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HYPERKÄHLER METRICS FROM PROJECTIVE SUPERSPACE

ULF LINDSTRÖMA,B

Abstract. This is a brief review of how sigma models in Projective Super-
space have become important tools for constructing new hyperkähler metrics.

1. Introduction

The close relation between supersymmetric sigma models and complex geometry
was first observed almost thirty years ago in [27]. For N = 2 models in four
dimensions the target space geometry was subsequently shown to be hyperkähler
in [1]. This fact was extensively exploited in a N = 1 superspace formulation of
these models in [22], where two new constructions were presented; the Legendre
transform construction and the hyperkähler quotient construction. The latter
reduction was given a mathematical formulation in [12] where we also elaborated
on a manifest N = 2 formulation, originally introduced in [5].

A N = 2 superspace formulation of the N = 2 sigma model is obviously desir-
able, since it will automatically lead to hyperkähler geometry on the target space.
The N = 2 Projective Superspace which makes this possible grew out of the de-
velopment mentioned in the last sentence in the paragraph above. Over the years
it has been developed and refined in, e.g., [15]-[9]. In this article we report on
some of that development along with some very recent applications.

2. Sigma models

A supersymmetric non-linear sigma model is given by maps from a (super)
manifold Σ(d,N ) to a target space T :

(2.1) Φ: Σ(d,N ) 7−→ T ,

defined by giving an action involving an integral over Σ(d,N ). For a two-dimensional
model in N = (1, 1) superspace

(

d = 2, N = (1, 1)
)

the action is

(2.2) S =

∫

Σ

d2ξd2θD+ΦµEµν(Φ)D−Φν ,
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where ξ, θ are coordinates on Σ, the superspace covariant derivatives satisfy D2
± =

i∂
++
=

, and Eµν ≡ Gµν + Bµν is the sum of the metric and antisymmetric B-field.

The field equations are

(2.3) ∇
(+)
+ D−Φµ = 0

which involves the pullback of the covariant derivative ∇(+) ≡ ∇ + G−1H , the
sum of the Levi-Civita connection and the torsion built from the field-strength of
the B-field; H = dB. The rôle of the geometry of T is becoming evident from the
geometric objects introduced. The type of geometry depends on (d,N ), i.e., on
the bosonic dimension of Σ and on the number of supersymmetries. We illustrate
with a couple of examples.

Example 1.

The model defined by the action (2.2) has N = (2, 2) supersymmetry provided
that the target space carries a certain bi-hermitean geometry [5], or in its modern
guise, Generalized Kähler Geometry [13] [11]. In this case, there is a manifest
N = (2, 2) formulation

(2.4) S =

∫

M

D
2
D

2K(XL, X̄L, XR, X̄R, φ, φ̄, χ, χ̄) ,

where the Lagrangian K is a function or the chiral φ and twisted chiral fields χ as
well as the semichiral fields [3], XL,R. These fields are defined as follows:

D̄+XL = D+X̄L = 0 ,

D̄−XR = D−X̄R = 0 .

D̄±φ = D±φ̄ = 0

D̄+χ = D−χ = D+χ̄ = D̄−χ̄ = 0 ,(2.5)

where D is the N = (2, 2) covariant derivative. All geometric quantities in this
geometry have a local expression involving derivatives of the Generalized Kähler
potential K [25]. These expressions, in particular those for the metric and B-field,
are non-linear functions of ∂∂K, nonlinearities that can be explained by the fact
that the geometry may be constructed by a quotient from a higher dimensional
space [26].

Example 2.

Consider the previous example without a B-field. When the number of supersym-
metries are further increased to N = (4, 4), the target space geometry is restricted
to be hyperkähler. The Kähler potential is K(φ, φ̄) and the additional supersym-
metries are non-manifest, i.e., explicit transformations of the chiral and semichiral
superfields. These transformations involve the additional two complex structures
of the hyperkähler geometry, and the algebra of the extra supersymmetries typi-
cally only close on-shell, i.e., modulo field equations.
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3. Projective superspace

In the second example above, the N = (2, 2) formulation of the N = (4, 4)
models require explicit transformations on the N = (2, 2) superfields that close
to the supersymmetry algebra on-shell. This non-manifest formulation makes the
construction of new models difficult. Below follows a brief description of a su-
perspace where all supersymmetries are manifest. This “projective superspace”
[15]-[9] has been developed in parallel to harmonic superspace [4]. The relation
between the two approaches is discussed in [17].

