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SOME RESULTS ON THE GROWTH PROPERTIES
OF WRONSKIANS

Sanjib Kumar Datta and Arindam Jha

Abstract. The aim of this paper paper is to study the comparative growth
properties of the composition of entire and meromorphic functions and wrons-
kians generated by them improving some earlier results.

1. Introduction, definitions and notations

We denote by C the set of all finite complex numbers. Let f be a meromorphic
function and g be an entire function defined on C. We use the standard notations
and definitions in the theory of meromorphic functions which are available in [3].
In the sequel we use the following notation:

log[k] x = log
(

log[k−1] x
)

for i = 1, 2, 3, . . . and log[0] x = x.
We recall the following definitions:

Definition 1. The order ρ (f) and lower order µ (f) of a meromorphic function f
are defined as

ρ (f) = lim sup
r→∞

log T (r, f)
log r and µ (f) = lim inf

r→∞

log T (r, f)
log r .

If f is entire, one can easily verify that,

ρ (f) = lim sup
r→∞

log[2] M (r, f)
log r and µ (f) = lim inf

r→∞

log[2] M (r, f)
log r .

Definition 2. The hyper order ρ2 (f) and hyper lower order µ2 (f) of a meromor-
phic function f are defined as follows:

ρ2 (f) = lim sup
r→∞

log[2] T (r, f)
log r and µ2 (f) = lim inf

r→∞

log[2] T (r, f)
log r .

If f is entire, then

ρ2 (f) = lim sup
r→∞

log[3] M (r, f)
log r and µ2 (f) = lim inf

r→∞

log[3] M (r, f)
log r .
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Definition 3. The type τ (f) of a meromorphic function f is defined as :

τ (f) = lim sup
r→∞

T (r, f)
rρ(f) , 0 < ρ (f) <∞ .

When f is entire, then

τ (f) = lim sup
r→∞

logM (r, f)
rρ(f) , 0 < ρ (f) <∞ .

Definition 4. A function µf (r) is called a lower proximate order of a meromorphic
function f of finite lower order µ (f) if

(i) µf (r) is non negative and continuous for r ≥ r0, say,
(ii) µf (r) is differentiable for r ≥ r0 except possibly at isolated points at which

µ′f (r + 0) and µ′f (r − 0) exists,
(iii) lim

r→∞
µf (r) = µ (f),

(iv) lim
r→∞

rµ′f (r) log r = 0 and

(v) lim inf
r→∞

T (r,f)
rµf (r) = 1.

Definition 5. Let a be a complex number, finite or infinite. The Nevanlinna
deficiency and Valiron deficiency of ‘a’ with respect to a meromorphic function f
is defined as

δ (a; f) = 1− lim sup
r→∞

N (r, a; f)
T (r, f) = lim inf

r→∞

m (r, a; f)
T (r, f)

and

∆ (a; f) = 1− lim inf
r→∞

N (r, a; f)
T (r, f) = lim sup

r→∞

m (r, a; f)
T (r, f) .

From the second fundamental theorem it follows that the set of values of
a ∈ C ∪ {∞} for which δ (a; f) > 0 is countable and

∑
a 6=∞

δ (a; f) + δ (∞; f) ≤ 2

(cf. [3, p. 43]). If in particular
∑
a 6=∞

δ (a; f) + δ (∞; f) = 2, we say that f has the

maximal deficiency sum.

Definition 6. A meromorphic function a = a (z) is called small with respect to f
if T (r, a) = S (r, f).

Definition 7. Let a1, a2, . . . , ak be linearly independent meromorphic functions
and small with respect to f . We denote by L (f) = W (a1, a2, . . . , ak, f) the
Wronskian determinant of a1, a2, . . . , ak, f i.e.,

L (f) =

∣∣∣∣∣∣∣∣∣
a1 a2 . . . ak f
a′1 a′2 . . . a′k f ′

...
...

...
...

...
a

(k)
1 a

(k)
2 . . . a

(k)
k f (k)

∣∣∣∣∣∣∣∣∣ .



