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BOUNDS ON BASS NUMBERS AND THEIR DUAL

ABOLFAZL TEHRANIAN AND SIAMAK YASSEMI

ABSTRACT. Let (R, m) be a commutative Noetherian local ring. We establish
some bounds for the sequence of Bass numbers and their dual for a finitely
generated R-module.

INTRODUCTION

Throughout this paper, (R, m, k) is a non-trivial commutative Noetherian local
ring with unique maximal ideal m and residue field k. Several authors have ob-
tained results on the growth of the sequence of Betti numbers {3, (k)} (e.g., see
[9] and [1]). In [10] Ramras gives some bounds for the sequence {3, (M)} when
M is a finitely generated non-free R-module. In this paper, we seek to give some
bounds for the sequence of Bass numbers.

For a finitely generated R-module M, let

0—-M—>E° S E' ... 5 F ...

be a minimal injective resolution of M. Then, u‘(M) denotes the number of
indecomposable components of E? isomorphic to the injective envelope E(k) and is
called Bass number of M. This is a dual notion of Betti number. For a prime ideal
p, pi(p, M) denotes the number of indecomposable components of E* isomorphic
to the injective envelope E(R/p). It is known that u‘(M) is finite and is equal
to the dimension of Ext % (R/m, M) considered as a vector space over R/m (note
that p'(p, M) = p'(M,)). These numbers play important role in understanding
the injective resolution of M, and are the subject of further work. For example,
the ring R of dimension d is Gorenstein if and only if R is Cohen-Macaulay and
the dth Bass number pu?(R) is 1. This was proved by Bass in [2]. Vasconcelos
conjectured that one could delete the hypothesis that R be Cohen-Macaulay. This
was proved by Paul Roberts in [12].

For a finitely generated R-module M, it turns out that the least ¢ for which
(M) > 0 is the depth of M, while the largest ¢ with u*(M) > 0 is the injective
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dimension inj.dim p M of M (which might be infinite), cf. [2] and [8]. In [8] Foxby
asked the question: Is p*(M) > 0 for all i with depth kM < i < inj.dim pM? In
[7], Fossum, Foxby, Griffith, and Reiten answered this question in the affirmative
(see also [11]).

A homomorphism ¢: F — M with a flat R-module F is called a flat precover
of the R-module M provided Hom r(G, F) — Hom r(G, M) — 0 is exact for
all flat R-modules G. If in addition any homomorphism f : F' — F such that
fo = ¢ is an automorphism of F, then ¢: FF — M is called a flat cover of
M. A minimal flat resolution of M is an exact sequence --- — F; — F;_; —

- — Fy = M — 0 such that F; is a flat cover of Im(F; — F;_1) for all ¢ > 0.
A module C is called cotorsion if Ext L(F,C) = 0 for any flat R-module F. A
flat cover of a cotorsion module is cotorsion and flat, and the kernel of a flat cover
is cotorsion. In [4], Enochs showed that a flat cotorsion module F' is uniquely
a product [[7,, where T, is the completion of a free Ry-module, p € Spec R.
Therefore, for ¢ > 0 he defined m;(p, M) to be the cardinality of a basis of a free
Ry-module whose completion is T}, in the product F; = [[T,. For i = 0 define
mo(p, M) similarly by using the pure injective envelope of Fy. In some sense these
invariants are dual to the Bass numbers. In [6], Enochs and Xu proved that for
a cotorsion R-module M which possesses a minimal flat resolution, m;(p, M) =
dim j(p) Tor (k(p), Hom g(R,, M)). Here k(p) denotes the quotient field of R/p.
Note that in [3] the authors show that every module has a flat cover, see also [13]
and [5].

In this paper, we study the sequence of Bass numbers u'(p, M) and its dual
m;(p, M). Among the other things we establish the following bounds:

(1) w?(M)/p! (M) < €(R) and p" (M) /" (M) < £(R) for any n > 2,
(2) p"(M)/p" T (M) < €(R)/¢(Soc (R)) for any n > 1,
where £(x) refers to the length of .
1. MAIN RESULTS

The following lemma is the key to our main result.