A hyperkähler space T supports three globally defined integrable complex struc-
tures I, J, K obeying the quaternion algebra: IJ = −JI = K, plus cyclic permuta-
tions. Any linear combination of these, aI + bJ + cK is again a complex structure
on T if a2 + b2 + c2 = 1, i.e., if {a, b, c} lies on a two-sphere S2

⋍ P1. The
Twistor space Z of a hyperkähler space T is the product of T with this two-
sphere Z = T ×P1. The two-sphere thus parametrizes the complex structures and
we choose projective coordinates ζ to describe it (in a patch including the north
pole). It is an interesting and remarkable fact that the very same S2 arises in an
extension of superspace to accomodate manifet N = (4, 4) models.

The algebra of N = (4, 4) superspace derivatives is

{Da±, D̄b
±} = ±iδb

a∂++
=

, {Da±, Db±} = 0 ,

{Da±, Db∓} = 0 , {Da±, D̄b
∓} = 0 .(3.6)

We may parameterize a P1 of maximal graded abelian subalgebras as (suppressing
the spinor indices)

(3.7) ∇(ζ) = D2 + ζD1 , ∇̄(ζ) = D̄
1 − ζD̄

2 ,

where ζ is the coordinate introduced above, and the bar on ∇ denotes conjugation
with respect to a real structure R defined as complex conjugation composed with
the antipodal map on P1

⋍ S2. The two new covariant derivatives in (3.7) anti-
commute

(3.8) {∇, ∇̄} = 0 .

They may be used to introduce constraints on superfields similarily to how the
N = (2, 2) derivatives are used to impose chirality constraints in (2.5). Superfields
now live in an extended superspace with coordinates ξ, ζ, θ. The superfields Υ we
shall be interested in satisfy the projective chirality constraint

(3.9) ∇Υ = ∇̄Υ = 0 ,

and are taken to have the folloving ζ-expansion:

(3.10) Υ =
∑

i

Υiζ
i .

We use the real structure acting on superfields, R(Υ) ≡ Ῡ, to impose reality
conditions on the superfields. An O(2n) multiplet is thus defined via

(3.11) Υ ≡ η(2n) = (−)nζ2nῩ .
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The expansion (6.26) is useful in displaying the N = (2, 2) content of the
multiplets. Using the relation (3.7) to the N = (2, 2) derivatives in (3.9) we read
off the following expansion for an O(4) multipet (3.11):

(3.12) η(4) = φ + ζΣ + ζ2X − ζ3Σ̄ + ζ4φ̄ ,

with the component N = (2, 2) fields being chiral φ, unconstrained X and complex
linear Σ. A complex linear field satisfies

(3.13) D̄
2Σ = 0 ,

and is dual to a chiral superfield. A general projective chiral Υ has the expansion

(3.14) Υ = φ + ζΣ +

∞
∑

i=2

Xiζ
i ,

with all Xi’s unconstrained.

4. The generalized Legendre transform

In this section we review one particular construction of hyperkähler metrics
using projective superspace introduced in [23].

An N = (4, 4) invariant action may be written as

(4.15) S =

∫

D
2
D̄

2F ,

with

(4.16) F ≡

∮

C

dζ

2πiζ
f(Υ, Ῡ; ζ) ,

for some suitably defined contour C. Eliminating the auxiliary fields Xi by their
equations of motion will yield an N = (2, 2) model defined on the tangent bundle
T (T ) parametrized by (φ, Σ). Dualizing the complex linear fields Σ to chiral fields

φ̃ the final result is a supersymmetric N = (2, 2) sigma model in terms of (φ, φ̃)
which is guaranteed by construction to have N = (4, 4) supersymmetry, and thus
to define a hyperkähler metric. In equations, these steps are:
Solve the equations of motion for the auxiliary fields:

(4.17)
∂F

∂Υi

=

∮

C

dζ

2πiζ
ζi

(

∂

∂Υ
f(Υ, Ῡ; ζ)

)

= 0 , i ≥ 2 .

Solving these equations puts us on N = 2-shell, which means that only the N =
(2, 2) component symmetry remains off-shell. (In fact, insisting on keeping the
N = (4, 4) constraints (3.9) will put us totally on-shell.) In N = (2, 2) superspace
the resulting model, after eliminating Xi, is given by a Lagrangian K(φ, φ̄, Σ, Σ̄).

This is dualized to K̃(φ, φ̄, φ̃,
¯̃
φ) via a Legendre transform

K̃(φ, φ̄, φ̃,
¯̃
φ) = K(φ, φ̄, Σ, Σ̄) − φ̃Σ − ¯̃

φΣ̄

φ̃ =
∂K

∂Σ
,

¯̃
φ =

∂K

∂Σ̄
.(4.18)
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5. Hyperkähler metrics on Hermitean symmetric spaces

This section contains an introduction to the recent paper [2] where the general-
ized Legendre transform described in the previous section is used to find metrics
on the Hermitean symmetric spaces listed in the following table:

Compact Non-Compact

U(n + m)/U(n) × U(m) U(n, m)/U(n) × U(m)

SO(2n)/U(n); Sp(n)/U(n) SO∗(2n)/U(n); Sp(n, R)/U(n)

SO(n + 2)/SO(n) × SO(2) SO0(n + 2)/SO(n) × SO(2)

The special features of these quotient spaces that allow us to find a hyperkähler
metric on their co-tangent bundle is the existence of holomorphic isometries and
that we are able to find convenient coset representatives.

