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OSCILLATION THEOREMS FOR CERTAIN EVEN ORDER

NEUTRAL DIFFERENTIAL EQUATIONS

Qigui Yang and Sui Sun Cheng

Abstract. This paper is concerned with a class of even order nonlinear
differential equations of the form

d

dt

“˛

˛

˛
(x(t) + p(t)x(τ(t)))(n−1)

˛

˛

˛

α−1
(x(t) + p(t)x(τ(t)))(n−1)

”

+ F
`

t, x(g(t))
´

= 0 ,

where n is even and t ≥ t0. By using the generalized Riccati transformation
and the averaging technique, new oscillation criteria are obtained which are
either extensions of or complementary to a number of existing results. Our
results are more general and sharper than some previous results even for
second order equations.

1. Introduction

Let n be an even positive integer, α a positive constant, I = [t0,∞) and R+ =
(0,∞). Consider the n-th order nonlinear functional differential equation

(1)
(

∣

∣

(

x(t) + p(t)x(τ(t))
)(n−1)∣

∣

α−1
(x(t) + p(t)x(τ(t)))(n−1)

)

′

+ F
(

t, x(g(t))
)

= 0 , t ∈ I ,

where F : I × R → R is a continuous function and F (t, x)sgn x = sgn x for
(t, x) ∈ I × R. In what follows, we always assume without mentioning that

(A1) p : I → [0,∞) is continuously differentiable such that p is not identically
equal 1 on any interval of the form [T,∞);

(A2) τ : I → R+ = (0,∞) is continuously differentiable and strictly increasing
such that lim

t→∞

τ(t) = ∞;

(A3) g : I → R is continuously differentiable with lim
t→∞

g(t) = ∞;
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(A4) there exists a function q : I → R+ such that

F (t, x)sgn x ≥ q(t)|x|αsgn x for x 6= 0 and t ≥ t0.

By a solution of Eq. (1) we mean a function x ∈ Cn−1([Tx,∞), R) for some Tx ≥

t0 which has the property that
∣

∣[x(t) + p(t)x(τ(t))](n−1)
∣

∣

α−1
[x(t)+p(t)x(τ(t))](n−1)

∈ C1
(

[Tx,∞), R
)

and satisfies Eq. (1) on [Tx,∞). A nontrivial solution of Eq.
(1) is called oscillatory if it has arbitrary large zeros; otherwise, it is said to be
nonoscillatory. Equation (1) is oscillatory if all its solutions are oscillatory.

Qualitative properties of nonlinear special differential equations of the form (1)
have been investigated by many authors (e.g. see [1-4, 6-16] and the references
quoted therein). In particular, some optimal properties for oscillation of solutions
of special cases such as

d

dt

(

∣

∣x(n−1)(t)
∣

∣

α−1
x(n−1)(t)

)

+ F
(

t, x(g(t))
)

= 0 ,(2)

d

dt

(

|x′(t)|
α−1

x′(t)
)

+ F
(

t, x(g(t))
)

= 0 ,(3)

and

x′′(t) + F
(

t, x(g(t))
)

= 0(4)

are contained in the papers [2, 8, 12, 13] and the references quoted therein. In
particular, Agarwal et al. in [1] obtained some oscillation theorems of Eq. (1)
which improve and extend several known results established in [2, 8, 9, 12, 13].
On the other hand, Yang et al. in [16] (see also Kong [7]) also obtained a number of
oscillation criteria based on Wirtinger type inequalities when equation (1) becomes

(5)
(

x(t) + p(t)x(t − µ)
)

′′

+ q(t)f
(

x(t − δ)
)

= 0 ,

under appropriate assumptions. For recent contributions we refer the reader to [1,
2, 6, 11–16] and the references therein.

Very extensive literature also exists (see [1–4, 11–16] and the references therein)
for the oscillatory properties of equations (2) through (5), but we have found that
these results are not always compatible with the results for (1) and the corre-
sponding theory for (1) is less developed. This situation motivated us to study (1)
further.

In this paper, by means of the generalized Riccati transformation and the aver-
aging technique, we obtain new oscillation theorems for Eq. (1), thereby improving
the main results in [1, 4, 7, 14]. Some results in this paper are based on the in-
formation only on a sequence of subintervals of [t0,∞), rather than on the whole
half-line. By choosing appropriate averaging functions, we can present a series of
explicit oscillation criteria. Thus, results of this paper extend, improve and unify
a number of existing results.

As is well known, the following lemmas are useful in working with even order
nonlinear differential equations.
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Lemma 1.1 ([9]). Let u ∈ Cn([t0,∞), R+). If u(n)(t) is eventually of constant
sign for all large t, say, t > t0, then there exist a tu ≥ t0 and an integer l,
0 ≤ l ≤ n, with l even for u(n)(t) ≥ 0 or l odd for u(n)(t) ≤ 0 such that

l > 0 implies that u(k)(t) > 0 for t ≥ tu , k = 0, 1, . . . , l − 1 ,

and

l ≤ n−1 implies that (−1)l+ku(k)(t) > 0 for t ≥ tu , k = l, l+1, . . . , n−1 .

Lemma 1.2 ([9]). If the function u is as in Lemma 1.1 and

u(n−1)(t)u(n)(t) ≤ 0 for every t ≥ tu ,

then for every λ, 0 < λ < 1, we have

u(λt) ≥
21−n

(n − 1)!

[1

2
−

∣

∣

∣
λ −

1

2

∣

∣

∣

]n−1

tn−1|u(n−1)(t)| , for all large t .

For the sake of convenience, we introduce some notations and state some pre-
liminary definitions:

D0 =
{

(t, s) : t > s ≥ t0
}

, D =
{

(t, s) : t ≥ s ≥ t0
}

;

z(t) = x(t) + p(t)x(τ(t)) ;

and

Θ(n, λ) =
λ22−n

(n − 2)!

[1

2
−

∣

∣

∣
λ −

1

2

∣

∣

∣

]n−2

, where λ ∈ (0, 1) .

