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NONLINEAR DIFFERENTIAL POLYNOMIALS
SHARING A SMALL FUNCTION

Abhijit Banerjee and Sonali Mukherjee

Abstract. Dealing with a question of Lahiri [6] we study the uniqueness
problem of meromorphic functions concerning two nonlinear differential po-
lynomials sharing a small function. Our results will not only improve and
supplement the results of Lin-Yi [16], Lahiri Sarkar [12] but also improve and
supplement a very recent result of the first author [1].

1. Introduction definitions and results

Let f and g be two nonconstant meromorphic functions defined in the open
complex plane C. A meromorphic function α is said to be a small function of f
provided that T (r, α) = S(r, f), that is T (r, α) = o(T (r, f)) as r → ∞, outside
of a possible exceptional set of finite linear measure. Clearly if f is rational then
α is a constant and if f is transcendental then α is a nonconstant meromorphic
function. We denote by S(f) the set of all small functions of f .

If for some α ∈ S(f) ∩ S(g), f − α and g − α have the same set of zeros with
the same multiplicities, we say that f and g share α CM (counting multiplicities),
and if we do not consider the multiplicities then f and g are said to share α IM
(ignoring multiplicities).

We denote by T (r) the maximum of T (r, f) and T (r, g). The notation S(r)
denotes any quantity satisfying S(r) = o(T (r)) as r → ∞, outside of a possible
exceptional set of finite linear measure.

Let NE(r, α; f, g) (NE(r, α; f, g)) be the counting function (reduced counting
function) of all common zeros of f − α and g − α with the same multiplicities and
N0(r, α; f, g) (N0(r, α; f, g)) be the counting function (reduced counting function)
of all common zeros of f − α and g − α ignoring multiplicities.

If
N(r, α; f) +N(r, α; g)− 2NE(r, α; f, g) = S(r, f) + S(r, g)

then we say that f and g share α “CM”.
On the other hand if

N(r, α; f) +N(r, α; g)− 2N0(r, α; f, g) = S(r, f) + S(r, g)
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then we say that f and g share α “IM”.
We use I to denote any set of infinite linear measure of 0 < r <∞.
In [6] Lahiri studied the problem of uniqueness of meromorphic functions when

two linear differential polynomials share the same 1-points. In the same paper [6]
regarding the nonlinear differential polynomials Lahiri asked the following question.
What can be said if two nonlinear differential polynomials generated by two mero-
morphic functions share 1 CM?

Naturally several authors investigate the possible answer to the above question
and continuous efforts are being carried out to relax the hypothesis of the results.
(cf. [1], [2], [3], [11], [12], [14], [15], [16]).

In 2002 Fang and Fang [2] and in 2004 Lin-Yi [15] independently proved the
following result.

Theorem A. Let f and g be two nonconstant meromorphic functions and n (≥ 13)
be an integer. If fn(f − 1)2f ′ and gn(g − 1)2g′ share 1 CM, then f ≡ g.

In 2004 Lin-Yi [16] improved Theorem A by generalizing it in view of fixed point.
Lin-Yi [16] proved the following result.

Theorem B. Let f and g be two transcendental meromorphic functions and
n (≥ 13) be an integer. If fn(f − 1)2f ′ and gn(g − 1)2g′ share z CM, then f ≡ g.

In the same paper Lin-Yi [16] mentioned that in Theorem B z can be replaced
by α(z).

In 2001 an idea of gradation of sharing of values was introduced in ([8], [9])
which measures how close a shared value is to being share CM or to being shared
IM. This notion is known as weighted sharing and is defined as follows.

Definition 1.1 ([8, 9]). Let k be a nonnegative integer or infinity. For a ∈ C∪{∞}
we denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity
m is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g),
we say that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k then z0 is an
a-point of f with multiplicity m (≤ k) if and only if it is an a-point of g with
multiplicity m (≤ k) and z0 is an a-point of f with multiplicity m (> k) if and
only if it is an a-point of g with multiplicity n (> k), where m is not necessarily
equal to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k), then f , g share (a, p) for any integer p, 0 ≤ p < k. Also
we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)
respectively.

With the notion of weighted sharing of value recently the first author [1] improved
Theorem A as follows.

Theorem C ([1]). Let f and g be two nonconstant meromorphic functions and
n >

[
12 − 2Θ(∞; f) − 2Θ(∞; g) − min{Θ(∞; f),Θ(∞; g)}

]
, is an integer. If

fn(f − 1)2f ′ and gn(g − 1)2g′ share (1, 2) then f ≡ g.
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In the mean time Lahiri and Sarkar [12] also studied the uniqueness of mero-
morphic functions corresponding to nonlinear differential polynomials which are
different from that of previously mentioned and proved the following.
Theorem D ([12]). Let f and g be two nonconstant meromorphic functions such
that fn(f2 − 1)f ′ and gn(g2 − 1)g′ share (1, 2), where n (≥ 13) is an integer then
either f ≡ g or f ≡ −g. If n is an even integer then the possibility of f ≡ −g does
not arise.

