(R) .

Since semisimple rings satisfying C1(m, R) are commutative and hence by our
assumption R\J(R) is commutative, so C(R) ⊆ J(R). Further, we claim that
C(R) ⊆ N(R). Choose arbitrary elements x1, y1, x2, y2, x3, y3 of R, and let c1 =
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[x1, y1], c2 = [x2, y2] and c3 = [x3, y3] be any commutators. In view of (2.9),
c1, c2, c3 are all in J(R), so (1+ c1 + c2 + c1c2) and (1+ c3) are in U(R) and hence
are not in J(R). By hypothesis, we can write

(2.10)
[

1 + c3, (1 + c1 + c2 + c1c2)
m

]

= 0 .

One observes that (2.10) is a polynomial identity which is satisfied by all elements
of R. But (2.10) is not satisfied by any 2 × 2 matrix ring over GF (p), a prime p,
if we take c1 = [e11, e11 + e12], c2 = [e11 + e12, e21] and c3 = c1. Hence by Lemma
2.3, C(R) ⊆ N(R) and by (2.8) we obtain

(2.11)
[

1 + j2, [1 + j1, 1 + j2]
]

= 0 , for all j1, j2 ∈ J(R) .

From (2.9) and (2.11), Lemma 2.2 gives that m(1 + j2)
m−1[1 + j1, 1 + j2] = 0.

This implies that m[j1, j2] = 0. By the property Q(m), one gets [j1, j2] = 0 for all

j1, j2 ∈ J(R). This implies that J(R) is commutative and
(

J(R)
)2

⊆ Z(R).

Lemma 2.12. Let R satisfy C1

(

m, R\N(R)
)

and Q(m). Then N(R) is an ideal.

Proof. Lemma 2.5 (ii) holds for R with 1 satisfying C1

(

m, R\N(R)
)

and Q(m),

hence N(R) is commutative. If a2 = 0 and ra 6∈ N(R), then
[

(ra)m, (1 + a)m
]

= 0 =
[

(ra)m, 1 + ma
]

= m
[

(ra)m, a
]

=
[

(ra)m, a
]

.

Therefore a(ra)m = 0 and (ra)(m+1) = 0, a contradiction. This implies that
ra ∈ N(R) for all r ∈ R and N(R) is an ideal by Lemma 2.8.

Proof of Theorem 2.1. The case m = 1 is trivial, so we assume m > 1. By
Lemma 2.11, J(R)2 ⊆ Z(R), so

[

x, [x, ym]
]

= 0 for all x ∈ R\J(R) and y ∈ R.

If x ∈ J(R), then
[

1 + x, [1 + x, ym]
]

= 0. for all y ∈ R; thus
[

x, [x, ym]
]

= 0
for all x, y ∈ R. Moreover, if either x or y is in J(R), [xm, ym] = 0, so R satisfies
C1(m, R). Thus R is commutative by Lemma 2.10.

The following are the immediate consequences of the above theorem (see [14]
for details).

Corollary 2.13. Let R satisfy C1

(

m, R\J(R)
)

, C6

(

m, R\J(R)
)

and Q(m). Then

R is commutative.

Proof. By hypothesis, we have
[

(xy)m±ymxm, x
]

= 0 and
[

(yx)m±xmym, x
]

= 0
for all x, y ∈ R/J(R). The first property can be written as

(2.12) x
{

(xy)m − (yx)m
}

= ±(ymxm+1 − xymxm) , for all x, y ∈ R\J(R) .

And the second property gives that

(2.13)
{

(xy)m − (yx)m
}

x = ±(xmymx − xm+1ym) , for all x, y ∈ R\J(R) .