Definition 1.1. The triplet (H, k, ρ) is said to belong to X if H ∈ C(D; R), k
and ρ ∈ C1([t0,∞); R+) and if there exists h ∈ C(D0; R) such that the following
conditions hold:

(I) H(t, t) = 0 for t ≥ t0, H(t, s) > 0 on D0;
(II) H(t, s) has a continuous and nonpositive partial derivatives ∂H/∂s on D0;

(III) ∂
∂s (H(t, s)k(s)) + H(t, s)k(s)ρ′(s)

ρ(s) = h(t, s), for (t, s) ∈ D0.

Definition 1.2. The triplet (H, k, ρ) is said to belong to Y if H ∈ C(D; R), k and
ρ ∈ C1

(

[t0,∞
)

; R+) and if there exist h1, h2 ∈ C(D0; R) such that the following
conditions hold:

(I) H(t, t) = 0 for t ≥ t0, H(t, s) > 0 on D0;

(II) ∂
∂t (H(t, s)k(t)) + H(t, s)k(t)ρ′(t)

ρ(t) = h1(t, s), for (t, s) ∈ D0;

(III) ∂
∂s (H(t, s)k(s)) + H(t, s)k(s)ρ′(s)

ρ(s) = h2(t, s), for (t, s) ∈ D0.

2. Oscillation criteria for the case 0 ≤ p(t) ≤ 1

In this section we always assume that the following condition holds:
(A5) τ(t) < t, 0 ≤ p(t) ≤ 1 and there exists σ : I → R+ which is continuously

differentiable and satisfies

σ′(t) > 0, σ(t) ≤ inf{t, g(t)} , and lim
t→∞

σ(t) = ∞ for t ≥ t0 .
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To prove the main theorems in this section, we first establish the following
lemma about oscillation of solutions of the differential inequality

(6)
[ d

dt

(

∣

∣

(

x(t) + p(t)x(τ(t))
)(n−1)∣

∣

α−1(
x(t) + p(t)x(τ(t))

)(n−1)
)]

sgnx(t)

+ q(t)
∣

∣x
(

g(t)
)
∣

∣

α
≤ 0

for t ≥ t0, where p, τ, g and q are defined in (A1)-(A4). Solutions and oscillatory
solutions for (6) are defined in manners similar to those of (1).

Lemma 2.1. Suppose λ ∈ (0, 1) and conditions (A1)-(A3) and (A5) hold. Then
the differential inequality (6) is oscillatory provided that one of the following con-
ditions is satisfied:

(X) there exists (H, k, ρ) ∈ X such that either

lim sup
t→∞

[

A(t, t0) − (α + 1)−(α+1)Θ−α(n, λ)B(t, t0)
]

ds = ∞ ,(7)

or, n = 2 and

lim sup
t→∞

[

A(t, t0) − (α + 1)−(α+1)B(t, t0)
]

ds = ∞ ,(8)

where

A(t, t0) =
1

H(t, t0)

∫ t

t0

H(t, s)k(s)ρ(s)q(s)(1 − p(g(t)))αds ,

B(t, t0) =
1

H(t, t0)

∫ t

t0

ρ(s)|h(t, s)|α+1

[H(t, s)k(s)σn−2(s)σ′(s)]
α ds .

(Y) For each T ≥ t0, there exist (H, k, ρ) ∈ Y and a, b, c ∈ R such that
T0 ≤ a < c < b and either

A1(c, a) + A(b, c) ≥ (α + 1)−(α+1)Θ−α(n, λ)
[

B1(c, a) + B(b, c)
]

,(9)

or, n = 2 and

A1(c, a) + A(b, c) ≥ (α + 1)−(α+1)
[

B1(c, a) + B(b, c)
]

,(10)

where

A1(t, t0) =
1

H(t, t0)

∫ t

t0

H(s, t0)k(s)ρ(s)q(s)(1 − p(g(t)))αds ,

B1(t, t0) =
1

H(t, t0)

∫ t

t0

ρ(s)|h1(s, t0)|
α+1

[H(s, t0)k(s)σn−2(s)σ′(s)]α
ds .

(Z) For each l ≥ t0, there exists (H, k, ρ) ∈ Y such that either
(i) the following two inequalities

lim sup
t→∞

H(t, l)
[

A1(t, l) − (α + 1)−(α+1)Θ−α(n, λ)B1(t, l)
]

> 0(11)
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and

lim sup
t→∞

H(t, l)
[

A(t, l) − (α + 1)−(α+1)Θ−α(n, λ)B(t, l)
]

> 0(12)

hold; or,
(ii) n = 2 and the following two inequalities

lim sup
t→∞

H(t, l)
[

A1(t, l) − (α + 1)−(α+1)B1(t, l)
]

> 0(13)

and

lim sup
t→∞

H(t, l)
[

A(t, l) − (α + 1)−(α+1)B(t, l)
]

> 0(14)

hold.

Proof. Suppose (7) in (X) holds. Without loss of generality, we may assume that
there exists a nonoscillatory solution x of (6), say x(t) > 0 and x(τ(t)) > 0 for
t ≥ t1 ≥ t0. Then z(t) = x(t) + p(t)x(τ(t)) > 0 for t ≥ t1 ≥ t0. By (6), we obtain

(15)
(∣

∣z(n−1)(t)
∣

∣

α−1
z(n−1)(t)

)

′

sgnx + q(t) |x(g(t))|
α
≤ 0

which implies that
∣

∣z(n−1)(t)
∣

∣

α−1
z(n−1)(t) is decreasing and z(n−1)(t) is eventually

of one sign. If z(n−1)(t) < 0 eventually, then

0 ≥
(∣

∣z(n−1)(t)
∣

∣

α−1
z(n−1)(t)

)

′

= α
(

− z(n−1)(t)
)α−1

z(n)(t) ,

we find that z(n)(t) ≤ 0 eventually. But then Lemma 1.1 implies that z(n)(t) > 0
eventually. Furthermore, when z(n−1)(t) > 0 eventually then again from Lemma
1.1 (note that n is even) we have z′(t) > 0 eventually. Thus there exists t2 ≥ t1
such that

(16) z′(t) > 0 and z(n−1)(t) > 0 for t ≥ t2 .

