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ITERATIVE SOLUTION OF NONLINEAR EQUATIONS OF THE
PSEUDO-MONOTONE TYPE IN BANACH SPACES

A .M. SADDEEK AND SAYED A. AHMED

ABSTRACT. The weak convergence of the iterative generated by J(un4+1 —
un) = 7(Fuy — Jup), n > 0, (0 <7 = min{l, %}) to a coincidence point
of the mappings F,J: V — V* is investigated, where V is a real reflexive
Banach space and V* its dual (assuming that V* is strictly convex). The
basic assumptions are that J is the duality mapping, J — F' is demiclosed at
0, coercive, potential and bounded and that there exists a non-negative real
valued function r(u,n) such that

sup {r(u,n)} =A<o0
u,neV
r(u,mIJ(uw—n)llvx 2 I(J = F)(w) = (J = F)()llv+, YuneV.
Furthermore, the case when V is a Hilbert space is given. An application
of our results to filtration problems with limit gradient in a domain with
semipermeable boundary is also provided.

1. INTRODUCTION

A map ®: [0,00) — [0,00) is said to be a gauge function if ® is continuous
and strictly increasing, ®(0) = 0, and lim;_ 1 o, ®(¢t) = +00. Suppose V is a real
Banach space with a strictly convex dual V*. A map J: V — V* is said to be a
duality map with gauge function @ if for each u € V, (Ju,u) = ®(||Ju||v)||u|v and
| Jullv+ = @(||ul|v), where (-,-) denotes the duality relation between V and V*. It
is well known that (see, e.g. [7]) if V* is strictly convex, then J is single-valued and
if V* is uniformly convex and V is a reflexive Banach space, then J is uniformly
continuous on bounded sets (see e.g. [0, Chapter 8]).

When ®(t) = ¢, J is called a normalized duality map. If V is a Hilbert space,
then the normalized duality map J is the identity map I.

It is known (see, e.g. [7]) that Ju = ®(Jjul|v )u§ where uf € V*, ||uf|lv+ = 1 and
(ug,uo) = lluollv =1 (uo = iy v # 0).

We always use the symbols “—” and “—7” to indicate strong and weak conver-
gence, respectively.
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A map F: V — V* is called demiclosed at 0 (see, e.g. [4]) if for any sequence
{un}22, in V the following implication holds: u,, — u and Fu, — 0 as n — oo
implies v € V and Fu = 0.

According to [2] and [I1], the mapping F': V' — V* is said to be pseudo-monotone
if it is bounded and

up, =u €V and lim sup(Fup,u, —u) <0

n—oo

imply
(Fu,u—mn) < lim inf(Fuy,,u, —n) forall neV.

n—oo
Recall that a map A: V — V* is said to be bounded Lipschitz continuous (see,
e.g. [3]) if
[Auw = Anllv- < p(R)®(|lu —nllv) Yu,neV,
where R = max{||ul|v,|nllv}, i is nondecreasing function on [0,00) and ® is the
gauge function.
An operator A: V — V* is said to be coercive (see, e.g. [7]) if

(Au,u) = p([[ullv)llufv-; 5l{g{)@ﬁ(f) = +oo.

According to [3] the mapping A is said to be potential if
1

/0 (<A(t(u+n)),u+n>—<A(tu),u>)dt:/0 (Alu+tn),mydt YuneV.

The main objective of this work is the construction and investigation of approxi-
mation methods for solving the nonlinear equation

(%) Au=f

in Banach and Hilbert spaces, where A is a bounded Lipschitz continuous, potential
coercive, pseudo monotone operator from V into V* and f € V*. The problem (%)
arises in the description of steady-state filtration processes (see, e.g. [8]).