From the above discussion it will be a natural query to investigate the uniqueness
of meromorphic functions when two non linear differential polynomials of more
general form namely fn(af2 + bf + c)f ′ and gn(ag2 + bg + c)g′ where a 6= 0 and
|b|+ |c| 6= 0 share a small function.

In this paper we will study the above problem with the notion of weakly weighted
sharing which has recently been introduced by Lin and Lin [13] generalizing the
idea of weighted sharing of values. We are now giving the definition.
Definition 1.2 ([13]). Let f g share α “IM” for α ∈ S(f)∩S(g) and k is a positive
integer or ∞.

(i) N
E(r, α; f, g |≤ k) denotes the reduced counting function of those α-points

of f whose multiplicities are equal to the corresponding α-points of g, both
of their multiplicities are not greater than k.

(ii) N
0(r, α; f, g |> k) denotes the reduced counting function of those α-points

of f which are α-points of g, both of their multiplicities are not less than k.
Definition 1.3 ([13]). For α ∈ S(f) ∩ S(g), if k is a positive integer or ∞ and

N(r, α; f |≤ k)−NE(r, α; f, g |≤ k) = S(r, f) ,

N(r, α; g |≤ k)−NE(r, α; f, g |≤ k) = S(r, g) ,

N(r, α; f |≥ k + 1)−N0(r, α; f, g |≥ k + 1) = S(r, f) ,

N(r, α; g |≥ k + 1)−N0(r, α; f, g |≥ k + 1) = S(r, g)

or if k = 0 and

N(r, α; f)−N0(r, α; f, g) = S(r, f) ,
N(r, α; g)−N0(r, α; f, g) = S(r, g) ,

then we say f , g weakly share α with weight k. Here we write f , g share “(α, k)”
to mean that f , g weakly share α with weight k.

Obviously if f , g share “(α, k)”, then f , g share “(α, p)” for any integer p,
0 ≤ p < k. Also we note that f , g share α “IM” or “CM” if and only if f , g share
“(α, 0)” or “(α,∞)” respectively.

We now state the following theorem which is the main result of the paper.
Theorem 1.1. Let f and g be two transcendental meromorphic functions such
that fn(af2 + bf + c)f ′ and gn(ag2 + bg + c)g′ where a 6= 0 and |b|+ |c| 6= 0 share

“(α, 2)”. Then the following holds.
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(i) If b 6= 0, c = 0 and n > max
[
12− 2Θ(∞; f)− 2Θ(∞; g)−min{Θ(∞; f),

Θ(∞; g)}, 4
Θ(∞;f)+Θ(∞;g) − 2

]
, be an integer, where Θ(∞; f) + Θ(∞; g)

> 0, then f ≡ g.
(ii) If b 6= 0, c 6= 0, n >

[
12− 2Θ(∞; f)− 2Θ(∞; g)−min{Θ(∞; f),Θ(∞; g)}

]
,

the roots of the equation az2 + bz + c = 0 are distinct and one of f and g
is non entire meromorphic function having only multiple poles, then f ≡ g.

(iii) If b 6= 0, c 6= 0, n >
[
12− 2Θ(∞; f)− 2Θ(∞; g)−min{Θ(∞; f),Θ(∞; g)}

]
and the roots of the equation az2 + bz + c = 0 coincides, then f ≡ g.

(iv) b = 0, c 6= 0, n >
[
12− 2Θ(∞; f)− 2Θ(∞; g)−min{Θ(∞; f),Θ(∞; g)}

]
,

then either f ≡ g or f ≡ −g. If n is an even integer then the possibility
f ≡ −g does not arise.

From Theorem 1.1 we can immediately deduce the following corollaries.

Corollary 1.1. Let f and g be two transcendental meromorphic functions such
that Θ(∞; f) + Θ(∞; g) > 4

n+2 , and n (≥ 13) be an integer. If fn(af2 + bf)f ′ and
gn(ag2 + bg)g′ share “(α, 2)” then f ≡ g.

Corollary 1.2. Let f and g be two transcendental meromorphic functions and one
of f and g is non entire meromorphic function having only multiple poles, such
that n >

[
12− 2Θ(∞; f)− 2Θ(∞; g)−min{Θ(∞; f),Θ(∞; g)}

]
be an integer. If

afn(f − β1)(f − β2)f ′ and agn(g − β1)(g − β2)g′ share “(α, 2)”, where β1 and β2
are the distinct roots of the equation az2 + bz + c = 0 with |β1| 6= |β2|, then f ≡ g.

Corollary 1.3. Let f and g be two transcendental meromorphic functions such
that n >

[
12− 2Θ(∞; f)− 2Θ(∞; g)−min{Θ(∞; f),Θ(∞; g)}

]
be an integer. If

afn(f + k)2f ′ and agn(g + k)2g′ share “(α, 2)” where k is a nonzero constant then
f ≡ g.

Corollary 1.4. Let f and g be two transcendental meromorphic functions such
that n >

[
12− 2Θ(∞; f)− 2Θ(∞; g)−min{Θ(∞; f),Θ(∞; g)}

]
be an integer. If

fn(af2 + c)f ′ and gn(ag2 + c)g′ share “(α, 2)” then f ≡ g or f ≡ −g. If n is an
even integer then the possibility f ≡ −g does not arise.