From (A1), (A2) and (A5), we see that

x(t) = z(t) − p(t)x(τ(t)) = z(t) − p(t)
[

z(τ(t)) − p(τ(t))x(τ ◦ τ(t))
]

≥ z(t) − p(t)z
(

τ(t)
)

≥
(

1 − p(t)
)

z(t)(17)

for t ≥ t2. By using conditions (17) in (15), we get

(∣

∣z(n−1)(t)
∣

∣

α−1
z(n−1)(t)

)

′

+ q(t)
(

1 − p(g(t))
)α

zα(g(t)) ≤ 0 for t ≥ t3 ≥ t2 .

Thus, it follows from (A5) that

(18)
(∣

∣z(n−1)(t)
∣

∣

α−1
z(n−1)(t)

)

′

+ q(t)(1 − p(g(t)))αzα(σ(t)) ≤ 0 for t ≥ t3 .

Define

(19) w(t) = ρ(t)
(z(n−1)(t)

z(λσ(t))

)α

, t ≥ t3 ,
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where λ ∈ (0, 1). Differentiating (19) and making use of (18), we may see that for
t ≥ t3,
(20)

w′(t) ≤ −ρ(t)q(t)(1 − p(g(t)))α +
ρ′(t)

ρ(t)
w(t) −

αλρ(t)σ′(t)
(

z(n−1)(t)
)α

z′(λσ(t))

zα+1(λσ(t))
.

By Lemma 1.2 (note that since z(n−1)(t) > 0 for t ≥ t2, we have

[(

z(n−1)(t)
)α]

′

= α
(

z(n−1)(t)
)α−1

z(n)(t) ≤ 0 for t ≥ t2 ,

which in turn implies z(n)(t) ≤ 0 for t ≥ t2), there is t4 ≥ t3 and a constant
λ ∈ (0, 1) such that

z′(λσ(t)) ≥
22−n

(n − 1)!

[1

2
−

∣

∣

∣
λ −

1

2

∣

∣

∣

]n−2

σn−2(t)z(n−1)(σ(t))

≥
1

λ
Θ(n, λ)σn−2(t)z(n−1)(t) for t ≥ t4 .(21)

Using (21) in (20), we obtain

w′(t) ≤− ρ(t)q(t)
(

1 − p(g(t))
)α

+
ρ′(t)

ρ(t)
w(t)

−
αΘ(λ, n)σn−2(t)σ′(t)

ρ1/α(t)
w(α+1)/α(t) .(22)

If we replace t in (22) with s, multiply the resulting equation by H(t, s)k(s) and
then integrating from T to t, where t ≥ T ≥ t4, then we have

∫ t

T

H(t, s)k(s)ρ(s)q(s)
(

1 − p(g(s))
)α

ds ≤ H(t, T )k(T )w(T ) +

∫ t

T

|h(t, s)|w(s)ds

− αΘ(n, λ)

∫ t

T

H(t, s)k(s)σn−2(s)σ′(s)ρ−1/α(s)w(α+1)/α(s)ds .(23)

According to the Young inequality

|h(t, s)|w(s) ≤ (α + 1)−(α+1)ρ(s)
[

Θ(n, λ)H(t, s)k(s)σn−2(s)σ′(s)
]

−α
|h(t, s)|

α+1

+ αΘ(n, λ)H(t, s)k(s)σn−2(s)σ′(s)ρ−1/α(s)w(α+1)/α(s) .(24)

From (23) and (24), we get

(25) A(t, T ) ≤ w(T )k(T ) + (α + 1)−(α+1)Θ−α(n, λ)B(t, T ).

Let T = t4 in (25), then

(26) H(t, t4)
[

A(t, t4) − (α + 1)−(α+1)Θ−α(n, λ)B(t, t4)
]

≤ H(t, t4)k(t4)w(t4)
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for every t ≥ t4 ≥ t0. Thus we obtain

H(t, t0)
[

A(t, t0) − (α + 1)−(α+1)Θ−α(n, λ)B(t, t0)
]

= H(t4, t0)
[

A(t4, t0) − (α + 1)−(α+1)Θ−α(n, λ)B(t0, t4)
]

+ H(t, t4)
[

A(t, t4) − (α + 1)−(α+1)Θ−α(n, λ)B(t, t4)
]

≤ H(t, t0)

∫ t4

t0

k(s)ρ(s)q(s)(1 − p(g(s)))αds + H(t, t0)k(t4)w(t4)

= H(t, t0)
[

∫ t4

t0

k(s)ρ(s)q(s)(1 − p(g(s)))αds + k(t4)w(t4)
]

.

Dividing both sides of the above inequality by H(t, t0) and taking the superior
limit as t → ∞, we have

lim sup
t→∞

[

A(t, t0) − (α + 1)−(α+1)Θ−α(n, λ)B(t, t0)
]

≤

∫ t4

t0

k(s)ρ(s)q(s)(1 − p(g(t)))αds + k(t4)w(t4) < ∞ ,

which is contrary to (7).
In the particular case where n = 2, the condition (7) can be replaced by (8).

Indeed, without loss of generality, we may assume the existence of a nonoscillatory
solution x(t) of (6) such that x(t) > 0 for t ≥ t1 ≥ t0. Define function

(27) w(t) = ρ(t)
( z′(t)

z(σ(t))

)α

, t ≥ t3 .

Differentiating (27) and making use of (18) with n = 2, and (21), we may see that
for t ≥ t4,

w′(t) ≤ −ρ(t)q(t)(1 − p(g(t)))α +
ρ′(t)

ρ(t)
w(t) −

αρ(t)σ′(t)(z′(t))αz′(σ(t))

zα+1(σ(t))

≤ −ρ(t)q(t)(1 − p(g(t)))α +
ρ′(t)

ρ(t)
w(t) −

ασ′(t)

ρ1/α(t)
w(α+1)/α(t) .(28)

The rest of the proof is similar to the general case and is omitted. The proof of
the implication of (X) is complete.