SOME RESULTS ON THE GROWTH PROPERTIES OF WRONSKIANS 61

Since the natural extension of a derivative is a differential polynomial, in this
paper we prove our results for a special type of linear differential polynomials
viz., the Wronskians. In the paper we prove some new results depending on the
comparative growth properties of composite entire or meromorphic functions and
Wronskians generated by one of the factors which improve some earlier theorems.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.
Lemma 1 ([1]). If f is meromorphic and g is entire then for all sufficiently large
values of r

T (f ◦ g) ≤ {1 + o (1)} T (r, g)
logM (r, g)T (M (r, g) , f) .

Lemma 2 ([2]). Let f be meromorphic and g be entire and suppose that 0 < µ ≤
ρg ≤ ∞. Then for a sequence of values of r tending to infinity,

T (r, f ◦ g) ≥ T (exp (rµ) , f) .
Lemma 3 ([5]). Let f be a transcendental meromorphic function having maximal
deficiency sum. Then

lim
r→∞

T (r, L (f))
T (r, f) = 1 + k − kδ (∞; f) .

Lemma 4. If f be a transcendental meromorphic function with the maximal
deficiency sum, then

ρ (L (f)) = ρ (f)

and

µ (L (f)) = µ (f) .

Also

τ (L (f)) = {1 + k − kδ (∞; f)} τ (f) .

Proof. By Lemma 3, lim
r→∞

logT (r,L(f))
logT (r,f) exists and equal to 1. So

ρ (L (f)) = lim sup
r→∞

log T (r, f)
log r · lim

r→∞

log T (r, L (f))
log T (r, f)

= ρ (f) · 1 = ρ (f) .
In a similar manner, µ (L (f)) = µ (f).
Again

τ (L (f)) = lim sup
r→∞

T (r, L (f))
rρ(L(f))

= lim sup
r→∞

T (r, f)
rρ(f) · lim

r→∞

T (r, L (f))
T (r, f)

= {1 + k − kδ (∞; f)} τ (f) .
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This proves the lemma. �

Lemma 5. Let f be a transcendental meromorphic function with the maximal
deficiency sum. Then the hyper order and (hyper lower order) of L (f) and f are
equal.

The proof of Lemma 5 is omitted because it can be carried out in the line of
Lemma 4.

Lemma 6. For a meromorphic function f of finite lower order, lower proximate
order exists.

The lemma can be proved in the line of Theorem 1 [4] and so the proof is omitted.
For further reference see also [8] and [9].

Lemma 7. Let f be a meromorphic function of finite lower order µ (f). Then for
δ (> 0) the function rµ(f)+δ−µf (r) is ultimately an increasing function of r.

Proof. Since
d

dr
rµ(f)+δ−µf (r) =

{
µ (f) + δ − µf (r)− rµ′f (r) log r

} rµ(f)+δ−µf (r)

r
> 0

for all sufficiently large values of r, the lemma follows. �

Lemma 8 ([6]). Let f be an entire function of finite lower order. If there exists
entire functions ai (i = 1, 2, . . . , n;n ≤ ∞) satisfying T (r, ai) = o {T (r, f)} and
n∑
i=1

δ (ai; f) = 1, then lim
r→∞

T (r,f)
logM(r,f) = 1

π .

3. Theorems

In this section we present the main results of the paper.

Theorem 1. Let f be a meromorphic function and g be a transcendental entire
function with maximal deficiency sum. If µ (f) and µ (g) are both finite, then

lim inf
r→∞

log T (r, f ◦ g)
T (r, L (g)) ≤ 3 · ρ (f) · 2µ(g)

1 + k − kδ (∞; g) .

Proof. If ρ (f) =∞, the theorem is obvious. So we suppose that ρ (f) <∞. Since
T (r, g) ≤ log+ M (r, g), in view of Lemma 1, we get for all sufficiently large values
of r,

T (f ◦ g) ≤ {1 + o (1)}T (M (r, g) , f) ,
i.e., log T (r, f ◦ g) ≤ log {1 + o (1)}+ log T (M (r, g) , f)

≤ o (1) + (ρ (f) + ε) logM (r, g) ,

i.e., lim inf
r→∞

log T (r, f ◦ g)
T (r, g) ≤ (ρ (f) + ε) lim inf

r→∞

logM (r, g)
T (r, g) .

