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CONDITIONS UNDER WHICH R(x) AND R〈x〉 ARE ALMOST

Q-RINGS

H. A. Khashan and H. Al-Ezeh

Abstract. All rings considered in this paper are assumed to be commutative
with identities. A ring R is a Q-ring if every ideal of R is a finite product of
primary ideals. An almost Q-ring is a ring whose localization at every prime
ideal is a Q-ring. In this paper, we first prove that the statements, R is an
almost ZPI-ring and R[x] is an almost Q-ring are equivalent for any ring R.
Then we prove that under the condition that every prime ideal of R(x) is an
extension of a prime ideal of R, the ring R is a (an almost) Q-ring if and only
if R(x) is so. Finally, we justify a condition under which R(x) is an almost
Q-ring if and only if R 〈x〉 is an almost Q-ring.

1. Introduction

Let R be a ring and let f ∈ R [x]. Then C(f) denotes the ideal of R generated
by the coefficients of f . If S = {f ∈ R [x] : C(f) = R} and W = {f ∈ R[x] :
f is monic}, then S and W are regular multiplicatively closed subsets of R [x]
and the rings S−1R [x] and W−1R [x] are denoted by R(x) and R 〈x〉 respectively.
Some basic properties and related Theorems of R(x) and R 〈x〉 can be found in
[2].

Recall that a ring R is called a Laskerian ring if every ideal of R is a finite
intersection of primary ideals. A ring R is a Q-ring if every ideal of R is a finite
product of primary ideals. This class of rings has come as a generalization of an
important class of rings called the ZPI-rings that are defined as rings in which
every ideal is a product of prime ideals. Equivalently, a ring R is a Q-ring if and
only if R is Laskerian and every non maximal prime ideal of R is finitely generated
and locally principal, see [1]. If the localization RP of a ring R is a Q-ring for
every prime ideal P of R, then R is called an almost Q-ring. The classes of Q-rings
and almost Q-rings were studied in detail in [1] and [5].

One of the main results appeared in [1] is that a ring R is a ZPI-ring if and
only if R [x] is a Q-ring. In this paper, we first generalized this result to almost
Q-rings and then we have tried to find a condition under which a ring R is a (an

2000 Mathematics Subject Classification : 13A15.
Key words and phrases : Q-rings, almost Q-rings, the rings R(x) and R〈x〉.
Received July 10, 2006, revised August 15, 2007.



232 H. A. KHASHAN, H. AL-EZEH

almost) Q-ring if and only if R(x) is a (an almost) Q-ring. We have investigated
that this is true if every prime ideal of R(x) is an extension of a prime ideal of R.
Those rings that satisfy this property are said to satisfy the property (∗), see [2].
We gave some examples of such rings and in order to achieve our result, we proved
that the localization of a ring that satisfies the property (∗) at every prime ideal
satisfies the property (∗) as well.

Finally, we proved that under the condition that a ring R is one dimensional
reduced ring, R(x) is an almost Q-ring if and only if R 〈x〉 is so.

The following Lemma will be needed in the proof of the next main Theorem.
It can be proved by using [7, Theorem 3.16].

Lemma 1.1. Let R be any ring and let Q be a prime ideal of R[x], then R[x]Q ∼=
RP [x]QRP [x] where P = Q ∩ R.

By [4, Theorem 14.1], each maximal ideal of R(x) is of the form MR(x) where
M is a maximal ideal of R and R(x)MR(x)

∼= RM (x) ∼= R[x]M [x]. Hence, R(x) is
an almost ZPI-ring if and only if RM (x) is a ZPI- ring for each maximal ideal
M of R.

Theorem 1.2. Let R be a ring. The following are equivalent

(1) R is an almost ZPI-ring.

(2) R(x) is an almost ZPI-ring.

(3) R[x] is an almost Q-ring.

Proof. (1) ⇒ (3): Suppose that R is an almost ZPI-ring. Let
a

P be a prime

ideal of R[x]. Then P =
a

P ∩R is a prime ideal of R and so RP is a ZPI-ring. By
Lemma 1.1, R[x]aP ∼= RP [x]aPRP [x] and since RP is a ZPI-ring, RP [x] is a Q-ring

by [1, Theorem 14]. Hence, R[x]aP is a ring of quotients of a Q-ring and so it is a
Q-ring. Therefore, R[x] is an almost Q-ring.