Next, suppose (9) of (Y) holds. As in the proof just shown, we can obtain (26).
If we replace t4 by c, then

(29) H(t, c)
[

A(t, c) − (α + 1)−(α+1)Θ−α(n, λ)B(t, c)
]

≤ H(t, c)k(c)w(c)

where t ∈ [c, b). Letting t → b− in (29) and then dividing both sides by H(b, c),
then we have

(30) A(b, c) − (α + 1)−(α+1)Θ−α(n, λ)B(b, c) ≤ k(c)w(c) .

Next we go back to (22) and repeat the calculations by first multiplying by
H(s, t)k(s) instead of by H(t, s)k(s) and then integrating from a to t (t ≥ a ≥
t4 ≥ t0). Then, by symmetry considerations, we may also show that

(31) A1(c, a) − (α + 1)−(α+1)Θ−α(n, λ)B1(c, a) ≤ −k(c)w(c) .
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Now we assert that x has at least one zero in (a, b). For otherwise adding (30)
and (31) would yield an inequality which contradicts our assumption (9). Finally,
the proof is completed by picking {Ti} ⊂ [t0,∞) such that Ti → ∞ as i → ∞, and
then apply what we have just shown to conclude x has a zero in each (Ti,∞).

The case where n = 2 is similarly proved.
Finally, we assert that the conditions in (Z) follow from (X) and (Y). Indeed,

for any T ≥ T0 ≥ t0, let a = T . In (11) we choose l = a. Then there exists c > a
such that

(32) H(c, a)
[

A1(c, a) − (α + 1)−(α+1)Θ−α(n, λ)B1(c, a)
]

> 0 .

In (12) we choose l = c. Then there exists b > c such that

(33) H(b, c)
[

A(b, c) − (α + 1)−(α+1)Θ−α(n, λ)B(b, c)
]

> 0 .

Combining (32) and (33) we obtain (9). The conclusion (i) in (Z) thus follows from
(Y). The conclusion (ii) is similarly proved. The proof of Lemma 2.1 is completed.

We may now establish our main oscillation criteria in a relatively easy manner.

Theorem 2.1. Assume that (A1)-(A5)hold and one of the conditions (X), (Y) or
(Z) in Lemma 2.1 holds. Then Eq. (1) is oscillatory.

Indeed, without loss of generality, we may assume that there exists a nonoscil-
latory solution x(t) of (1) such that x(t) > 0 for t ≥ t1 ≥ t0. By (A4), we obtain

0 =
{ d

dt

(∣

∣

[

x(t) + p(t)x(τ(t))
](n−1)∣

∣

α−1
(x(t) + p(t)x(τ(t)))(n−1)

)

}

× sgnx(t) + F
(

t, x(g(t))
)

sgnx(t)

≥
{ d

dt

(
∣

∣

[

x(t) + p(t)x(τ(t))
](n−1)∣

∣

α−1
(x(t) + p(t)x(τ(t)))(n−1)

)

}

× sgnx(t) + q(t)
∣

∣x(g(t))
∣

∣

α
,

which implies that x(t) of (1) is a nonoscillatory solution x(t) of (6). An applica-
tion of Lemma 2.1 then yields our assertion.

Corollary 2.1. Let (A1)-(A5) hold and ρ ∈ C1(I, R+) with ρ′(t) ≥ 0. Assume
that (I), (II) in Definition 1.1 and

(34) −
∂

∂s
(H(t, s)) + H(t, s)

ρ′(s)

ρ(s)
= h(t, s), for (t, s) ∈ D0

hold. Suppose further that either (7) or (8) holds with

A(t, t0) =
1

H(t, t0)

∫ t

t0

H(t, s)ρ(s)q(s)(1 − p(g(s)))αds ,

and

B(t, t0) =
1

H(t, t0)

∫ t

t0

ρ(s)[h(t, s)]α+1

[H(t, s)σn−2(s)σ′(s)]α
ds .

Then (1) is oscillatory.
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Remark 2.1. If h(t, s) and h1(t, s) are replaced by

h(t, s)
√

H(t, s)k(s) and h1(t, s)
√

H(t, s)k(s)

in Theorem 2.1 respectively, we may show that Eq. (1) is oscillatory. The proof
is similar and therefore omitted.

Next, we define

R(t) =

∫ t

t0

σn−2(s)σ′(s)ds , t ≥ t0(35)

and let

H(t, s) = [R(t) − R(s)]µ , t ≥ s ≥ t0(36)

where µ > max{1, α} is a constant.

Theorem 2.2. Suppose (A1)-(A5) hold. Then Eq. (1) is oscillatory provided that
there is some µ > max{1, α} such that one of the following conditions is satisfied:

(I) for any l ≥ t0,

lim sup
t→∞

1

Rµ−α(t)

∫ t

l

[R(s) − R(l)]µq(s)(1 − p(g(s)))αds

>
1

Θα(n, λ)

µα+1

(α + 1)(α+1)(µ − α)
and(37)

lim sup
t→∞

1

Rµ−α(t)

∫ t

l

[R(t) − R(s)]µq(s)(1 − p(g(s)))αds

>
1

Θα(n, λ)

µα+1

(α + 1)(α+1)(µ − α)
;(38)

(II) n = 2 and for any l ≥ t0, one of the following conditions is satisfied:

lim sup
t→∞

1

Rµ−α(t)

∫ t

l

[R(s) − R(l)]µq(s)(1 − p(g(s)))αds

>
µα+1

(α + 1)(α+1)(µ − α)
or(39)

lim sup
t→∞

1

Rµ−α(t)

∫ t

l

[R(t) − R(s)]µq(s)(1 − p(g(s)))αds

>
µα+1

(α + 1)(α+1)(µ − α)
.(40)

Proof. (I) Pick H(t, s) as in (36) and k(t) ≡ ρ(t) ≡ 1 for t > t0. By Definition
1.2, it is easy to see that

|h1(t, s)| = µ[R(t) − R(s)]µ−1σn−2(t)σ′(t) and

|h2(t, s)| = µ[R(t) − R(s)]µ−1σn−2(s)σ′(s) .
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Note further that