Though we use the standard notations and definitions of the value distribution
theory available in [5], we explain some definitions and notations which are used in
the paper.

Definition 1.4 ([7]). For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1) the coun-
ting function of simple a points of f . For a positive integer m we denote by
N(r, a; f |≤ m)

(
N(r, a; f |≥ m)

)
the counting function of those a points of f

whose multiplicities are not greater (less) than m where each a point is counted
according to its multiplicity.
N(r, a; f |≤ m)

(
N(r, a; f |≥ m)

)
are defined similarly, where in counting the

a-points of f we ignore the multiplicities.
Also N(r, a; f |< m), N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |> m) are

defined analogously.
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Definition 1.5 ([9], cf.[20]). We denote by N2(r, a; f) the sum N(r, a; f) +
N(r, a; f |≥ 2).

Definition 1.6 ([9]). Let f and g be two nonconstant meromorphic functions such
that f and g share the value 1 IM. Let z0 be a 1-point of f with multiplicity p,
a 1-point of g with multiplicity q. We denote by NL(r, 1; f) the counting function
of those 1-points of f and g for which p > q, each point in this counting functions
is counted only once. In the same way we can define NL(r, 1; g).

Definition 1.7 ([10]). Let a, b ∈ C ∪ {∞}. We denote by N(r, a; f | g = b) the
counting function of those a-points of f , counted according to multiplicity, which
are b-points of g.

Definition 1.8 ([10]). Let a, b ∈ C ∪ {∞}. We denote by N(r, a; f | g 6= b) the
counting function of those a-points of f , counted according to multiplicity, which
are not the b-points of g.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let f ,
g, F1, G1 be four nonconstant meromorphic functions. Henceforth we shall denote
by h and H the following two functions.

h =
(f ′′
f ′
− 2f ′

f − 1

)
−
( g

′′

g′
− 2g′

g − 1

)
and

H =
(F ′′1
F ′1
− 2F ′1
F1 − 1

)
−
(G′′1
G′1
− 2G′1
G1 − 1

)
.

Lemma 2.1. If f , g be share “(1, 1)” and h 6≡ 0. Then
N(r, 1; f |≤ 1) ≤ N(r, 0;h) + S(r, f) ≤ N(r,∞;h) + S(r, f) + S(r, g) .

Proof. Since f , g share “(1, 1)” it follows that if z0 be a common simple 1-point
of f and g, then in some neighborhoods of z0 we have h = (z− z0)φ(z), where φ(z)
is analytic at z0. Hence by the first fundamental theorem and Milloux theorem
(p. 55 [5]) we get

N(r, 1; f |≤ 1) = NE(r, 1; f, g |≤ 1) + S(r, f)
≤ N(r, 0;h) + S(r, f) ≤ N(r,∞;h) + S(r, f) + S(r, g) �

Lemma 2.2. If f , g share “(1, 1)” and h 6≡ 0. Then
N(r,∞;h) ≤ N(r, 0; f |≥ 2) +N(r, 0; g |≥ 2)

+N(r,∞; f |≥ 2) +N(r,∞; g |≥ 2)
+NL(r, 1; f) +NL(r, 1; g) +N0(r, 0; f ′) +N0(r, 0; g′) + S(r) ,

where N0(r, 0; f ′) is the reduced counting function of those zeros of f ′ which are
not the zeros of f(f − 1) and N0(r, 0; g′) is similarly defined.
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Proof. We can easily verify that possible poles of h occur at (i) multiple zeros of
f and g, (ii) multiple poles of f and g, (iii) the common zeros of f − 1 and g − 1
whose multiplicities are different, (iii) those 1-points of f (g) which are not the
1-points of g (f), (iv) zeros of f ′ which are not the zeros of f(f − 1), (v) zeros of
g′ which are not zeros of g (g − 1). Since all the poles of h are simple the lemma
follows from above. This proves the lemma. �

Lemma 2.3. If for a positive integer k, Nk(r, 0; f ′ | f 6= 0) denotes the counting
function of those zeros of of f ′ which are not the zeros of f , where a zero of f ′
with multiplicity m is counted m times if m ≤ k and k times if m > k then

Nk(r, 0; f ′ | f 6= 0) ≤ N(r, 0; f) +N(r,∞; f)−
∞∑

p=k+1
N
(
r, 0; f

′

f
|≥ p

)
+ S(r, f) .

Proof. By the first fundamental theorem and Milloux theorem (p. 55 [5]) we get

N(r, 0; f ′ | f 6= 0) = N
(
r, 0; f

′

f

)
≤ N

(
r,∞; f

′

f

)
+ S(r, f)

= N(r, 0; f) +N(r,∞; f) + S(r, f) .

Now

Nk

(
r, 0; f

′

f

)
+

∞∑
p=k+1

N
(
r, 0; f

′

f
|≥ p

)
= N

(
r, 0; f ′ | f 6= 0

)
≤ N(r, 0; f) +N(r,∞; f) + S(r, f) .