Since ε (> 0) is arbitrary, it follows that

(1) lim inf
r→∞

log T (r, f ◦ g)
T (r, g) ≤ ρ (f) · lim inf

r→∞

logM (r, g)
T (r, g) .
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As lim inf
r→∞

T (r,f)
rµf (r) = 1, so for given ε (0 < ε < 1) we get for a sequence of values of r

tending to infinity,

(2) T (r, g) ≤ (1 + ε) rµg(r)

and for all sufficiently large values of r,

(3) T (r, g) ≥ (1− ε) rµg(r) .

Since logM (r, g) ≤ 3T (2r, g), we have by (2), for a sequence of values of r tending
to infinity,

(4) logM (r, g) ≤ 3T (2r, g) ≤ 3 (1 + ε) (2r)µg(2r)
.

Combining (3) and (4) we obtain for a sequence of values of r tending to infinity,

logM (r, g)
T (r, g) ≤ 3 (1 + ε)

(1− ε) ·
(2r)µg(2r)

rµg(r) .

Now for any δ (> 0), for a sequence of values of r tending to infinity,

logM (r, g)
T (r, g) ≤ 3 (1 + ε)

(1− ε) ·
(2r)µ(g)+δ

(2r)µ(g)+δ−µg(2r) ·
1

rµg(r)

i.e., logM (r, g)
T (r, g) ≤ 3 (1 + ε)

(1− ε) · 2
µ(g)+δ(5)

because rµ(g)+δ−µg(2r) is ultimately an increasing function of r by Lemma 7.
Since ε (> 0) and δ (> 0) are arbitrary, it follows from (5) that

(6) lim inf
r→∞

logM (r, g)
T (r, g) ≤ 3 · 2µ(g) .

Thus from (1) and (6) we obtain that

(7) lim inf
r→∞

log T (r, f ◦ g)
T (r, g) ≤ 3 · ρ (f) · 2µ(g) .

Now in view of Lemma 3 and (7) we get

lim inf
r→∞

log T (r, f ◦ g)
T (r, L (g)) = lim inf

r→∞

log T (r, f ◦ g)
T (r, g) · lim

r→∞

T (r, g)
T (r, L (g))

≤ 3 · ρ (f) · 2µ(g)

1 + k − kδ (∞; g) .

This proves the theorem. �

Theorem 2. Let f be a meromorphic function of finite order and g be transcen-
dental entire of finite lower order with maximal deficiency sum. Then

lim inf
r→∞

log[2] T (r, f ◦ g)
log T (r, L (g)) ≤ 1 .
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Proof. Since T (r, g) ≤ log+ M (r, g), in view of Lemma 1, we get for all sufficiently
large values of r,

log T (r, f ◦ g) ≤ log {1 + o (1)}+ log T (M (r, g) , f)
≤ o (1) + (ρ (f) + ε) logM (r, g)

i.e., log[2] T (r, f ◦ g) ≤ log[2] M (r, g) +O (1) .(8)

It is well known that for any entire function g, logM (r, g) ≤ 3T (2r, g) (cf. [3]).
Then for 0 < ε < 1 and δ (> 0), for a sequence of values of r tending to infinity it
follows from (5) that

(9) log[2] M (r, g) ≤ log T (r, g) +O (1) .

Now combining (8) and (9) we obtain for a sequence of values of r tending to
infinity,

log[2] T (r, f ◦ g) ≤ log T (r, g) +O (1)

i.e., log[2] T (r, f ◦ g)
log T (r, g) ≤ 1 .(10)

As by Lemma 3, lim
r→∞

logT (r,g)
logT (r,L(g)) exists and is equal to 1, from (10) we obtain that

lim inf
r→∞

log[2] T (r, f ◦ g)
log T (r, L (g)) = lim inf

r→∞

log[2] T (r, f ◦ g)
log T (r, g) · lim

r→∞

log T (r, g)
log T (r, L (g))

≤ 1 · 1 = 1 .