(3) ⇒ (2): Suppose that R[x] is an almost Q-ring. Let M be a maximal ideal
of R and let

a

M be a maximal ideal of R[x] such that M [x] ⊂
a

M . Then R[x]aM
is a Q-ring and hence any non maximal prime ideal of R[x]aM is principal by [1,

Lemma 5]. Since M [x] ⊂
a

M , M [x] is a principal ideal of R[x]aM and so M [x]M [x]

is principal in R[x]M [x]. Thus, all prime ideals of RM (x) ∼= R[x]M [x] are principal
and so RM (x) is a PIR. Hence, RM (x) is a ZPI- ring by [4, Theorem 18.8]. Since
M was arbitrary, R(x) is an almost ZPI-ring.

(2) ⇒ (1): Suppose R(x) is an almost ZPI-ring. Let P be a prime ideal of R.
Then PR(x) is a prime ideal of R(x). Hence, RP (x) ∼= R(x)PR(x) is a ZPI-ring.
Again by [4, Theorem 18.8], RP is a ZPI-ring and so R is an almost ZPI-ring.

2. Rings that satisfy the property (∗)

The definition of rings that satisfy the property (∗) was appeared in [2] as
follows: A ring R is said to satisfy the property (∗) if for each prime ideal P of
R [x] with P ⊆ MR [x] for some maximal ideal M of R, we have P = QR [x] for
some prime ideal Q of R.

In the following proposition, we can see one characterization of rings that satisfy
the property (∗).
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Proposition 2.1. A ring R satisfies the property (∗) if and only if every prime

ideal of R(x) is an extension of a prime ideal of R.

Proof. ⇒): Suppose that R satisfies the property (∗). Let
a

P be a prime ideal of

R(x) = S−1R[x]. Then
a

P = S−1P where P is a prime ideal of R[x] with P∩S = φ.

Let {Mα : α ∈ Λ} be the set of all maximal ideals of R. Then S = R[x]\
⋃

α∈Λ

Mα[x]

by [4, Theorem 14.1]. Hence, P ⊆
⋃

α∈Λ

Mα[x] and then P ⊆ Mα[x] for some α ∈ Λ.

By assumption, there exists a prime ideal Q of R such that P = Q[x]. Hence,
a

P

= S−1P = S−1Q[x] = QR(x).
⇐): Conversely, suppose that any prime ideal of R(x) is an extension of a

prime ideal of R. Let P be a prime ideal of R[x] with P ⊆ M [x] for some maximal
ideal M of R. Then P ⊆

⋃

α∈Λ

Mα[x] and so P ∩
(

R[x]\
⋃

α∈Λ

Mα[x]
)

= ∅. Hence,

P ∩ S = ∅ and then S−1P is a prime ideal of R(x). Thus, by assumption there
exists a prime ideal Q of R such that S−1P = QR(x) = Q(S−1R[x]) = S−1Q[x].
Hence, P = S−1P ∩ R[x] = S−1Q[x] ∩ R[x] = Q[x] as required.

Two examples of rings satisfying the property (∗) can be seen in the following
proposition

Proposition 2.2. A zero dimensional ring and a one dimensional Noetherian

domain are satisfying the property (∗).

Proof. Suppose that R is a zero dimensional ring. Let
a

P be a non zero prime
ideal of R(x). Since R is zero dimensional, R(x) is also zero dimensional by [4,
Theorem 17.3] and [7, Theorem 7.13]. Hence,

a

P is a maximal ideal of R(x) and

so by [4, Theorem 14.1],
a

P = MR (x) for some maximal ideal M of R. Therefore,
R satisfies the property (∗) by Proposition 2.1. For one dimensional Noetherian
domain, one can use [4, Corollary 17.5] to get a similar proof.

Recall that a ring R is called an arithmetical ring if each finitely generated
ideal of R is locally principal. Equivalently, a ring R is arithmetical if and only if
every ideal of R(x) is of the form IR(x) for some ideal I of R. It follows that any
arithmetical ring satisfies the property (∗).