The lemma follows from above as Nk
(
r, 0; f

′

f

)
= Nk(r, 0; f ′ | f 6= 0). �

Lemma 2.4. Let f , g share “(1, 2)” and h 6≡ 0. Then

T (r, f) ≤ N2(r, 0; f) +N2(r,∞; f) +N2(r, 0; g) +N2(r,∞; g)

−
∞∑
p=3

N
(
r, 0; g

′

g
|≥ p

)
+ S(r, f) + S(r, g) .

Proof. Since f and g share “(1, 2)” it follows that f and g share “(1, 1)”. Also we
note that NL(r, 1; f) +NL(r, 1; g) ≤ N(r, 1; g |≥ 3). So by the second fundamental
theorem Lemmas 2.1, 2.2 and 2.3 we get

T (r, f) ≤ N(r, 0; f) +N(r,∞; f) +N(r, 1; f)−N0(r, 0; f ′) + S(r, f)
≤ N(r, 0; f) +N(r,∞; f) +N(r, 1; f |≤ 1) +N(r, 1; f |≥ 2)−N0(r, 0; f ′)
≤ N2(r, 0; f) +N2(r,∞; f) +N(r, 0; g |≥ 2) +N(r,∞; g |≥ 2)

+N(r, 1; g |≥ 2) +N(r, 1; g |≥ 3) + S(r, f) + S(r, g)
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≤ N2(r, 0; f) +N2(r,∞; f) +N(r, 0; g |≥ 2) +N(r,∞; g |≥ 2)
+N2(r, 0; g′ | g 6= 0) + S(r, f) + S(r, g)
≤ N2(r, 0; f) +N2(r,∞; f) +N2(r, 0; g) +N2(r,∞; g)

−
∞∑
p=3

N
(
r, 0; g

′

g
|≥ p

)
+ S(r, f) + S(r, g) .

�

Lemma 2.5 ([17]). Let f be a nonconstant meromorphic function and let

R(f) =
∑n
k=0 akf

k∑m
j=0 bjf

j

be an irreducible rational function in f with constant coefficients {ak} and {bj}where
an 6= 0 and bm 6= 0. Then

T
(
r,R(f)

)
= dT (r, f) + S(r, f) ,

where d = max{n,m}.

Lemma 2.6. Let F1 = fn(af2+bf+c)f ′
α and G1 = gn(ag2+bg+c)g′

α , where a 6= 0 and
|b|+ |c| 6= 0. Then S(r, F1) = S(r, f) and S(r,G1) = S(r, g).

Proof. Using Lemma 2.5 we see that
T (r, F1) ≤ (n+ 2)T (r, f) + T (r, f ′) + S(r, f) = (n+ 4) T (r, f) + S(r, f)

and

(n+ 2)T (r, f) = T (r, fn(af2 + bf + c)) + 0(1) ≤ T (r, F1) + T (r, f ′) + S(r, f) ,
that is,

T (r, F1) ≥ n T (r, f) + S(r, f) .
Hence S(r, F1) = S(r, f). In the same way we can prove S(r,G1) = S(r, g). �

Lemma 2.7 ([21]). If h ≡ 0 and

lim sup
r→∞

N(r, 0; f) +N(r,∞; f) +N(r, 0; g) +N(r,∞; g)
T (r) < 1 , r ∈ I

then f ≡ g or f · g ≡ 1.

Lemma 2.8. Let f , g be two nonconstant meromorphic functions. Then
fn(af2 + bf + c)f ′gn(ag2 + bg + c)g′ 6≡ α2 ,

where a 6= 0 and |b|+ |c| 6= 0 and n (> 7) is an integer.

Proof. If possible, let
(2.1) fn(af2 + bf + c)f ′gn(ag2 + bg + c)g′ ≡ α2 .

We consider the following cases.
Case 1. The roots of the equation az2 + bz + c = 0 are distinct and suppose they
are β1 and β2.
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Subcase 1.1. One of β1 and β2 say β2 = 0. Then (2.1) reduces to

a2fn+1(f − β1)f ′gn+1(g − β1)g′′ ≡ α2 .

Let z0 be a zero of f with multiplicity p (≥ 1) which is not a zero or pole of α.
Clearly z0 is a pole of g with multiplicity q (≥ 1) such that

(2.2) (n+ 1)p+ p− 1 = (n+ 2)q + q + 1 ,

i.e.
q = (n+ 2)(p− q)− 2 ≥ n .

Again from (2.2) we get

(n+ 2)p = (n+ 3)q + 2 = (n+ 2)q + q + 2 ≥ (n+ 1)(n+ 2) , i.e., p ≥ n+ 1 .

Noting that α is a small function we obtain

N(r, 0; f) ≥ (n+ 1)N(r, 0; f) + S(r, f) .

Next suppose z1 be a zero of f − β1 with multiplicity p (≥ 1) which is not a zero
or pole of α. Then z1 be a pole of g with multiplicity q (≥ 1) such that

2p− 1 = (n+ 1)q + 2q + 1 i.e., p ≥ n+ 5
2 .