Thus the theorem is established. �

Theorem 3. Let f and g be two transcendental entire functions each having
maximal deficiency sum such that µ (f) > 0, ρ (g) < µ (f) ≤ ρ (f) < ∞. Also let
there exist entire functions ai (i = 1, 2, · · · , n;n ≤ ∞) with

(i) T (r, ai) = o {T (r, g)} as r →∞ for i = 1, 2, . . . , n and

(ii)
n∑
i=1
δ (ai; g) = 1. Then

lim
r→∞

{log T (r, f ◦ g)}2

T (r, L (f))T (r, L (g)) = 0 .

Proof. In view of the inequality T (r, g) ≤ log+ M (r, g) and Lemma 1 we obtain
for all sufficiently large values of r,

T (f ◦ g) ≤ {1 + o (1)}T (M (r, g) , f)
i.e., log T (r, f ◦ g) ≤ log {1 + o (1)}+ log T (M (r, g) , f)

≤ o (1) + (ρ (f) + ε) logM (r, g)

≤ o (1) + (ρ (f) + ε) rρ(g)+ε .(11)
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Again in view of Lemma 4, we get for all sufficiently large values of r,

log T (r, L (f)) > (µ (L (f))− ε) log r
i.e., log T (r, L (f)) > (µ (f)− ε) log r

i.e., T (r, L (f)) > rµ(f)−ε .(12)

Now combining (11) and (12) it follows for all sufficiently large values of r,

(13) log T (r, f ◦ g)
T (r, L (f)) ≤ o (1) + (ρ (f) + ε) rρ(g)+ε

rµ(f)−ε .

Since ρ (g) < µ (f), we can choose ε (> 0) in such a way that

(14) ρ (g) + ε < µ (f)− ε .

So in view of (13) and (14) it follows that

(15) lim
r→∞

log T (r, f ◦ g)
T (r, L (f)) = 0 .

Again from Lemma 3 and Lemma 8 we get for all sufficiently large values of r,
log T (r, f ◦ g)
T (r, L (g)) ≤ o (1) + (ρ (f) + ε) logM (r, g)

T (r, L (g))

i.e., lim sup
r→∞

log T (r, f ◦ g)
T (r, L (g)) ≤ (ρ (f) + ε) lim sup

r→∞

logM (r, g)
T (r, L (g))

i.e., lim sup
r→∞

log T (r, f ◦ g)
T (r, L (g)) ≤ (ρ (f) + ε) lim sup

r→∞

logM (r, g)
T (r, g) · lim

r→∞

T (r, g)
T (r, L (g))

i.e., lim sup
r→∞

log T (r, f ◦ g)
T (r, L (g)) ≤ (ρ (f) + ε) · π · 1

1 + k − kδ (∞; g) .

Since ε (> 0) is arbitrary it follows from above that

(16) lim sup
r→∞

log T (r, f ◦ g)
T (r, L (g)) ≤ ρ (f) · π · 1

1 + k − kδ (∞; g) .

In view of (15) i.e., lim
r→∞

logT (r,f◦g)
T (r,L(f)) = 0 and using (16) we obtain that

lim sup
r→∞

{log T (r, f ◦ g)}2

T (r, L (f))T (r, L (g)) = lim
r→∞

log T (r, f ◦ g)
T (r, L (f)) · lim sup

r→∞

log T (r, f ◦ g)
T (r, L (g))

≤ 0 · πρ (f)
1 + k − kδ (∞; g) = 0 ,

i.e., lim
r→∞

{log T (r, f ◦ g)}2

T (r, L (f))T (r, L (g)) = 0 .

This proves the theorem. �

Theorem 4. If f and g be two entire functions with f to be transcendental having
maximal deficiency sum satisfying the following conditions:
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(i) µ (f) > 0, (ii) ρ2 (f) <∞ and (iii) 0 < µ (g) ≤ ρ (g). Then

lim sup
r→∞

log[2] T (r, f ◦ g)
log[2] T (r, L (f))

≥ max
{ µ (g)
µ2 (f) ,

ρ (g)
ρ2 (f)

}
.

Proof. We know that for r > 0 (cf. [7]) and for all sufficiently large values of r,

(17) T (r, f ◦ g) ≥ 1
3 logM

{1
8M

(r
4 , g
)

+ o (1) , f
}
.