Lemma 1.1. Let p be a prime ideal of R and let L be an Ry,-module of finite
length. Then the following hold:

(a) For any module M and any non-negative integer n,
0(Ext 5L, M)) — €(Ext § (L, M)) > p™(p, M) — £(L)p" (p, M)

(b) For any cotorsion R-module M and any non-negative integer n,

0(Tor 24 (L, M)) = ¢(Tor 11 (L, M)) > 1 (p, M) — (L) (p, M)
Proof. (a) We proceed by induction on s = ¢(L). If s = 1, then L = k(p), and
0(Ext 5 (k(p), M)) — £(Ext %, (k(p), M)) = p" " (p, M) — " (p, M) .

Now assume that s > 1. Then there is a submodule K of L with ¢/(K) = s —1
such that the sequence 0 — k(p) — L — K — 0 is exact. The corresponding long
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exact sequence for Ext g, (—, M) gives the exact sequence
Ext %, (K, M) — Ext i, (L, M) — Ext % (k(p), M)
— Ext (K, M) — Ext (L, M).
It follows that
0(Ext 5L, M)) — €(Ext § (L, M)) > ¢(Ext 5 (K, M))
— ((Ext (K, M)) — " (p, M)
> " (p, M) — 6K )" (p, M) — " (p, M)
= p" T (p, M) — ((L)p" (p, M),
where the first inequality follows from the property of length and the equality
Ext % (k(p), M) = u™(p, M), also the second inequality follows by the induction

hypothesis.
(b) We proceed by induction on s = ¢(L). If s = 1, then L 2 k(p), and we have

¢(Tor v (k(p), M)) — €(Tor B (k(p), M)) = mnr1(p, M) — ((L)ma(p, M) .

Now assume that s > 1. Then there is an R,- submodule K of L with ¢(K) =
s — 1 such that the sequence 0 — k(p) — L — K — 0 is exact. Set N =
Hom r(Ry, M). The corresponding long exact sequence for Tor f» (—, N) leads to
the exact sequence

Tor [ (L, N) — Tor 1* (K, N) — Tor v (k(p), N)
— Tor % (L, N) — Tor (K, N).
It follows that
¢(Tor ;%1 (L, N)) —¢(Tor 1f» (L, N)) = ¢(Tor ;% (K, N))
— ¢(Tor r (K, N)) — m, (M)
> Tyt (M) — €K ) (M) — 0 (M)
= Tng1 (M) — L(L)mn (M),
where the second inequality follows by the induction hypothesis. O

Corollary 1.2. Let R be a zero dimensional ring and let M be an R-module. For
any prime ideal p and any integer n > 1 the following hold:

(a)
p(p, M) < £(Rp)p" (p, M) .

(b) If M s a cotorsion R-module, then
Tt (p, M) < U(Rp)mn(p, M) .

Proof. (a) Replace the module L in Lemma 1.1(a) with R, and note that
Ext % (Ry,—)=0foralli>1

(b) Replace the module L in Lemma 1.1(b) with R, and note that Tor f*’ (Rp,—)
=0 for any i > 1. O
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Proposition 1.3. Let R be a zero dimensional ring. Then the following hold:
(a) Let M be an R-module. For any integer n > 1 and prime ideal p,

©"H(p, M) < U(Rp)p" (p, M)
(b) Let M be a cotorsion R-module. For any p € Spec R and any n > 2,
7Tn+1(p, M) =+ ﬁ( Soc (R>)7Tn*1(pa M) < K(Rp)ﬂn(pv M) .

Proof. (a) It is clear from Lemma 1.1(a).

(b) Assume that p € Spec R and set I = Soc(Ry), N = Hom r(R,, M). From
the exact sequence

0—-I—-R,—R,/I—0,
it follows that for any n > 1,
Tor [ (Ry /I, N) = Tor (I, N) = @ Tor ¥(R,/pRy, N),
where the numbers of copies in the direct sum is ¢(I). Hence
¢(Tor I (Ry/I,N)) = ((I)mn(p, M) for n>1.
Thus, by Lemma 1.1(b), for n > 2,
OI) (o (p, M) = mp1(p, M) > mpp1(p, M) — £(Ry /T (p, M) .