Let N⊗(r, 0; f ′) (N⊗(r, 0; g′)) denotes the reduced counting function of those zeros
of f ′ (g′) which are not the zeros of f(f − β1) (g(g − β1)). Since a pole of f is
either a zero of g(g − β1) or a zero of g′ or a zero or pole of α we note that

N(r,∞; f) ≤ N(r, 0; g) +N(r, β1; g) +N⊗(r, 0; g′) + S(r)

≤ 1
n+ 1N(r, 0; g) + 2

n+ 5N(r, β1; g) +N⊗(r, 0; g′) + S(r)

≤
( 1
n+ 1 + 2

n+ 5

)
T (r, g) +N⊗(r, 0; g′) + S(r) .

By the second fundamental theorem we get

T (r, f) ≤ N(r, 0; f) +N(r, β1; f) +N(r,∞; f)−N⊗(r, 0; f ′) + S(r, f)

≤ 1
n+ 1N(r, 0; f) + 2

n+ 5N(r, β1; f) +
( 1
n+ 1 + 2

n+ 5

)
T (r, g)

+N⊗(r, 0; g′)−N⊗(r, 0; f ′) + S(r) ,

i.e., (
1− 1

n+ 1 −
2

n+ 5

)
T (r, f) ≤

( 1
n+ 1 + 2

n+ 5

)
T (r, g)

+N⊗(r, 0; g′)−N⊗(r, 0; f ′) + S(r) .(2.3)

In a similar manner we get(
1− 1

n+ 1 −
2

n+ 5

)
T (r, g) ≤

( 1
n+ 1 + 2

n+ 5

)
T (r, f)

+N⊗(r, 0; f ′)−N⊗(r, 0; g′) + S(r) .(2.4)
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Adding (2.3) and (2.4) we get(
1− 2

n+ 1 −
4

n+ 5

)
{T (r, f) + T (r, g)} ≤ S(r) ,

which is a contradiction for n > 7. Hence this subcase does not hold.
Subcase 1.2. Both the roots β1 and β2 are non zero.
Let z0 be a zero of f with multiplicity p (≥ 1) which is not a zero or pole of α.
Then from (2.1) we get z0 is a pole of g with multiplicity q (≥ 1) such that

(2.5) np+ p− 1 = (n+ 3)q + 1

i.e., q ≥ n−1
2 . So from (2.5) we get

(n+ 1)p ≥ (n+ 3)(n− 1) + 4
2 , i.e., p ≥ n+ 1

2 .

So from above we have

N(r, 0; f) ≥ n+ 1
2 N(r, 0; f) + S(r, f) , and so Θ(0; f) ≥ 1− 2

n+ 1 .

Next suppose z1 be a zero of f − β1 with multiplicity p (≥ 1) and it is not a zero
or pole of α. Then z1 be a pole of g with multiplicity q (≥ 1) such that

2p− 1 = (n+ 3)q + 1 , i.e., p = (n+ 3)q + 2
2 ≥ n+ 5

2 .

N(r, β1; f) ≥ n+ 5
2 N(r, 0; f) + S(r, f) , and so Θ(β1; f) ≥ 1− 2

n+ 5 .

Similarly we can deduce that

Θ(β2; f) ≥ 1− 2
n+ 5 .

Since Θ(0; f) + Θ(β1; f) + Θ(β2; f) ≤ 2, it follows that

3− 4
n+ 5 −

2
n+ 1 ≤ 2 , or 4

n+ 5 + 2
n+ 1 ≥ 1

which is a contradiction for n > 7. Hence this subcase also does not hold.

Case 2. The roots of the equation az2 + bz + c = 0 are equal say β1 = β2 = β.
Let z0 be a zero of f with multiplicity p (≥ 1) which is not a zero or pole of α.
Then z0 is a pole of g with multiplicity q (≥ 1) such that np+ p− 1 = (n+ 3)q+ 1,
i.e.

q ≥ n− 1
2 and so p ≥ n+ 1

2 .

Hence
N(r, 0; f) ≥ n+ 1

2 N(r, 0; f) + S(r, f) .

Next suppose z1 be a zero of f − β with multiplicity p(≥ 1) which is not a zero or
pole of α. Then z1 be a pole of g with multiplicity q(≥ 1) such that

3p− 1 = (n+ 3)q + 1 ≥ n+ 4 , i.e., p ≥ n+ 5
3 .
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Let N⊕(r, 0; f ′) (N⊕(r, 0; g′)) denotes the reduced counting function of those zeros
of f ′ (g′) which are not the zeros of f(f − β) (g(g − β)). Now proceeding in the
same way as done in Subcase 1.1 we note that

N(r,∞; f) ≤
( 2
n+ 1 + 3

n+ 5

)
T (r, g) +N⊕(r, 0; g′) + S(r) .