Multiplying (2.12) by x on the right, and (2.13) by x on the left, and then after
subtracting we get

(2.14)
[

x, [xm+1, ym]
]

= 0 , for all x, y ∈ R/J(R) .
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But [xm+1, ym] = xm[x, ym] + [xm, ym]x, in view of the property C1(m, R) and
(2.13) yields that

(2.15) xm
[

x, [x, ym]
]

= 0

for all x, y ∈ R\J(R). If x ∈ J(R) replacing x by 1+x in (2.15) yields
[

x, [x, ym]
]

=
0 for all x ∈ J(R) and y 6∈ J(R); hence (2.15) holds for all x ∈ R and all y 6∈ J(R),
and by Lemma 2.6

[

x, [x, ym]
]

= 0 for all x ∈ R and all y 6∈ J(R). In particular,
[

x, [x, ym]
]

= 0 for all x, y ∈ R\J(R). Thus R is commutative by Theorem 2.1.

Corollary 2.14. Let R satisfy C1

(

m, R\N(R)
)

, C6

(

m, R\N(R)
)

and Q(m). Then

R is commutative.

Proof. Immediate from Corollary 2.13 and Lemma 2.11.

Theorem 2.15. If R satisfy C1

(

m, R\J(R)
)

, C7

(

m, R\J(R)
)

and Q(m), then R
is commutative.

Proof. Let u, v be units in R. Then by hypothesis C7

(

m, R\J(R)
)

, we have
[

(u−1vu)m − um(uu−1v)m, u
]

= 0

or

[

u, [um+1, vm]
]

= 0 .

This implies that
[

u, [u, vm]
]

= 0, for all u, v ∈ U(R); therefore,
(

J(R)
)2

⊆ Z(R).
By Lemma 2.11.

If m = 1, then nothing to prove.

Let m > 1. Clearly by inductive hypothesis, we have [xn, yn] = 0 and
[

(yx)n(x)n−

xn(xy)n, x
]

= 0), for all n ≥ 2, provided x ∈ J(R) or y ∈ J(R). Hence by

C1

(

m, R\J(R)
)

and C7

(

m, R\J(R)
)

, we observe that R satisfies the properties
C1(m, R) and C7(m, R) for m > 1. Now, by Lemma 2.9, R is commutative.

Corollary 2.16. Let R satisfy C1

(

m, R\N(R)
)

, C7

(

m, R\N(R)
)

and Q(m). Then

R is commutative.

Proof. Follows from Theorem 2.2 and Lemma 2.10.

3. Commutativity of periodic rings

In this section, a ring R is called periodic if for each x ∈ R, there exist dis-
tinct positive integers r, s such that xr = xs. Recently Abu-Khuzam and Yaqub
[4, Theorem 3] proved that a periodic ring R is commutative if R satisfies the
property C5

(

m, R\N(R)
)

. Also they established that if N(R) is commutative in
a periodic ring R and R is an m(m + 1)-torsion-free ring satisfying the property
C5

(

m, R\N(R)
)

, then R is commutative. It is natural to ask a question: Is the

above result valid if the property C5

(

m, R\N(R)
)

is replaced by C7

(

m, R\N(R)
)

?
We settle this question affirmatively here.
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Theorem 3.1. Let m ≥ 1 be a fixed positive integer and let R be a periodic ring

satisfying the properties Q
(

m(m+1)
)

and C7

(

m, R\N(R)
)

. Suppose, further, that

N(R) is commutative. Then R is commutative.

We state the following known results.

Theorem 3.2 ([2, Theorem 1]). Let R be a periodic ring such that N(R) is

commutative. If for each a ∈ N(R) and x ∈ R there exists an integer m =
m(x, a) ≥ 1 such that

[

xm, [xm, a]
]

= 0 and
[

xm+1, [xm+1, a]
]

= 0, then R is

commutative. In particular: If R is a periodic ring such that N(R) is commutative

and
[

x, [x, a]
]

= 0 for all a ∈ N(R), x ∈ R, then R is commutative.

Theorem 3.3 ([5, Theorem 1]). Let R be a periodic ring such that N(R) is

commutative. Then the commutator ideal of R is nil, and N(R) forms an ideal.

Lemma 3.4 ([4, Lemma 4]). Let R be a periodic ring and let f : R → S be a

homomorphism of R onto S. Then the nilpotents of S coincide with f
(

N(R)
)

,

where N(R) is the set of nilpotents of R.