H(t, l)B1(t, l) =

∫ t

l

µα+1[R(s) − R(l)]µ−(α+1)σn−2(s)σ′(s) ds

=
µα+1

µ − α
[R(t) − R(l)]µ−α and

H(t, l)B(t, l) =

∫ t

l

µα+1[R(t) − R(s)]µ−(α+1)σn−2(s)σ′(s) ds

=
µα+1

µ − α
[R(t) − R(l)]µ−α .(41)

In view of the fact that lim supt→∞
R(t) = ∞, we see that

(42) lim sup
t→∞

1

Rµ−α(t)

∫ t

l

ρ(s)|h1(s, l)|
α+1

[H(s, l)k(s)σn−2(s)σ′(s)]α
ds =

µα+1

(α + 1)(α+1)(µ − α)

and

(43) lim sup
t→∞

1

Rµ−α(t)

∫ t

l

ρ(s)|h(t, s)|α+1

[H(t, s)k(s)σn−2(s)σ′(s)]α
ds =

µα+1

(α + 1)(α+1)(µ − α)
.

From (37) and (42), we have

0 < lim sup
t→∞

1

Rµ−α(t)
H(t, l)

[

A1(t, l) − (α + 1)−(α+1)Θ−α(n, λ)B1(t, l)
]

− Θ−α(n, λ)
µα+1

(α + 1)(α+1)(µ − α)
,

i.e. (11) holds. Similarly, (38) and (41) imply that (12) hold. By the case (Z) (i)
of Theorem 2.1, Eq. (1) is oscillatory.

(II) The proof is similar to the previous case by means of the condition (Z) (ii)
of Theorem 2.1.

Remark 2.2. Corollary 2.1 is an improvement or an extension of the results by
Agarwal et al. [1, Theorem 2.1], Grammatikopoulos et al. [4], Xu and Xia [14,
Theorem 2.1]. Moreover, Theorem 2.2 is an improvement of Kong [7, Theorem
2.3].

3. Oscillation results for the case p(t) ≥ 1

In this section we consider the oscillation of Eq. (1) when the function p(t) ≥ 1.
In this section we always assume the following condition.

(A∗

5) τ(t) > t, p(t) ≥ 1 and there exists σ∗ : I → R+ which is continuously
differentiable and satisfies

(σ∗(t))′ > 0, σ∗(t) ≤ inf{t, τ−1 ◦ g(t)}, and lim
t→∞

σ∗(t) = ∞ for t ≥ t0 ,

where τ−1 is the inverse function of τ .

We also let

P (t) =
1

p(τ−1(t))

(

1 −
1

p(τ−1 ◦ τ−1(t))

)

for all large t .
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Lemma 3.1. Let conditions (A1)–(A3) and (A∗

5) hold. Then the differential in-
equality (6) is oscillatory provided one of the following conditions is satisfied:

(X∗) there exists (H ; k, ρ) ∈ X such that either

lim sup
t→∞

[

A∗(t, t0) − (α + 1)−(α+1)Θ−α(n, λ)B∗(t, t0)
]

ds = ∞ ;(44)

or, n = 2 and

lim sup
t→∞

[

A∗(t, t0) − (α + 1)−(α+1)B∗(t, t0)
]

ds = ∞ .

where

A∗(t, t0) =
1

H(t, t0)

∫ t

t0

H(t, s)k(s)ρ(s)q(s)(P (g(t)))αds ,

B∗(t, t0) =
1

H(t, t0)

∫ t

t0

ρ(s)|h(t, s)|α+1

[H(t, s)k(s)(σ∗(s))n−2(σ∗(s))′]
α ds .

(Y∗) For each T ≥ t0, there exist (H ; k, ρ) ∈ Y and a, b, c ∈ R such that
T ≤ a < c < b and either

A∗

1(c, a) + A∗(b, c) > (α + 1)−(α+1)Θ−α(n, λ)
[

B∗

1(c, a) + B∗(b, c)
]

,

or, n = 2 and

A∗

1(c, a) + A∗(b, c) > (α + 1)−(α+1)
[

B∗

1(c, a) + B∗(b, c)
]

,

where

A∗

1(t, t0) =
1

H(t, t0)

∫ t

t0

H(s, t0)k(s)ρ(s)q(s)(P (g(t)))α ds ,

B∗

1(t, t0) =
1

H(t, t0)

∫ t

t0

ρ(s)|h1(s, t0)|
α+1

[H(s, t0)k(s)(σ∗(s))n−2(σ∗(s))′]α
ds ;

(Z∗) For each l ≥ t0, there exists (H ; k, ρ) ∈ Y such that either

(i) the following two inequalities

lim sup
t→∞

H(t, l)
[

A∗

1(t, l) − (α + 1)−(α+1)Θ−α(n, λ)B∗

1(t, l)
]

> 0(45)

and

lim sup
t→∞

H(t, l)
[

A∗(t, l) − (α + 1)−(α+1)Θ−α(n, λ)B∗(t, l)
]

> 0(46)

hold; or

(ii) n = 2 and the following two inequalities

lim sup
t→∞

H(t, l)
[

A∗

1(t, l) − (α + 1)−(α+1)B∗

1(t, l)
]

> 0
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lim sup
t→∞

H(t, l)
[

A∗(t, l) − (α + 1)−(α+1)B∗(t, l)
]

> 0

hold.