Therefore, {(I)mp—1(p, M) + Tpt1(p, M) < (Rp)mn(M). O

Theorem 1.4. Let R be a zero dimensional local ring. For any finitely generated
non-injective R-module M the following hold:

(1) @1 (M) /(M) < U(R) for any n > 2,
(2) p"(M)/p" T (M) < €(R)/¢(Soc (R)) for anyn > 1.
Proof. Let I = Soc(R). From the exact sequence
0—-I—R—R/I—0,
it follows that for any n > 1,
Ext 5P (R/I, M) = Ext % (I, M) = @ Ext 4(R/m, M),
where the numbers of copies in the direct sum is ¢(I). Hence
¢(Ext 5T (R/I,M)) = (I)p"(M) for n>1.
Thus, by Lemma 1.1, for n > 2,
(D) (" (M) — =1 (M) > @™ (M) — 6(R/ T (M)

Therefore, (1™~ (M) +p" (M) < £(R)p™(M). By [7, Theorem 1.1], (M) >
0 for depth pM < i < inj.dim gM. Since R is Artinian, depth gM = 0. Thus for
any n, n > 2, u"(M) and p" (M) are positive integer and hence "1 (M)/u™(M)
< {(R). Moreover, if 2 < n, then y"(M) and p"*1(M) are positive integers and
thus p" 1 (M)/p™(M) < £(R)/(Soc (R)). O
Corollary 1.5. Let R be a zero dimensional ring. Let M be a finitely generated

R-module. For any prime ideal p with M, non-injective R,-module, the following
hold:
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(1) p"*H(p, M)/p"(p, M) < £(Ry) for anyn > 2,
(2) 2 (p. M)/ (p, M) < £(Ry)/£(Soc (Ry)) for any n > 1.
Remark 1.6. To the best of the knowledge of the authors, there is no condition

(yet!) which implies that m,(p, M) > 0. This is the reason that we could not give
a similar result as Theorem 1.4 for the dual notion of Bass numbers.

(10]
(11]

(12]
(13]

REFERENCES

Avramov, L. L., Sur la croissance des nombres de Betti d’un anneau local, C. R. Acad. Sci.
Paris 289 (1979), 369-372.

Bass, H., On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28.

Bican, L., El Bashir, R., Enochs, E. E., All modules have flat covers, Bull. London Math.
Soc. 33 (2001), 385-390.

Enochs, E. E., Flat covers and flat cotorsion modules, Proc. Amer. Math. Soc. 92 (1984),
179-184.

Enochs, E. E., Jenda, O. M. G., Relative homological algebra, de Gruyter Expositions in
Mathematics, 30. Walter de Gruyter & Co., Berlin, 2000.

Enochs, E. E., Xu, J. Z., On invariants dual to the Bass numbers, Proc. Amer. Math. Soc.
125 (1997), 951-960.
Fossum, R., Foxby, H.-B., Griffith, P., Reiten, 1., Minimal injective resolutions with appli-

cations to dualizing modules and Gorenstein modules, Inst. Hautes Etudes Sci. Publ. Math.
45 (1975), 193-215.

Foxby, H.-B., On the u* in a minimal injective resolution, Math. Scand. 29 (1971), 175-186.
Gulliksen, T., A proof of the existence of minimal R-algebra resolutions, Acta Math. 120
(1968), 53-58.

Ramras, M., Bounds on Betti numbers, Canad. J. Math. 34 (1982), 589-592.

Roberts, P., Two applications of dualizing complexes over local rings, Ann. Sci. Ecole Norm.
Sup. (4) 9 (1), (1976), 103-106.

Roberts, P., Rings of type 1 are Gorenstein, Bull. London Math. Soc. 15 (1983), 48-50.

Xu, J. Z., Minimal injective and flat resolutions of modules over Gorenstein rings, J. Algebra
175 (1995), 451-477.

A. TEHRANIAN, SCIENCE AND RESEARCH BRANCH
IsLamic AZAD UNIVERSITY, TEHRAN, IRAN
E-mail: tehranian1340@yahoo.com

S. YASsEMI, CENTER OF EXCELLENCE IN BIOMATHEMATICS
SCHOOL OF MATHEMATICS, STATISTICS, AND COMPUTER SCIENCE
UNIVERSITY OF TEHRAN, TEHRAN, IRAN

E-mail: yassemi@ipm.ir