Since µ (f) and µ (g) are the lower orders of f and g respectively then for given ε
(> 0) and for large values of r we obtain that

logM (r, f) > rµ(f)−ε and logM (r, g) > rµ(g)−ε

where 0 < ε < min {µ (f) , µ (g)}. So from (17) we have for all sufficiently large
values of r,

T (r, f ◦ g) ≥ 1
3

{1
8M

(r
4 , g
)

+ o (1)
}µ(f)−ε

i.e., T (r, f ◦ g) ≥ 1
3

{1
9M

(r
4 , g
)}µ(f)−ε

i.e., log T (r, f ◦ g) ≥ O (1) + (µ (f)− ε) logM
(r

4 , g
)

i.e., log T (r, f ◦ g) ≥ O (1) + (µ (f)− ε)
(r

4

)µ(g)−ε

i.e., log[2] T (r, f ◦ g) ≥ O (1) + (µ (g)− ε) log r .(18)

Again in view of Lemma 5, we get for a sequence of values of r tending to infinity,

log[2] T (r, L (f)) ≤ (µ2 (L (f)) + ε) log r

i.e., log[2] T (r, L (f)) ≤ (µ2 (f) + ε) log r .(19)

Combining (18) and (19) it follows for a sequence of values of r tending to infinity

log[2] T (r, f ◦ g)
log[2] T (r, L (f))

≥ O (1) + (µ (g)− ε) log r
(µ2 (f) + ε) log r .

Since ε (> 0) is arbitrary, we obtain that

(20) lim sup
r→∞

log[2] T (r, f ◦ g)
log[2] T (r, L (f))

≥ µ (g)
µ2 (f) .

Again from (17) we get for a sequence of values of r tending to infinity,

log T (r, f ◦ g) ≥ O (1) + (µ (f)− ε)
(r

4

)ρ(g)−ε

i.e., log[2] T (r, f ◦ g) ≥ O (1) + (ρ (g)− ε) log r .(21)

Also in view of Lemma 5, for all sufficiently large values of r, we have

(22) log[2] T (r, L (f)) ≤ (ρ2 (L (f)) + ε) log r = (ρ2 (f) + ε) log r .
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Now from (21) and (22) it follows for a sequence of values of r tending to infinity
that

log[2] T (r, f ◦ g)
log[2] T (r, L (f))

≥ O (1) + (ρ (g)− ε) log r
(ρ2 (f) + ε) log r .

As ε (0 < ε < ρ(g)) is arbitrary, we obtain from above that

(23) lim sup
r→∞

log[2] T (r, f ◦ g)
log[2] T (r, L (f))

≥ ρ (g)
ρ2 (f) .

Therefore from (20) and (23) we get that

lim sup
r→∞

log[2] T (r, f ◦ g)
log[2] T (r, L (f))

≥ max
{ µ (g)
µ2 (f) ,

ρ (g)
ρ2 (f)

}
.

Thus the theorem is established. �

Theorem 5. Let f be transcendental meromorphic with maximal deficiency sum
and g be entire such that (i) 0 < µ2(f) < ρ2(f), (ii) ρ(g) <∞. If h be transcendental
meromorphic function with finite order then

lim inf
r→∞

log[2] T (r, h ◦ g)
log[2] T (r, L (f))

≤ min
{ µ (g)
µ2 (f) ,

ρ (g)
ρ2 (f)

}
.

Proof. In view of Lemma 1 and the inequality T (r, g) ≤ log+ M (r, g), we obtain
for all sufficiently large values of r
(24) log T (r, h ◦ g) ≤ o (1) + (ρ (h) + ε) logM (r, g) .
Also for a sequence of values of r tending to infinity,
(25) logM (r, g) ≤ rµ(g)+ε .

Combining (24) and (25) it follows for a sequence of values of r tending to infinity,
log T (r, h ◦ g) ≤ o (1) + (ρ (h) + ε) rµ(g)+ε

i.e., log T (r, h ◦ g) ≤ {(ρ (h) + ε) + o (1)} rµ(g)+ε

i.e., log[2] T (r, h ◦ g) ≤ O (1) + (µ (g) + ε) log r .(26)
Again in view of Lemma 5, we have for all sufficiently large values of r,
(27) log[2] T (r, L (f)) > (µ2 (L (f))− ε) log r = (µ2 (f)− ε) log r .
Now from (26) and (27) we get for a sequence of values of r tending to infinity,

log[2] T (r, h ◦ g)
log[2] T (r, L (f))

≤ O (1) + (µ (g) + ε) log r
(µ2 (f)− ε) log r .