Proof. Assume (44) holds. Without loss of generality, we may assume that there
exists a nonoscillatory solution x(t) of (6), say x(t) > 0 and x(τ(t)) > 0 for
t ≥ t1 ≥ t0. Then z(t) = x(t) + p(t)x(τ(t)) > 0 for t ≥ t1 ≥ t0. Proceeding as in
the proof Lemma 2.1, we see that (15) and (16) hold for t ≥ t2. From (A1)− (A2)
and (A∗

5), it follows that

x(t) =
1

p(τ−1(t))

(

z(τ−1(t)) − x(τ(t))
)

=
z(τ−1(t))

p(τ−1(t))
−

1

p(τ−1(t))

(τ(τ−1 ◦ τ−1(t))

p(τ−1 ◦ τ−1(t))
−

x(τ−1 ◦ τ−1(t))

p(τ−1 ◦ τ−1(t))

)

≥
z(τ−1(t))

p(τ−1(t))
−

z(τ−1 ◦ τ−1(t))

p(τ−1(t))p(τ−1 ◦ τ−1(t))

≥
1

p(τ−1(t))

[

1 −
1

p(τ−1 ◦ τ−1(t))

]

z
(

τ−1(t)
)

= P (t)z(τ−1(t))(47)

for t ≥ t2. By using conditions (47) and (A∗

5) in (15), we obtain

0 ≥
(∣

∣z(n−1)(t)
∣

∣

α−1
z(n−1)(t)

)

′

+ q(t)(P (g(t)))αzα
(

τ−1 ◦ g(t)
)

≥
(∣

∣z(n−1)(t)
∣

∣

α−1
z(n−1)(t)

)

′

+ q(t)
(

P (g(t))
)α

zα
(

σ∗(t)
)

,(48)

for t ≥ t3 ≥ t2. Define

(49) w(t) = ρ(t)
( z(n−1)(t)

z(λσ∗(t))

)α

, t ≥ t3 .

Thus, for t ≥ t3, in view of (49) and (48), we have
(50)

w′(t) ≤ −ρ(t)q(t)(P (g(t)))α +
ρ′(t)

ρ(t)
w(t) −

αλρ(t)[σ∗(t)]′
(

z(n−1)(t)
)α

z′(λσ∗(t))

zα+1(λσ∗(t))
.

By Lemma 1.2, there is t4 ≥ t3 and a constant λ, λ ∈ (0, 1) such that

(51) z′
(

λσ∗(t)
)

≥
1

λ
Θ(n, λ)

[

σ∗(t)
]n−2

z(n−1)(t) for t ≥ t4 .

Using (51) in (50), we obtain
(52)

w′(t) ≤ −ρ(t) q(t)
(

P (g(t))
)α

+
ρ′(t)

ρ(t)
w(t)−

αΘ(λ, n)[σ∗(t)]n−2[σ∗(t)]′

ρ1/α(t)
w(α+1)/α(t) .

The remainder of the proof is similar to that of Lemma 2.1. So we omit the
details.

The following theorem is an immediate result of Lemma 3.1.
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Theorem 3.1. Suppose conditions (A1)–(A4) and (A∗

5) hold. Suppose further that
one of the conditions (X∗), (Y ∗) and (Z∗)in Lemma 3.1 holds. Then Eq. (1) is
oscillatory.

Corollary 3.1. Suppose (A1)–(A4) and (A∗

5) hold and ρ ∈ C1(I, R+) with ρ′(t) ≥
0. Assume that (I), (II) in Definition 1.1 and (34) hold. Suppose further that the
condition (X∗) in Lemma 3.1 holds with A∗(t, t0) and B∗(t, t0) replaced by

A∗(t, t0) =
1

H(t, t0)

∫ t

t0

H(t, s)ρ(s)q(s)(P (g(t)))α ds ,

and

B∗(t, t0) =
1

H(t, t0)

∫ t

t0

ρ(s)[h(t, s)]α+1

[H(t, s)(σ∗(s))n−2(σ∗(s))′]
α ds

respectively. Then (1)) is oscillatory.

Now, we define

R(t) =

∫ t

t0

[σ∗(s)]n−2[σ∗(s)]′ ds , t ≥ t0 ,(53)

and let

H(t, s) = [R(t) −R(s)]µ , t ≥ s ≥ t0

where µ > max{1, α} is a constant.

Theorem 3.2. Suppose (A1)–(A4) and (A∗

5) hold. Then Eq. (1) is oscillatory
provided that there is some µ > max{1, α} such that one of the following conditions
is satisfied:

(I) for any l ≥ t0,

lim sup
t→∞

1

Rµ−α(t)

∫ t

l

[R(s) −R(l)]µq(s)(P (g(s)))α ds

>
1

Θα(n, λ)

µα+1

(α + 1)(α+1)(µ − α)
and(54)

lim sup
t→∞

1

Rµ−α(t)

∫ t

l

[R(t) −R(s)]µq(s)(P (g(s)))αds

>
1

Θα(n, λ)

µα+1

(α + 1)(α+1)(µ − α)
;(55)

(II) n = 2 and for any l ≥ t0, one of the following conditions is satisfied:

lim sup
t→∞

1

Rµ−α(t)

∫ t

l

[R(s) −R(l)]µq(s)(P (g(s)))α ds

>
µα+1

(α + 1)(α+1)(µ − α)
or(56)
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lim sup
t→∞

1

Rµ−α(t)

∫ t

l

[R(t) −R(s)]µq(s)(P (g(s)))α ds

>
µα+1

(α + 1)(α+1)(µ − α)
.(57)

This theorem can be proved in a manner quite similar to the proof of Theorem
2.2. The details are omitted here.

We remark that different choices of k(s), ρ(s) include 1, s, etc.; while choices
of H include H(t, s) = [R(t) − R(s)]β , H(t, s) = [log Q(t)/Q(s)]β , or H(t, s) =
[ ∫ t

s
1

w(z) dz
]β

, etc., for t ≥ s ≥ t0, where β > max{1, α} is a constant, R(t) =
∫ t

t0
ds/u(s), Q(t) =

∫

∞

t
ds/u(s) < ∞, for t ≥ t0, and w ∈ C([t0,∞), R+) satisfying

∫

∞

t0
ds/w(s) = ∞.

Remark 3.1. Our results are general since the function g(t) in (1) is only re-
quired to satisfy limt→∞ g(t) = ∞. Therefore Theorems 2.1–2.2, Theorems 3.1–
3.2, Corollaries 2.1 and 3.1 may hold for ordinary, retarded or advanced type
equations.

4. Examples

In the following, we will give some applications of our oscillation criteria. We
will see that there are equations that cannot be handled by results in [1-4, 6–16],
but we may show that they are oscillatory based on our results.