By the second fundamental theorem we get
T (r, f) ≤ N(r, 0; f) +N(r, β; f) +N(r,∞; f)−N⊕(r, 0; f ′) + S(r, f)

≤ 2
n+ 1N(r, 0; f) + 3

n+ 5N(r, β; f) +
( 2
n+ 1 + 3

n+ 5

)
T (r, g)

+N⊕(r, 0; g′)−N⊕(r, 0; f ′) + S(r) ,
i.e., (

1− 2
n+ 1 −

3
n+ 5

)
T (r, f) ≤

( 2
n+ 1 + 3

n+ 5

)
T (r, g)

+N⊕(r, 0; g′)−N⊕(r, 0; f ′) + S(r) .(2.6)
In a similar manner we get(

1− 2
n+ 1 −

3
n+ 5

)
T (r, g) ≤

( 2
n+ 1 + 3

n+ 5

)
T (r, f)

+N⊕(r, 0; f ′)−N⊕(r, 0; g′) + S(r) .(2.7)
Adding (2.6) and (2.7) we get(

1− 4
n+ 1 −

6
n+ 5

) {
T (r, f) + T (r, g)

}
≤ S(r) ,

which is a contradiction for n > 7. This proves the lemma. �

Lemma 2.9. Let F = fn+1[ af2

n+3 + bf
n+2 + c

n+1
]

and G = gn+1[ ag2

n+3 + bg
n+2 + c

n+1
]
,

where n(≥ 5) is an integer a 6= 0, |b|+ |c| 6= 0. Then F ′ ≡ G′ implies F ≡ G.

Proof. Let F ′ ≡ G′, then F = G+ d where d is a constant. If possible let d 6= 0.
Then by the second fundamental theorem and Lemma 2.5 we get

(n+ 3)T (r, f) ≤ N(r,∞;F ) +N(r, 0;F ) +N(r, d;F ) + S(r, F )
≤ N(r,∞; f) +N(r, 0; f) +N(r, β1; f) +N(r, β2; f)

+N(r, 0; g) +N(r, β1; g) +N(r, β2; g) + S(r, f)

≤ 4T (r, f) + 3T (r, g) + S(r, f) ,(2.8)

where β1 and β2 are the roots of the equation az2 + bz+ c = 0. In a similar manner
we get
(2.9) (n+ 3)T (r, g) ≤ 3T (r, f) + 4T (r, g) + S(r, g).
Adding (2.8) and (2.9) we get

(n− 4){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),
which is a contradiction for n ≥ 5. So d = 0 and the lemma follows. �
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Lemma 2.10 ([4]). Let

Q(ω) = (n− 1)2(ωn − 1)(ωn−2 − 1)− n(n− 2) (ωn−1 − 1)2 ,

then

Q(ω) = (ω − 1)4(ω − β1) (ω − β2) . . . (ω − β2n−6) ,

where βj ∈ C r {0, 1} (j = 1, 2, . . . , 2n− 6), which are distinct respectively.

Lemma 2.11. Let F and G be given as in Lemma 2.9 and n (≥ 3) be an integer.
Suppose F ≡ G. Then the following holds.

(i) If b 6= 0, c = 0 and Θ(∞; f) + Θ(∞; g) > 4
n+2 then f ≡ g.

(ii) If b 6= 0, c 6= 0, and the roots of the equation az2+bz+c = 0 are distinct and
one of f and g is non entire meromorphic functions having only multiple
poles then f ≡ g.

(iii) If b 6= 0, c 6= 0, and the roots of the equation az2 + bz + c = 0 coincides
then f ≡ g.

(iv) If b = 0, c 6= 0 then either f ≡ g or f ≡ −g.
If n is an even integer then the possibility f ≡ −g does not arise.

Proof. We consider the following cases.

Case 1. Suppose c = 0 and b 6= 0. Then F ≡ G implies

(2.10) fn+2( a

n+ 3f + b

n+ 2) ≡ gn+2( a

n+ 3g + b

n+ 2) .

Let us assume f 6≡ g. We consider two cases:
Subcase 1.1. Let y = g

f be a constant. Since y 6= 1, from (2.10) it follows that
yn+2 6= 1, yn+3 6= 1 and f ≡ − b(n+3)(1−yn+2)

a(n+2)(1−yn+3) , a constant, which is impossible.

Subcase 1.2. Let y = g
f be nonconstant. Noting that f 6≡ g clearly the poles of f

comes from the zeros of y − uk where uk = exp( 2kπi
n+3 ), k = 1, 2, . . . , n+ 2. So we

have
n+2∑
k=1

N(r, uk; y) ≤ N(r,∞; f) .

By the second fundamental theorem and Lemma 2.5 we get

n T (r, y) ≤
n+2∑
k=1

N(r, uk; y) + S(r, y) ≤ N(r,∞; f) + S(r, y)

≤ (1−Θ(∞; f) + ε) T (r, f) + S(r, y)
= (n+ 2) (1−Θ(∞; f) + ε) T (r, y) + S(r, y) ,

i.e.,

(2.11)
[ n

n+ 2 − 1 + Θ(∞; f)− ε
]
T (r, y) ≤ S(r, y) ,
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where ε > 0 be arbitrary. In a similar manner we can obtain

(2.12)
[ n

n+ 2 − 1 + Θ(∞; g)− ε
]
T (r, y) ≤ S(r, y) .