2. MAIN RESULTS
We now establish the main results of this section:

Theorem 1. Let V be a real reflexive Banach space with a strictly convex dual
space V*, and let F,J: V — V* (where J is the duality map) be two mappings.
Suppose J — F is demiclosed at 0, coercive, potential and bounded, and there exists
a non-negative real valued function r(u,n) such that

(1) sup {r(u,m)} =A< o0
u,neV

2 rlwn)lJu=n)lv 2 [(J = F)(w) = (J = F)m)llv-, VuneV.
Then the sequence {un 2, defined by
(3) J(tps1 — upn) = 7(Fuy — Juy), n>0,

where ug is a point in V and 0 < 7 = min {1, %}, 1s bounded in V' and all its weak
limit points are elements of § = {u € V: Fu= Ju}.
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Proof. Let us first prove the boundedness of the iterative sequence; more precisely,
let us show that

(4) {Un}zozo CSO? ||un||V <Ry, n=0,12...,
where Ry = sup,eg, lullv, So = {u € M: Fi(u) < Fi(uo)}, and Fy: V —
R U {400} is a functional defined by the formula

(5) Fl(u):/0 (J = F)(tu),uydt YueV.

By definition, ug € Sp. Let u,, € Sp; we claim that u,4+1 € Sp.
Indeed, substituting v = wp41 + t(tn — Unt1), N = Uy in (2) and writing r for
7(Un+1,Un), We obtain

Pl = 1) (un = ungr))llve 2 [(J = F)(unta + t(un = uns1)) = (J = F)(un)lv- -
Using the definition of J, we get

r®([lun — untallv) = r@([[(t = 1)(un = uns1)|lv)

©) > (7 = F) s+ 1t — t0ni2)) — (7 — F) () v -

for t € [0, 1]. Consequently, it follows that

[((J = F)(unt1 + t(un — unt1)) = (J = F)(un), un — Un1)]

7

v Sr®([lun — unia|[v)llun — uniallv -

Or

(8) _‘<(J - F)(unJrl + t(un - un+1)) - (J - F)(un),un — ’U,n+1>|

> = r®(|lun — uns1llv)ltn — wngallv -

Further, following [3], from (), we obtain
Fi(un) = Fi) = [ (0 = F){t(,)v ) = (7 = F)Ety10). 010
= /0 <(J - F)(unJrl + t(un - un+1)); Un — un+1>) dt

_ /0 (] = F)(ttnsr + i — uns))
= (J = F)(un), un — upt1)) dt + ((J = F)(un), un — tn41)
> _/0 ’<(J — F)(un+1 +t(un - un+1))

= (J = F)(un), un — thng1)| dt + ((J = F)(un), tn — tns1) -
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This, together with [8] and , implies that
Fy (1) = Fi(tns1) = —r® (i — w1 1) tn — s
+ 7 T (U1 — Un)y Ung1 — Un)
2 AP ([Junt1 = unllv)[uns1 — unllv
+ 7 T (U1 — Un), Ung1 — Up)
(9) = n®([[unt1 — unl[v)llunt1 — unllv, o= (77" =) >0.

Therefore, F (un1+1) < Fi(uy) < Fi(ug), i.e., unt1 € So, which completes the proof

of ().

Since the iterative sequence is bounded and the operator J — F is bounded, it
follows from the definition of Fy that {F(u,)}5, is a bounded sequence; by (9),
it is monotone. Therefore, the numerical sequence {F(uy,)}52, has a finite limit.
Consequently, from @, we obtain

lim  p®@(|[un — up1[[v)|[un — unsa|lvy = 0.
n—-4oo

This, together with the continuity and the strictly monotone growth of ®, implies
that

(10) nl_{ﬂr_loo l[tn = Ungrflv =0.

Using the definition of J again, it follows from and that

lim |[Juy, — Fup|yv« =0.