Proof of Theorem 3.1. Since R is periodic and N(R) is commutative, Lemma
3.3 yields that the commutator ideal C(R) of R is nil; that is C(R) ⊆ N(R) and

N(R) forms an ideal of R. But N(R) is commutative, and also
(

N(R)
)2

⊆ Z(R).

First we claim that the idempotents of R are central: Let e2 = e ∈ R and r ∈ R.
Replacing x by e and y by e + er − ere in the hypothesis C7

(

m, Z(R)
)

, we get
(

(e + er − ere)e
)m

em − em
(

e(e + er − ere)
)m

∈ Z(R) .

This implies that ere − er ∈ Z(R). Thus

ere − er = e(ere − er) = (ere − er)e = 0

or

ere = er .

Similarly, if x = e and y = e + re − ere, we obtain

ere = re .

Thus er = re for all r ∈ R and the result follows immediately.

Secondly, we shall prove the theorem for R with identity 1: Suppose that a ∈
N(R) and b ∈ R\N(R). Then by hypothesis C7

(

m, R\N(R)
)

, we can write

(3.1)
[

bm(1 + a)m − (1 + a)m+1bm(1 + a)−1, 1 + a
]

= 0

for all a ∈ N(R), b ∈ R\N(R). This implies that
{

bm(1 + a)m − (1 + a)m+1bm(1 + a)−1
}

(1 + a)

= (1 + a)
{

bm(1 + a)m − (1 + a)m+1bm(1 + a)−1
}



26 M. A. KHAN

or

{

bm(1 + a)m+1 − (1 + a)m+1bm
}

= (1 + a)
{

bm(1 + a)m − (1 + a)m+1bm(1 + a)−1
}

.

Using the binomial expansion and the condition
(

N(R)
)2

⊆ Z(R), one gets

(3.2) (m + 1)(bma − abm) = (1 + a)
{

bm(1 + a)m − (1 + a)m+1bm(1 + a)−1
}

.

But N(R) is a commutative ideal, (1 + a)(bma − abm) = bma − abm, and also
by (3.2), we have

(1 + a)(m + 1)(bma − abm) = (1 + a)
{

(b)m(1 + a)m − (1 + a)m+1bm(1 + a)−1
}

.

Since a ∈ N(R), 1 + a ∈ U(R) and by (3.1), this gives that

(m + 1)(bma − abm) =
{

bm(1 + a)m − (1 + a)m+1bm(1 + a)−1
}

∈ Z(R) .

This implies that (m + 1)[bm, a] ∈ Z(R). Using the property Q
(

m(m + 1)
)

, we
get

(3.3) [bm, a] ∈ Z(R) , for all a ∈ N(R) , b ∈ R\N(R) .

Now since N(R) is commutative, (3.3) implies that

(3.4) [bm, a] ∈ Z(R) , for all a ∈ N(R) , b ∈ R .

Next, let x1, x2, . . . , xn ∈ R. Then R\C(R) is commutative; so, by Lemma 3.3,
(x1 . . . xn)m − xm

1 . . . xm
n

∈ C(R) ⊆ N(R). Therefore N(R) is commutative yields
that

(3.5)
[

(x1 . . . xn)m, a
]

= [xm

1 . . . xm

n
] , for all a ∈ N(R) .

Combining (3.4) and (3.5), we get

(3.6) [xm

1 . . . xm

n , a] ∈ Z(R) for all a ∈ N(R) , x1 . . . xn ∈ R and n ≥ 1 .

Let S be the subring generated by the m-th powers of the elements of R. Then
by (3.6) we have

(3.7) [x, a] ∈ Z(S) for all a ∈ N(S) , x ∈ S ,

where Z(S) and N(S) represent the centre of S and the set of nilpotent elements
of S respectively. Combining the facts that S is periodic, N(S) is commutative,
and (3.7), Lemma 3.2 shows that S is commutative, and hence [xm, ym] = 0 for
all x, y ∈ R. This implies that R satisfies C1(m, R). But R also satisfies Q(m)
and C7

(

m, R\N(R)
)

, by Corollary 2.16, we get the required result.