Proposition 2.3. Let R be a ring that satisfies the property (∗). Then RP satisfies

the property (∗) for each prime ideal P of R.

Proof. Let P be a prime ideal of R and let
a

M be any prime ideal of RP (x) ≃
R(x)PR(x). Then

a

M = MPR(x) for some prime ideal M of R(x) such that M ⊆
PR(x). Since R satisfies the property (∗), M = QR(x) for some prime ideal Q

of R. Hence,
a

M = QR(x)PR(x) = QP RP (x) and QP is a prime ideal of RP since
Q ⊆ P . So, RP satisfies the property (∗) by Proposition 2.1.

Let R be a ring and let X = spec (R) denotes the set of all prime ideals of R. For
each subset L ⊆ R, we let V (L) = {P ∈ spec (R) : L ⊆ P}. Then the collection τ =
{V (L) : L ⊆ R} satisfies the axioms for closed sets in some topology on X which
is called the prime spectral topology on X . Now, if X = spec (R) with the above
topology is Noetherian (the closed subsets of X satisfy the DCC), we say that
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R has a Noetherian spectrum. Equivalently, a ring R has a Noetherian spectrum
if and only if it satisfies the ACC for the radical ideals. If R has a Noetherian
spectrum, then there are only finitely many prime ideals that are minimal over
any ideal of R, see [8]. In [1], we can see that any Q-ring has a Noetherian
spectrum.

Proposition 2.4. Let R be a ring that satisfies the property (∗). Then R has a

Noetherian spectrum if and only if R(x) has a Noetherian spectrum.

Proof. ⇒): Suppose that R has a Noetherian spectrum. Then by [8, Theorem
2.5], R[x] has a Noetherian spectrum and so the ring of quotients R(x) of R[x] has
a Noetherian spectrum.

⇐): Conversely, suppose that R(x) has a Noetherian spectrum. Let I1 ⊆ I2 ⊆
I3 ⊆ . . . be an ascending chain of radical ideals of R. The I1R(x) ⊆ I2R(x) ⊆
I3R(x) ⊆ . . . is an ascending chain of radical ideals of R(x). Indeed, let I be an
ideal of R such that I = radI and let P1R(x), P2R(x), . . . , PnR(x) be the set of
all minimal prime ideals of R(x) over IR(x). Then clearly, P1, P2, . . . , Pn are the
set of all minimal prime ideals of R over I. Hence, by [4, Theorem 14.1], we have

rad
(

IR(x)
)

=
n
⋂

i=1

PiR(x) = (
n
⋂

i=1

Pi)R(x) = (radI)R(x) = IR(x). Since R(x) has

a Noetherian spectrum, there exists m ∈ N such that ImR(x) = Im+1R(x) = . . .

Hence, Im = Im+1 = . . . and so R has a Noetherian spectrum.

By using the above proposition, we can prove the following main theorem

Theorem 2.5. Let R be a ring that satisfies the property (∗). Then R is a Q-ring

if and only if R(x) is a Q-ring.

Proof. ⇒): Suppose that R is a Q-ring. Let
a

P be any non maximal prime ideal

of R(x). Since R satisfies the property (∗), then
a

P = PR(x) where P is a non
maximal prime ideal of R by Proposition 2.1. Since R is a Q-ring, then P is
finitely generated and locally principal and hence PR(x) is finitely generated and
locally principal by [2, Theorem 2.2]. Since R has a Noetherian spectrum, then
R[x] and its ring of quotients R(x) have a Noetherian spectrum. Since also any
non maximal prime ideal of R(x) is finitely generated, then R(x) is Laskerian by
[3, Corollary 2.3]. Therefore, R(x) is a Q-ring.

⇐): Suppose that R(x) is a Q-ring. Then R(x) has a Noetherian spectrum
and so by Proposition 2.4, R has a Noetherian spectrum. If P is a non maximal
prime ideal of R, then PR(x) is a non maximal prime ideal of R(x). So, PR(x)
is finitely generated and locally principal and then P is finitely generated and
locally principal again by [2, Theorem 2.2]. Thus, R is Laskerian again by [3,
Corollary 2.3] and each non maximal prime ideal of R is finitely generated and
locally principal. Therefore, R is a Q-ring.