Since V' is reflexive and {u,};2 is bounded, we find some subsequence {u,, }52,
of {u,}52, which converges weakly to some u* € V. Moreover, u* is a coincidence
point of F' and J, since Ju,; — Fu,; — 0 and J — F' is demiclosed at 0. Hence
Ju* = Fu*. This completes the proof. (I

We close this section with the case when the space V is a Hilbert space

Theorem 2. Let V = H be a real Hilbert space, and let F' be a self-mapping of H
such that I — F is demiclosed at 0, coercive, potential and bounded and there exists
a nonnegative real-valued function r(u,n) such that holds,

) rwn)u=nlla = (I = F)(w) = = F))lla, Yu neH.

Then the sequence {un 5>, of Mann iterates (see, e.g. [9]) defined by
Upr1 = (1= T)up +7Fun, n>0,

where 0 < 7 = min{1, %}, converges weakly to a fized point of F'.

Proof. By Theorem [1} it follows that there exists a subsequence {un,}32, of
{un}52y which converges weakly to a fixed point of F. The rest of the argument
now follows exactly as in ([I0, p.70]) to yield that {u,}>2, converges weakly to a
fixed point of F'. O
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3. AN APPLICATION TO FILTRATION PROBLEMS WITH LIMIT GRADIENT IN A
DOMAIN WITH SEMIPERMEABLE BOUNDARY

In this section we apply our results to the stationary problem on the filtration
of an incompressible fluid governed by a discontinuous filtration law with the limit
gradient (see, e.g. []).

We consider the nonlinear stationary problem of filtration theory for the case of
a discontinuous law with the limit gradient (see., e.g. [6])

V' (u) = —g(|Vul*)Vu,

where ?(u) is the filtration velocity, u the pressure, Vu = gradu, g(£2)¢ is the
function describing the filtration law. Let €2 be a bounded domain in R, n > 1, with
the Lipschitz continuous boundary T

We assume that g(€2)¢ = go(€2)¢ + g1(€2)¢, where € — g;(€2)¢, i = 0,1, are
nonnegative functions, equal to zero when £ < 3, (8 > 0 is the limit gradient),
€ — go(£?)€ is continuous and strictly increasing when & > (3,

(12) a(§=B)P < go(®)E < co(6 =Bt

when € > 3, p > 1, ¢1, c2 > 0, and ¢1(£2)€ =9 > 0 for £ > 3. We also assume
that

(90(€*)€ — go(11*)n)
&—n)
Following [6], we define the solution of stationary filtration problem with a discon-

tinuous law as the function u € VVO1 P(2), which satisfies the nonlinear equation

Au=f,

where the operator A: Wg’p(Q) — Wq_l(Q), q= ﬁ is induced by the form

(13) <co(l+&E4+n)P2 forall &neRU{+o0}.

Au = —div(g(| Vu |*)Vu),

and f € W, 1(Q) is the density of external sources.
It is known that the operator A is pseudo-monotone potential coercive (see, e.g.

8]).

The following lemma is proved in [IJ.

Lemma 1 (sce [1]). Let V.= WyP(Q), p > 2. Then A is bounded Lipschitz
continuous with

(&) = es(1+26)P% D ¢3>0, and BE)=¢.

Remark 1. If we set p = ¢ = 2 in Lemma [I} the bounded Lipschitz continuous
condition reduces to

[Au — Anlly- < esllu—nly YVu neV

which is exactly the condition of Lipschitz continuity of the operator A with
constant c3 > 0.
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Theorem 3. Let V = Wol’p(Q), p >2 V= W-1Q), ¢ = L. Suppose

A:V — V* is a bounded Lipschitz continuous pseudo—jnonotone potgr:tlz';zl coercive
mapping. Then the sequence {u,}52, generated from a suitable ug € V' by
(14) J(upt1 —up) =7(f — Au,), n>0,
where 0 < 7 = min{l, %}, feV*, with
sup{(1 + [[ully + | nllv )P0} =A< o0, p>2
is bounded in V' and all its weak limit points are solutions of the equation
(15) Au=f.