To complete the proof of Theorem 3.1: Note first that idempotents are central,
and then prove the theorem for R with 1. It follows that for every nonzero idempo-
tent e, eR is commutative, and hence e[x, y] = 0 for all x, y ∈ R. Thus if a ∈ R is
potent with an = a, n > 1, an−1[a, b] = 0 = [a, b] for all b ∈ R. Since every element
in a periodic ring is the sum of a potent element and nilpotent element, this gives
N(R) ⊆ Z(R) and R is commutative by a well-known theorem of Herstein [7].
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4. Counter Examples

Example 4.1. The ring of 3×3, without unit, of strictly upper triangular matrices
over Q, the ring of rational numbers shows that the hypotheses of Theorems 2.1
and 2.15 alone without additional condition 1, does not guarantee commutativity.

Next, we provide an example to show that the property Q(m) in the hypotheses
of Theorems 2.1 and 2.15 is not superfluous even if the properties [xm, ym] = 0
and

[

(xy)m ± ymxm, x
]

= 0 =
[

(yx)m ± xmym, x
]

hold for all x, y ∈ R.

Example 4.2. Let R =











α β γ
0 α δ
0 0 α





∣

∣

∣ α, β, γ, δ ∈ GF (3)







.

Clearly, R satisfies [x3, y3] = 0 and (xy)3 = y3x3 for all x, y ∈ R. Hence R satisfies
all the hypotheses except Q(3).

Example 4.3. Consider the ring R =











α β γ
0 α δ
0 0 α





∣

∣

∣
α, β, γ, δ ∈ GF (3)







.

Clearly, R satisfies (xy)2 − y2x2 = 0 and (yx)2 − x2y2 = 0. We observe that for
n = 2, R satisfies the conditions C6(m, S) and Q(m). This indicates that the
property C1(m, R\J) is essential in the hypothesis of Theorem 2.1.

Example 4.4. Let R =











α β γ
0 α δ
0 0 α





∣

∣

∣ α, β, γ, δ ∈ GF (2)







.

It is trivial to check that R satisfies [x2, y2] = 0 and
[

(yx)2x2 − x2(xy)2, x
]

= 0
for all x, y ∈ R. This shows that, for n = 2 the property Q(m) can not be omitted
from that hypothesis of Theorem 2.15.

Example 4.5. Let R =











α β γ
0 α δ
0 0 α





∣

∣

∣ α, β, γ, δ ∈ GF (3)







.

The ring R has property Q(m) and the properties
[

(yx)mxm − xm(xy)m, x
]

= 0.
Hence for n = 4, R satisfied all the hypothesis of Theorem 2.15 except C1(m, R\J).

The following example shows that a ring R with unity 1 satisfying the properties
C1(m, S) and Q(m) need not be commutative.

Example 4.6. Let R =











α β γ
0 α2 0
0 0 α





∣

∣

∣ α, β, γ ∈ GF (4)







.

In the non-commutative ring R and it satisfies the properties C1(m, S) and Q(m)
for m = 3. This shows that the existence of the property C6(m, R\J) (resp.
C7(m, R/\J) in Theorem 2.1 (resp. Theorem 2.15).
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Example 4.7. Let R =











α β γ
0 α2 0
0 0 α





∣

∣

∣
α, β, γ ∈ GF (3)







.

The ring R satisfies all the hypothesis of Theorem 3.1 except the hypothesis “N(R)
is commutative”. This shows that commutativity of N(R) is essential in Theorem
3.1.

Example 4.8. Let R =











α β γ
0 α2 0
0 0 α





∣

∣

∣ α, β, γ ∈ GF (5)







.

The non-commutative ring R satisfies all the hypothesis of Theorem 4.1 except
C7(m, R\N), for n = 2. This shows that the condition C7(m, R\N) is essential in
Theorem 3.1.

Example 4.9. Let R =











α β γ
0 α2 0
0 0 α





∣

∣

∣ α, β, γ ∈ GF (3)







.

For m = 5, R satisfies all the hypothesis of Theorem 3.1 except Q(m(m+1)). But
R is not commutative. This strengthens the existence of the property Q(m(m+1))
in the hypothesis of Theorem 3.1 (see also [14] for details).
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