As ε (> 0) is arbitrary, it follows that

(28) lim inf
r→∞

log[2] T (r, h ◦ g)
log[2] T (r, L (f))

≤ µ (g)
µ2 (f) .

In view of Lemma 1 we get for all sufficiently large values of r,
(29) log[2] T (r, h ◦ g) ≤ O (1) + (ρ (g) + ε) log r .
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Also for a sequence of values of r tending to infinity,

(30) log[2] T (r, L (f)) > (ρ2 (L (f))− ε) log r = (ρ2 (f)− ε) log r .

Combining (29) and (30) we have for a sequence of values of r tending to infinity,

log[2] T (r, h ◦ g)
log[2] T (r, L (f))

≤ O (1) + (ρ (g) + ε) log r
(ρ2 (f)− ε) log r .

Since ε (> 0) is arbitrary, it follows from above that

(31) lim inf
r→∞

log[2] T (r, h ◦ g)
log[2] T (r, L (f))

≤ ρ (g)
ρ2 (f) .

Now from (28) and (29) we get that

lim inf
r→∞

log[2] T (r, h ◦ g)
log[2] T (r, L (f))

≤ min
{ µ (g)
µ2 (f) ,

ρ (g)
ρ2 (f)

}
.

This proves the theorem. �

The following theorem is a natural consequence of Theorem 4 and Theorem 5.

Theorem 6. Let f and h be transcendental entire functions and g be an entire
function such that (i) 0 < µ2 (f) ≤ ρ2 (f) < ∞,(ii) 0 < µ (h) ≤ ρ (h) < ∞, (iii)
0 < µ (g) ≤ ρ (g) <∞. Also let f has a maximal deficiency sum. Then

lim inf
r→∞

log[2] T (r, h ◦ g)
log[2] T (r, L (f))

≤ min
{ µ (g)
µ2 (f) ,

ρ (g)
ρ2 (f)

}
≤ max

{ µ (g)
µ2 (f) ,

ρ (g)
ρ2 (f)

}
≤ lim sup

r→∞

log[2] T (r, h ◦ g)
log[2] T (r, L (f))

.

Taking f = h in Theorem 4 the above theorem can be proved in view of Theorem
5.

Theorem 7. Let f be transcendental meromorphic with maximal deficiency sum
and g be entire such that 0 < µ (f) ≤ ρ (f) <∞. Then

lim sup
r→∞

log[2] T
(
exp

(
rρ(g)) , f ◦ g)

log[2] T (exp (rµ) , L (f))
=∞ .

Proof. Let 0 < µ′ < ρ (g). Then in view of Lemma 2 we get for a sequence of
values of r tending to infinity,

log T (r, f ◦ g) ≥ log T (exp(rµ
′
), f)

≥ (µ (f)− ε) log(exp(rµ
′
))

≥ (µ (f)− ε) rµ
′

i.e., log[2] T (r, f ◦ g) ≥ O (1) + µ′ log r .
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So for a sequence of values of r tending to infinity,
log[2] T (exp(rρ(g)), f ◦ g) ≥ O (1) + µ′ log(exp(rρ(g)))

i.e., log[2] T (exp(rρ(g)), f ◦ g) ≥ O (1) + µ′rρ(g) .(32)
Again in view of Lemma 4, we have for all sufficiently large values of r,

log T (exp(rµ), L(f)) ≤ (ρ(L(f)) + ε) log (exp (rµ))
i.e., log T (exp(rµ), L(f)) ≤ (ρ (f) + ε) rµ

i.e., log[2] T (exp(rµ), L(f)) ≤ O (1) + µ log r .(33)
Now combining (32) and (33) we obtain for a sequence of values of r tending to
infinity,

log[2] T
(
exp

(
rρ(g)) , f ◦ g)

log[2] T (exp (rµ) , L (f))
≥ O (1) + µ′rρ(g)

O (1) + µ log r ,

from which the theorem follows. �
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