Example 4.1. Let (n − 3)α > 2, consider even order nonlinear equation

(58)
d

dt

(
∣

∣[x(t) + px(γt)](n−1)
∣

∣

α−1
(x(t) + px(γt))(n−1)

)

+ q(t)|x(νt)|α−1x(νt) = 0 , n even,

where p ≥ 0, α, γ, ν are positive constants and q ∈ C([1,∞), R+). By Corollaries
2.1 and 3.1, we can show that Eq. (58) is oscillatory under some appropriate
assumptions.

In fact, choose ρ(t) = tµ, k(t) = 1 and H(t, s) = (t− s)µ for t ≥ s ≥ 1 such that

α + 1 < µ < (n − 2)α − 1 , ρ(t)q(t) ≥
c

t
for c > 0 .

Then, by simple computations, we may check that (A1)-(A4) and

h(t, s) = −
∂

∂s

(

H(t, s)
)

+ H(t, s)
ρ′(s)

ρ(s)
= µ(t − s)µ

(

1 +
s

t − s

)

hold. From Theorem 4.1 in [5], we have the inequality

(t − s)µ ≥ tµ − µstµ−1 , for t ≥ s ≥ 1 .
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(i) Consider the case 0 ≤ p < 1. It is easy to see that σ(t) = νt for 0 < ν ≤ 1.
Further (A5) holds if 0 < γ < 1. Thus

lim sup
t→∞

A(t, 1) = lim sup
t→∞

1

tµ

∫ t

l

(t − s)µρ(s)q(s)(1 − p(s))α ds

≥ c(1 − p)α lim sup
t→∞

1

tµ

∫ t

1

tµ − µstµ−1

s
ds = ∞

and

lim sup
t→∞

B(t, 1) = lim sup
t→∞

1

H(t, 1)

∫ t

1

ρ(s)hα+1(t, s)

[H(t, s)σn−2(s)σ(s)]
α ds

= lim sup
t→∞

µα+1

ν(n−1)α

1

tµ−α−1

∫ t

1

sµ−(n−2)α(t − s)µ−α−1ds

≤ lim sup
t→∞

µα+1

ν(n−1)α

(

1 −
1

t

)µ−α−1
∫ t

1

sµ−(n−2)α ds < ∞ ,

i.e., (7) holds for λ ∈ (0.1). Applying Corollary 2.1, Eq. (58) is oscillatory if
0 < p < 1, 0 < γ < 1 and 0 < ν ≤ 1.

(ii) Consider the case p > 1. It is easy to check that

τ−1(t) =
1

γ
t , τ−1og(t) =

ν

γ
t , σ∗(t) =

ν

γ
t , P (t) =

1

p

(

1−
1

p

)

, for 0 < ν ≤ γ

and (A∗

5) hold if γ > 1. Similar to the case (i), we get that

lim sup
t→∞

A∗(t, 1) = lim sup
t→∞

1

tµ

∫ t

l

(t − s)µρ(s)q(s)Pα(s) ds = ∞

and

lim sup
t→∞

B∗(t, 1) = lim sup
t→∞

B(t, 1) < ∞ ,

imply (44) holds for λ ∈ (0, 1). If p > 1, γ > 1 and 0 < ν ≤ γ, then (58) is
oscillatory by Corollary 3.1.

Therefore, under the following condition

q(t) ≥
c

tµ+1
for c > 0 ,

where α + 1 < µ < (n − 2)α − 1, we conclude the following:
(i) If 0 < p < 1, 0 < γ < 1 and 0 < ν ≤ 1, then (58) is oscillatory by Corollary

2.1.
(ii) If p > 1, γ > 1 and 0 < ν ≤ γ, then (58) is oscillatory by Corollary 3.1.

Next, we shall construct an example including the following Euler equation as
a special case:

(59) x′′ +
c

t2
x = 0 .

The following example also illustrates Theorem 2.2.
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Example 4.2. Let 0 < c, 0 ≤ p < 1, 0 < α and 0 < γ < 1. Consider the even
order nonlinear equation

d

dt

(
∣

∣[x(t) + px(γt)](n−1)
∣

∣

α−1
(x(t) + px(γt))(n−1)

)

+
cσn−2(t)σ′(t)

Rα+1(t)

∣

∣x(g(t))
∣

∣

α−1
x
(

g(t)
)

= 0 , n even, t ≥ t0 ,(60)

where g satisfies (A3), σ satisfies (A5) and R is defined as in (35). Let α0 :=
max{1, α}. Then we can verify that (60) is oscillatory for

c > c0 :=
((n − 2)!22n−4

1 − p

)α αα+1
0

(α + 1)α+1

by the case (I) of Theorem 2.2.
Choose H(t, s) = [R(t) − R(s)]µ for µ > α0. Note that µ > α0 ≥ 1 and

[R(s) − R(l)]µ ≥ Rµ(s) − µR(l)Rµ−1(s) for s ≥ l ≥ t0

and

[R(t) − R(s)]µ ≥ Rµ(t) − µR(s)Rµ−1(t) for t ≥ s ≥ t0 .

It follows from R′(t) = σn−2(t)σ′(t) that for each l ≥ t0

dR(s) = σn−2(s)σ′(s)ds

and thus

lim sup
t→∞

1

Rµ−α(t)

∫ t

l

[R(s) − R(l)]µ
cσn−2(s)σ′(s)

Rα+1(s)
(1 − p(s))α ds

≥ c(1 − p)α lim sup
t→∞

1

Rµ−α(t)

∫ t

1

Rµ(s) − µR(l)Rµ−1(s)

Rα+1(s)
dR(s) =

c(1 − p)α

µ − α
.

For any c > c0, there exists µ > α0 such that

(61)
c(1 − p)α

µ − α
>

[

(n − 2)!22n−4
]α µα+1

(α + 1)α+1(µ − α)
.