Proof. Note that has at least one solution because of conditions on A (see,
e.g. [7). We apply Theoremwith F:V — V* defined by Fu=Ju — Au+ f. If
we set

Of = {2 Q| V@) |> B}, O =0/
and

) = [ [VaP~*(Va, Vi) de.
Q

Then taking into account for all u, n € V, we get
(o) = [ fao([ V) (T, V)] da

<cz/ M(V&Vﬂ)dm.
o

= IVl
Therefore,
(o) < ex [ [Vl = B~ Vi da
Q3
< oo / V] — BIP da]? [Vl
Qf
< e Vull [Vl
() = [ o1(FuP)(Va, V) de
Q
Sﬂ/ IandISﬂ/ V] dz = 9| Vnllv -
Qf Q
Thus

(Au,n) < [eal[Vullp " + 01V ]v -
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This implies

(A = Jun) < leal Gl + 0)|Vally + 50 [ Vol da
Q5

< [eal Vullt" + ][ Vally + 571 / Vi de
Q

< fea| Vally ™ + 9+ 67| Vally
Consequently,

Au—J
| Au — Jully~ = sup {Au — Ju,m)
n#0 lInllv

< e Vulll ' + 9+ 677 YueV
which implies that
[Fullvs < [|Ju— Aufy + [| f[lv+

< lealValf™ 9+ 677+ (1 f ][]

Now we are going to prove that condition is satisfied. Since p > 2, it follows
from Lemma [I] that

I(J = F)u—(J = F)nllv. = [[Au = Anl[y-

<cs(L+|lullv + Inllv)P®Olu—nllv, Vu, neV.
Hence we see that condition is satisfied for
r(u,v) = (14 |lully +jvllv) and |[J(u—n)llv- = csllu—nlv.

Also from the pseudomonotonicity, coercivity, and the potentiality of A we obtain
the boundedness, coercivity and the potentiality of J — F.

It remains to show that J — F' is demiclosed at 0. Let {uy, }7°, be a subsequence
of {u,}22, such that w,, — u* and {Au,, — f}32, converges strongly in V' to
Zero. Suppose

(16) lim sup(Auy, , u,, —u*) < 0.

k—oo
Since A is pseudo-monotone, then
klingo inf(Auy, , up, —n) > (Au*,u* —n) VneVv.
Or
(17) klin;sup(Aunk,n —Up, ) < (Au*, n—u*))y VneV.
Now we prove that A satisfies condition .
Since u,, — v* in V, then it is bounded, consequently

lim sup(Au,, — f,un, —u*) < lm sup||Au,, — fllve||un, —v*|lv
k— 400 k——+o00

< const lim sup ||Aun, — fllv+ =0.
k—-+oco
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Hence, from , we have

<AU*_fa77_U*>Zkh_)rgosup<Aunk_f7n_unk> VUGV

Analogically to the above argument, we get

klim sup(Aun, — f,n—tn,) =0 VYneV,

that is u* is the solution of the following variational inequality

(Au* — fp—u*) >0 VneV,

and consequently (see, e.g. [7]), Au* — f = 0. Therefore J — F' is demiclosed at
Oon V. (]

An application of Theorem [I| now completes the proof of Theorem
Remark 2. It follows from Remark [I] that relation (2) is satisfied with r(u,v) =1

and

1T (w = n)l[v+ = esllu —nllv -

It is obvious that all conditions of Theorem [2| are satisfied. Therefore, the sequence
{un}52, generated by converges weakly to a solution of (T5)).

Remark 3. It should be noted that at every step of the iterative process it
is necessary to solve the nonlinear problem

—|Jw|ZPdiv(|VwP2Vw) = 7(f — Aup), W =1tns1 —un €V, p>2

which, with the help of the substitution w = |lw ||? w1, reduces to the problem

—div(|Vur [P72Vw) = 7(f — Auy,) .

When p = 2, reduces to solve

il

2
3
4
5

6

(7

—Aw=7(f - Au,), W=Upy1 —u, €V.
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