Adding (2.11) and (2.12) we get

(2.13)
(

Θ(∞; f) + Θ(∞; g)− 4
n+ 2 − 2ε

)
T (r, y) ≤ S(r, y) .

Since Θ(∞; f) + Θ(∞; g) > 4
n+2 we can choose a δ > 0 such that

Θ(∞; f) + Θ(∞; g) = 4
n+ 2 + δ .

So for 0 < ε < δ
2 from (2.13) we can deduce a contradiction. Hence f ≡ g.

Case 2. Suppose b 6= 0 and c 6= 0. Then F ≡ G implies

(2.14) Afn+3 +Bfn+2 + Cfn+1 ≡ Agn+3 +Bgn+2 + Cgn+1 ,

where A = a
n+3 , B = b

n+2 and C = c
n+1 .

Let us assume f 6≡ g.
Subcase 2.1. Suppose the roots of the equation az2 + bz + c = 0 are distinct. Since
(2.14) implies f , g share (∞,∞) without loss of generality we may assume that g
has some multiple poles. Putting η = f

g in (2.14) we get

Ag2(ηn+3 − 1) +Bg(ηn+2 − 1) + C(ηn+1 − 1) ≡ 0 ,

i.e.,

(2.15) Ag2 ≡ −Bg ηn+2 − 1
ηn+3 − 1 − C

ηn+1 − 1
ηn+3 − 1 .

Let z0 be a pole of g which is not a root of η − uk = 0, where uk = exp( 2kπi
n+3 ),

k = 1, 2, . . . , n+ 2 with multiplicity p. Then from (2.15) we have

2p = p i.e., p = 0 ,

which is impossible. The other poles of the right hand side of (2.15) are the roots
of η − uk = 0 where uk = exp( 2kπi

n+3 ), k = 1, 2, . . . , n + 2. Suppose z1 is a zero of
η − uk of multiplicity r. From (2.15) we see that z1 is a pole of g with multiplicity
s (say) such that

2s = r + s i.e., r = s .

Since g has no simple pole it follows that η − uk has no simple zero for k =
1, 2, . . . , n+ 2. Hence

Θ(uk; η) ≥ 1
2

for k = 1, 2, . . . , n+2. Since
n+2∑
k=1

Θ(uk; η) ≤ 2 and n ≥ 3 we arrive at a contradiction.
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Subcase 2.2. Suppose the roots of the equation az2 + bz + c = 0 coincides and so
we obtain b2 = 4ac. Putting η = f

g in (2.14) we get

a(n+ 2)(n+ 1)g2(ηn+3 − 1) + b(n+ 3)(n+ 1)g(ηn+2 − 1)
+ c(n+ 3)(n+ 2)(ηn+1 − 1) ≡ 0 .(2.16)

Since η is not constant using Lemma 2.10 we get from (2.16) that

[
(n+ 2)(n+ 1)g(ηn+3 − 1) + b

2a (n+ 3)(n+ 1)(ηn+2 − 1)
]2

=− (n+ 3)(n+ 1)
[ c
a

(n+ 2)2(ηn+3 − 1)(ηn+1 − 1)

− b2

4a2 (n+ 3)(n+ 1)(ηn+2 − 1)2
]

= − c
a

(n+ 3)(n+ 1)Q(η) ,

where Q(η) = (η − 1)4(η − β1) (η − β2) . . . (η − β2n) and βj ∈ C r {0, 1}
(j = 1, 2, . . . , 2n) which are distinct. This implies that every zero of η − βj (j =
1, 2, . . . , 2n) has a multiplicity of at least 2, i.e., Θ(βj ; η) ≥ 1

2 for (j = 1, 2, . . . , 2n).

But
2n∑
j=1

Θ(βj ; η) ≤ 2 which implies n ≤ 2. This is a contradiction. So η is constant

and from (2.15) we have (ηn+1 − 1) = 0 and (ηn+2 − 1) = 0 which implies η = 1
and so f ≡ g.

Case 3. Suppose b = 0 and c 6= 0. Then (2.14) reduces to

[ a

n+ 3f
2 + c

n+ 1

]
fn+1 ≡

[ a

n+ 3g
2 + c

n+ 1

]
gn+1 .

Now proceeding in the line of Lemma 2.4 in [12] we can prove f ≡ g and f ≡ −g
and if n is an even integer then the possibility of f ≡ −g does not arise. �

Lemma 2.12 ([19]). Let f be a nonconstant meromorphic function. Then

N(r, 0; f (k)) ≤ kN(r,∞; f) +N(r, 0; f) + S(r, f) .