Moreover, it is easy to see that

(62)
[

(n − 2)!22n−4
]α µα+1

(α + 1)α+1(µ − α)
≥

1

Θα(n, λ)

µα+1

(α + 1)α+1(µ − α)
,

for λ ∈ (0, 1). From (61) and (62), we see that (37) holds.
On the other hand, we get

lim sup
t→∞

1

Rµ−α(t)

∫ t

l

[R(t) − R(s)]µ
cσn−2(s)σ′(s)

Rα+1(s)
(1 − p(s))α ds

≥ c(1 − p)α lim sup
t→∞

1

Rµ−α(t)

∫ t

1

[

Rµ(t) − µR(s)Rµ−1(t)
] 1

Rα+1(s)
dR(s) .
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Noting that when α = 1,

lim sup
t→∞

1

Rµ−α(t)

∫ t

1

[

Rµ(t) − µR(s)Rµ−1(t)
] 1

Rα+1(s)
dR(s)

= lim
t→∞

(

1

R(l)
R(t) − µ lnR(t) + µ lnR(l) − 1

)

= ∞

when α 6= 1,

lim sup
t→∞

1

Rµ−α(t)

∫ t

1

[

Rµ(t) − µR(s)Rµ−1(t)
] 1

Rα+1(s)
dR(s)

= lim
t→∞

(R−α(l)

α
Rα(t) +

µ

1 − α
R1−α(l)R1−α(t) −

1

α
−

µ

1 − α

)

= ∞ .

Then for any c > 0, 1 > p ≥ 0, α > 0 and µ > α0, we obtain that

lim sup
t→∞

1

Rµ−α(t)

∫ t

l

[R(t) − R(s)]µ
cσn−2(s)σ′(s)

Rα+1(s)
(1 − p(s))α ds = ∞ .

In view of Theorem 2.2 (I), we see that (60) is oscillatory for µ > c0.

Remark 4.1. The results in [1-16] fail to apply to Eq. (60). However, there are
many equations which satisfy the hypotheses of Example 4.2. For example, we
may choose 0 < g(t) ≤ νtβ with 0 < ν, β ≤ 1 for t ≥ 0; here we omit the details.
In particular, noting that Eq. (60) with p = 0, n = 2 and g(t) = t − δ (δ ≥ 0) for
t ≥ t0 : = 0 becomes

(63)
(

|x′(t)|
α−1

x′(t)
)

′

+
c

tα+1
|x(t − δ)|α−1x(t − δ) = 0 , t ≥ 0 .

Then, by Example 4.2, Eq. (63) is oscillatory for c > c0 = αα+1
0 /(α + 1)α+1.

We note that this conclusion does not appear to follow from the known oscillation
criteria in the literature. Moreover, when α = 1 and δ = 0, Eq. (63) reduces to Eq.
(59). In this case, c0 = 1/4, then Example 4.2 is consistent with the well-known
result of (59) that Eq. (59) is oscillatory if c > 1/4 and to a certain extent it also
reveals some of the peculiar nature of the Euler equation (59).

References

[1] Agarwal, R. P., Grace, S. R. and O’Regan, D., Oscillation criteria for certain n-th order

differential equations with deviating arguments, J. Math. Anal. Appl. 262 (2002), 601–522.

[2] Agarwal, R. P., Grace, S. R. and O’Regan, D., Oscillation Theory for Difference and Func-

tional Differential equations, Kluwer, Dordrecht, 2000.

[3] Grace, S. R. and Lalli, B. S., Oscillation theorems for damped differential equations of even

order with deviating argument, SIAM J. Math. Anal. 15 (1984), 308–316.

[4] Grammatikopoulos, M. K., Ladas, G. and Meimaridou, A., Oscillations of second order

neutral delay differential equations, Rat. Mat. 1 (1985), 267–274.

[5] Hardy, G. H., Littlewood, J. E. and Polya, G., Inequalities, second ed., Caombridge Univ.
Press, Cambridge, 1988.



122 QIGUI YANG AND SUI SUN CHENG

[6] Kiguradze, I., Partsvania, N. and Stavroulakis, I. P., On oscillatory properties of higher

order advanced functional differential equations, (Russian) Differentsial’nye Uravneniya 388
(2002), 1030–1041.

[7] Kong, Q., Interval criteria for oscillation of second-order linear ordinary differential equa-

tions, J. Math. Anal. Appl. 229 (1999), 258–270.

[8] Kusano, T. and Lalli, B. S., On oscillation of half-linear functional differential equations

with deviating arguments, Hiroshima Math. J., 24 (1994), 549-563.

[9] Philos, Ch. G., A new criteria for the oscillatory and asymptotic behavior of delay differ-

ential equations, Bull. Acad. Pol. Sci. Mat. 39 (1981), 61–64.

[10] Philos, Ch. G., Oscillation theorems for linear differential equations of second order, Arch.
Math. 53 (1989), 483–492.

[11] Wang, Q. R. and Yang, Q. G., Interval criteria for oscillation of second-order half-linear

differential equations, J. Math. Anal. Appl. 291 (2004), 224–236.

[12] Wong, P. J. Y. and Agarwal, R. P., Oscillation theorems and existence criteria of asymp-

totically monotone solutions for second order differential equations, Dynam. Systems Appl.
4 (1995), 477–496.

[13] Wong, P. J. Y. and Agarwal, R. P., Oscillatory behavior of solutions of certain second order

differential equations, J. Math. Anal. Appl. 198 (1996), 337–354.

[14] Xu, Z. T. and Xia, Y., Integral averaging technique and oscillation of even order delay

differential equations, J. Math. Anal. Appl. 292 (2004), 238–246.

[15] Yang, Q. G. and Tang, Y., Oscillation of even order nonlinear functional differential equa-

tions with damping, Acta Math. Hungar. 1023 (2004), 223–238.

[16] Yang, Q. G., Yang, L. J. and Zhu, S. M., Interval criteria for oscillation of second order

nonlinear neutral differential equations, Computers and Math. Appl. 465-6 (2003), 903–918.

School of Mathematical Science

South China University of Technology

Guangzhou, 510640 P. R. China

E-mail : qgyang@scut.edu.cn

Department of Mathematics, Tsinghua University

Hsinchu, Taiwan 30043, R. O. China

E-mail : sscheng@math.nthu.edu.tw