By using Proposition 2.3 and Theorem 2.5, we have

Theorem 2.6. Let R be a ring that satisfies the property (∗). Then R is an almost

Q-ring if and only if R(x) is so.
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Proof. ⇒): Suppose that R is an almost Q-ring. Let PR(x) be a prime ideal of
R(x). Then R(x)PR(x) ≃ RP (x). Since RP satisfies the property (∗) by Propo-
sition 2.3 and RP is a Q-ring, Then by Theorem 2.5, RP (x) is a Q-ring. Hence,
R(x) is an almost Q-ring.

⇐): Suppose that R(x) is an almost Q-ring. Let P be a prime ideal of R. Then
PR(x) is a prime ideal of R(x) and so R(x)PR(x) is a Q-ring. Therefore, RP (x)
is a Q-ring. Again, since RP satisfies the the property (∗) and by using Theorem
(2.5), we see that RP is a Q-ring and so R is an almost Q-ring.

Remark 2.7. If a ring R is a zero dimensional ring, then R(x) and R 〈x〉 are coin-
cide, see (i.e. [4, Theorem 17.11]). Hence, in this case, the following are equivalent

(1) R is a (an almost) Q-ring.
(2) R(x) is a (an almost) Q-ring.
(3) R 〈x〉 is a (an almost) Q-ring.
Finally, we show that if a ring R satisfies a certain condition, then R(x) is an

almost Q-ring if and only if R 〈x〉 is so. Recall that a ring R is said to be reduced
if its nilradical is 0, the zero ideal of R.

Theorem 2.8. Let R be a reduced one dimensional ring. Then R(x) is an almost

Q-ring if and only if R 〈x〉 is an almost Q-ring.

Proof. ⇐): Suppose that R 〈x〉 is an almost Q-ring. Since R(x) is a ring of
quotients of R 〈x〉and clearly the ring of quotients of an almost Q-ring is again an
almost Q-ring, then the result follows.

⇒): Suppose that R(x) is an almost Q-ring. Let
a

P be a prime ideal of R 〈x〉.
Then

a

P = W−1Q where Q is a prime ideal of R[x] such that Q ∩ W = φ. Now,

R 〈x〉a

P = (W−1R[x])W−1Q ≃ R [x]Q. Hence, it is enough to show that R [x]Q
is a Q-ring for each prime ideal Q of R[x] with Q ∩ W = ∅. Take an arbitrary
chain P0 ( P1 of prime ideals of R. Then P0 is minimal and P1 is a maximal
ideal of R since dim R = 1. We look for the prime ideals in R[x] that contract to
P0 or P1. First, we have the prime ideals P0[x] and P1[x] for which we see that
R[x]Pi[x] ≃ RPi

(x) is a Q-ring for i = 1, 2.
If Q1 is any other prime ideal of R[x] such that Q1 ∩ R = P1, then Q1 is

a maximal ideal of R[x] since P1 is a maximal ideal of R, P1[x] ( Q1 and there is
no chain of three distinct prime ideals of R[x] with the same contraction in R, see [7,
Corollary 7.12]. By Theorem 28 in [6], Q1 contains a monic polynomial and so need
not be considered. It remains to consider the prime ideals of R[x] that contract to
P0. Let Q0 be a prime ideal of R[x] such that Q0∩R = P0. Then Q0∩(R\P0) = φ

in R[x] and so (R \ P0)
−1Q0 is a prime ideal in (R \ P0)

−1R[x] = RP0
[x]. Hence,

we have, R[x]Q0
≃ ((R \ P0)

−1R[x])(R\P0)−1Q0
≃ (RP0

[x])(R\P0)−1Q0
. Since P0 is

minimal and R is reduced, then RP0
is a field, see [6]. Hence, RP0

[x] is a PID

and so it is a Q-ring. Thus, R[x]Q0
is a ring of quotients of a Q-ring and then it

is a Q-ring. Hence, for each prime ideal Q of R[x] such that Q ∩W = φ, R[x]Q is
a Q-ring and it follows that R 〈x〉 is an almost Q-ring.
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