Lemma 2.13. Let F and G be given as in Lemma 2.9 and F1, G1 be given by
Lemma 2.6. If γ1, γ2 are the roots of a

n+3z
2 + b

n+2z + c
n+1 = 0 and β1, β2 are the

roots of az2 + bz + c = 0. Then

T (r, F ) ≤ T (r, F1) +N(r, 0; f) +N(r, γ1; f) +N(r, γ2; f)
−N(r, β1; f)−N(r, β2; f)−N(r, 0; f ′) + S(r) .
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Proof. Clearly F ′ = α F1 and G′ = α G1. By the first fundamental theorem and
Lemmas 2.5, 2.6 we obtain

T (r, F ) = T (r, 1
F

) +O(1) = N(r, 0;F ) +m(r, 1
F

) +O(1)

≤ N(r, 0;F ) +m(r, F
′

F
) +m(r, 0;F ′) +O(1)

= T (r, F ′) +N(r, 0;F )−N(r, 0;F ′) + S(r, F )
≤ T (r, F1) + (n+ 1)N(r, 0; f) +N(r, γ1; f) +N(r, γ2; f)− nN(r, 0; f)
−N(r, β1; f)−N(r, β2; f)−N(r, 0; f ′) + S(r)

= T (r, F1) +N(r, 0; f) +N(r, γ1; f) +N(r, γ2; f)−N(r, β1; f)
−N(r, β2; f)−N(r, 0; f ′) + S(r) . �

3. Proof of the theorem

Proof of Theorem 1.1. Let F , G be defined as in Lemma 2.9 and F1 and G1 be
defined as in Lemma 2.6. Then it follows that F ′ and G′ share “(α; 2)” and hence
F1 and G1 share “(1, 2)”. Suppose H 6≡ 0. Then by Lemmas 2.4, 2.6 and (2.6) we
get

T (r, F1) ≤ N2(r, 0;F1) +N2(r,∞;F1) +N2(r, 0;G1)
+N2(r,∞;G1) + S(r, f) + S(r, g)
≤ 2N(r, 0; f) +N(r, β1; f) +N(r, β2; f) + 2N(r, 0; g)

+N(r, β1; g) +N(r, β2; g) + 2N(r,∞; f) + 2N(r,∞; g)
+N(r, 0; f ′) +N(r, 0; g′) + S(r) .(3.1)

Now from Lemmas 2.5, 2.12 and 2.13 we can obtain from (3.1) for ε(> 0)

(n+ 3)T (r, f) ≤ 2N(r, 0; f) + 2N(r,∞; f) + 3T (r, f) + 2N(r, 0; g)
+ 2N(r,∞; g) + 2T (r, g) +N(r, 0; g′) + S(r)
≤ 5T (r, f) + 5T (r, g) + 2N(r,∞; f) + 3N(r,∞; g) + S(r)
≤ (15− 2Θ(∞; f)− 3Θ(∞; g) + 2ε) T (r) + S(r) .(3.2)

In a similar manner we can obtain

(3.3) (n+ 3)T (r, g) ≤ (15− 3Θ(∞; f)− 2Θ(∞; g) + 2ε)T (r) + S(r) .

From (3.2) and (3.3) we get

(3.4)
[
n−12+2Θ(∞; f)+2Θ(∞; g)+min{Θ(∞; f); Θ(∞; g)}−2ε

]
T (r) ≤ S(r) .
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Since ε (> 0) is arbitrary, (3.4) implies a contradiction. Hence H ≡ 0.
Since for ε > 0 we have

N(r, 0; f ′) ≤ T (r, f ′)−m
(
r,

1
f ′

)
≤ m(r, f) +N(r,∞; f) +N(r,∞; f)−m

(
r,

1
f ′

)
+ S(r, f)

≤ (2−Θ(∞; f) + ε)T (r, f)−m
(
r,

1
f ′

)
+ S(r, f) .

We note that
N(r, 0;F1) +N(r,∞;F1) +N(r, 0;G1) +N(r,∞;G1)

≤ N(r, 0; f) +N(r, β1; f) +N(r, β2; f) +N(r,∞; f) +N(r, 0; f ′)
+N(r, 0; g) +N(r, β1; g) +N(r, β2; g) +N(r,∞; g) +N(r, 0; g′)

≤ (12− 2Θ(∞; f)− 2Θ(∞; g) + 2ε)T (r)
−m(r, 0; f ′)−m(r, 0; g′) + S(r) .(3.5)

Also using Lemma 2.5 we get

T (r, F ′) +m
(
r,

1
f ′

)
= m

(
r, fn(af2 + bf + c)f ′

)
+m

(
r,

1
f ′

)
+N(r,∞; fn(af2 + bf + c)f ′) ≥ m

(
r, fn(af2 + bf + c)

)
+N(r,∞; fn

(
af2 + bf + c)

)
= T (r, fn

(
af2 + bf + c)

)
= (n+ 2)T (r, f) +O(1) .(3.6)

Similarly

(3.7) T (r,G′) +m
(
r,

1
g′

)
≥ (n+ 2)T (r, g) +O(1) .

From (3.6) and (3.7) we get

(3.8) max
{
T (r, F1), T (r,G1)

}
≥ (n+ 2)T (r)−m

(
r,

1
f ′

)
−m

(
r,

1
g′

)
+O(1) .

By (3.5) and (3.8) applying Lemma 2.7 we get either F1 ≡ G1 or F1G1 ≡ 1.
Now from Lemma 2.8 it follows that F1G1 6≡ 1. Again F1 ≡ G1 implies F ′ ≡ G′.

So from Lemmas 2.9 and 2.11 the theorem follows. �
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