A simple example of how the coset representative enters in understanding a
quotient is given, e.g., in [18]: In Rn+1 the sphere Sn forms a representation of
SO(n + 1). The isotropy subgroup at the north pole p0 of Sn is SO(n). Consider
another point p on Sn an let gp ∈ SO(n + 1) be an element that maps p0 → p.
The complete set of elements of SO(n + 1) which map p0 → p is thus of the form
gpSO(n), or in other words Sn = SO(n + 1)/SO(n). A coset representative is a
choice of element in gpSO(n), and that choice can make the transport of properties
defined at the north pole to an arbitrary point more or less transparent.

An important step in the generalized Legendre transform is to solve the aux-
iliary field equation (4.17). As outlined in [6] and further elaborated in [19], for
Hermitian symmetric spaces the auxiliary fields may be eliminated exactly. In the
present case, we start from a solution at the origin φ = 0,

(5.19) Υ(0) = ζΣ(0) .

We then extend this solution to a solution Υ∗ at an arbitrary point using a coset
representative. We illustate the method in a simple example due to S. Kuzenko.

Example 3.

The Kähler potential for P1 is given by

(5.20) K(φ, φ̄) = ln(1 + φφ̄) ,

and we denote the metric that follows from this by gφ,φ̄. Here φ is a holomorphic
coordinate which we extend to an N = (2, 2) chiral superfield. To construct a hy-
perkähler metric we first replace φ → Υ, and then solve the auxiliary field equation
as in (5.19). Thinking of CPn as the quotient G1,n+1(C) = U(n + 1)/U(n)×U(1),
we use a coset representative L(φ, φ̄) to extend the solution from the origin to an
arbitrary point. The result is

(5.21) Υ∗ =
Υ(0) + φ

1 − Υ(0)φ̄
=

ζΣ(0) + φ

1 − ζΣ(0)φ̄
.
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To find the chiral multiplet Σ that parametrizes the tangent bundle, we use the
definition

(5.22) Σ ≡
dΥ∗

dζ
|ζ=0 = (1 + φφ̄)Σ(0) ,

yielding

(5.23) Υ∗ =
(1 + φφ̄)φ + ζΣ

(1 + φφ̄) − ζΣφ̄
.

The N = (2, 2) superspace Lagrangian on the tangent bundle is then

(5.24) K(Υ∗, Ῡ∗) = K(φ, φ̄) + ln(1 − gφφ̄ΣΣ̄) .

The final Legendre transform replacing the linear multiplet by a new chiral field,

Σ → φ̃ produces the Kähler potential K(φ, φ̄, φ̃, ¯̃φ) for the Eguchi-Hanson metric.

The P1 example captures the essential idéa in our construction. The reader is
referred to the paper [2] for details.

6. Other alternatives in projective superspace

Of the two methods for constructing hyperkähler metrics introduced in [22], we
have dwelt on the Legendre transform method and its generalization to projective
superspace. The hyperkähler reduction (hyperkähler quotient construction) that
we further elaborated on in [12], may also be lifted to projective superspace. Both
these methods involve only chiral N = (2, 2) superfields. When a nonzero B-field
is present, the N = (2, 2) sigma models involve all the superfields in (2.5), as
discussed in Section 2. For a full description of (generalizations of) hyperkähler
metrics on such spaces, the doubly projective superspace [3] is required. We now
briefly touch on this construction.

In the doubly projective superspace, at each point in ordinary superspace we
introduce one P1 for each chirality and denote the corresponding coordinates by
ζL and ζR. The condition (3.7) turns into

∇+(ζL) = D2+ + ζLD1+ ,

∇−(ζR) = D2+ + ζRD1− ,(6.25)

with the conjugated operators defined with respect to the real structure R acting
on both ζL and ζR. A superfield has the expansion

(6.26) Υ =
∑

i,j

Υi,jζ
i
Lζj

R ,

and is taken to be both left and right projectively chiral. We may also impose
reality conditions using R, as well as particular conditions on the components,
such as the “cylindrical” condition

(6.27) Υi,j+k = Υi,j ,

for some k. Actions are formed in analogy to (4.15) and (4.16). The N = (2, 2)
components of such a model include twisted chiral fields χ, as well as semi-chiral
ones XL,R. In fact this is the context in which the semi-chiral N = (2, 2) superfields
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were introduced [3]. Hyperkähler metrics derived in this superspace are discussed
in [20]. An exciting project is to merge this picture with the recent results in [26].
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