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LINEARIZED OSCILLATION OF NONLINEAR DIFFERENCE
EQUATIONS WITH ADVANCED ARGUMENTS

Özkan Öcalan

Abstract. This paper is concerned with the nonlinear advanced difference
equation with constant coefficients

xn+1 − xn +
m∑
i=1

pifi(xn−ki ) = 0 , n = 0, 1, . . .

where pi ∈ (−∞, 0) and ki ∈ {. . . ,−2,−1} for i = 1, 2, . . . ,m. We obtain
sufficient conditions and also necessary and sufficient conditions for the os-
cillation of all solutions of the difference equation above by comparing with
the associated linearized difference equation. Furthermore, oscillation criteria
are established for the nonlinear advanced difference equation with variable
coefficients

xn+1 − xn +
m∑
i=1

pinfi(xn−ki ) = 0 , n = 0, 1, . . .

where pin ≤ 0 and ki ∈ {. . . ,−2,−1} for i = 1, 2, . . . ,m.

1. Introduction

Oscillation theory of difference equations has attracted many researchers. In
recent years there has been much research activity concerning the oscillation of
solutions of difference equations. For these oscillatory results, we refer, for instance,
[1]–[8]. Ladas [7] gave some criteria for the oscillatory behavior of the difference
equation

xn+1 − xn +
m∑
i=1

pixn−ki = 0 , n = 0, 1, . . .

where pi ∈ R, the set of all real numbers, and ki ∈ Z, the set of all integers, for
i = 1, 2, . . . ,m. Györi and Ladas [4] obtained necessary and sufficient conditions
for the oscillatory behavior of the nonlinear delay difference equation

(1.1) xn+1 − xn +
m∑
i=1

pifi(xn−ki) = 0 , n = 0, 1, . . .
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where pi ∈ (0,∞) and ki ∈ N, the set of all natural numbers, for i = 1, 2, . . . ,m
(see also [5]). Recently, the author [8] has investigated the oscillatory behavior of
every solution of the nonlinear delay difference equation with variable coefficients

(1.2) xn+1 − xn +
m∑
i=1

pinfi(xn−ki) = 0 , n = 0, 1, . . .

where pin ≥ 0 and ki ∈ N for i = 1, 2, . . . ,m, and the following sufficient conditions
for oscillation of solutions to (1.2) is obtained: Let pin ≥ 0, lim inf

n→∞
pin = pi and

ki ∈ {0, 1, . . .} for i = 1, 2, . . . ,m. If each fi(i = 1, 2, . . . ,m) is a continuous function
on R and satisfies

(i) ufi(u) > 0, for u 6= 0,
(ii) lim inf

u→0
fi(u)/u = Mi, where 0 < Mi < +∞,

(iii)
m∑
i=1

piMi(ki + 1)ki+1/kkii > 1,

then every solution of equation (1.2) oscillates.
Let k = max{k1, k2, . . . , km}. If ki ∈ N for i = 1, 2, . . . ,m, then, we recall that

a sequence {xn} which is defined for n ≥ −k is said to be a solution of equation
(1.1) if it satisfies (1.1) for n ≥ 0. Similarly, if ki ∈ {. . . ,−2,−1} for i = 1, 2, . . . ,m,
then a sequence {xn} satisfying (1.1) for n ≥ 0 is said to be a solution of (1.1). A
solution {xn} of equation (1.1) is called oscillatory if the terms xn of the sequence
{xn} are neither eventually positive nor eventually negative. Otherwise, the solution
is called nonoscillatory.

In the present paper, we investigate the oscillatory properties of equation
(1.1) for the case pi ∈ (−∞, 0) and ki ∈ {. . . ,−2,−1} for i = 1, 2, . . . ,m by
comparing with the associated linearized difference equation. We also deal with the
oscillatory behavior of equation (1.2) for the case pin ≤ 0 and ki ∈ {. . . ,−2,−1}
for i = 1, 2, . . . ,m.

2. Linearized Oscillation of Equation (1.1)

Consider the nonlinear advanced difference equation (1.1) where, for i =
1, 2, . . . ,m,

pi ∈ (−∞, 0) and ki ∈ {. . . ,−2,−1} with
m∑
i=1

(pi + ki) 6= −(m+ 1) ,(2.1)

fi ∈ C(R,R) and ufi(u) > 0 for u 6= 0 .(2.2)
In this section, we will use the following condition:

(2.3) lim sup
u→∞

fi(u)
u
≤ 1 for i = 1, 2, . . . ,m .

If condition (2.3) is satisfied, then the linearized equation associated with equation
(1.1) is given by

(2.4) bn+1 − bn +
m∑
i=1

pibn−ki = 0 , n = 0, 1, . . .
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Lemma 2.1. For each i = 1, 2, . . . ,m, assume that (2.1) holds. Assume further
that (pin) is a sequence of real numbers such that

(2.5) lim sup
n→∞

pin ≤ pi for i = 1, 2, . . . ,m .

If the linear difference inequality

(2.6) xn+1 − xn +
m∑
i=1

pinxn−ki ≥ 0 , n = 0, 1, . . .

has an eventually positive solution, then so does equation (2.4).

Proof. Let k = min{k1, k2, . . . , km}. Assume first k = −1. Observe that ki = −1
for each i = 1, 2, . . . ,m. Then, by (2.6) and (2.4) we get respectively that

(2.7) xn+1(1 +
m∑
i=1

pin) ≥ xn

and

(2.8) bn+1(1 +
m∑
i=1

pi) = bn .

Since xn is eventually positive in (2.7), it follows, for n sufficiently large, that

(2.9)
m∑
i=1

pin > −1 .

By condition (2.5), for a given ε > 0, there is positive integer n0 such that

0 > pi ≥ pin −
ε

m
for n ≥ n0 and i = 1, 2, . . . ,m .

Hence, by using (2.9) and (2.1) we have

0 >
m∑
i=1

pi ≥
m∑
i=1

pin − ε > −1− ε for n ≥ n0 .

So, this yields that

(2.10) − 1 ≤
m∑
i=1

pi < 0 .

Since ki = −1 for each i = 1, 2, . . . ,m, the last condition in (2.1) reduces to
m∑
i=1

pi 6= −1. Then, it follows from (2.10) that

−1 <
m∑
i=1

pi < 0 .

This condition guarantees that the solution of equation (2.8) with b0 = 1 is positive.
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Assume now that k ≤ −2. Dividing by xn on the both sides of (2.6) and letting
zn = xn+1

xn
, we conclude, for all n sufficiently large, that

(2.11) zn − 1 +
m∑
i=1

pin

(xn−ki
xn

)
≥ 0 .

Since
xn−ki
xn

= xn−ki
xn−ki−1

· xn−ki−1

xn−ki−2
. . .

xn+1

xn

= zn−ki−1 · zn−ki−2 . . . zn ,

we get from (2.11) that

(2.12) zn − 1 +
m∑
i=1

pin(zn−ki−1 · zn−ki−2 . . . zn) ≥ 0 .

Let z = lim sup
n→∞

zn. Then, by (2.12) observe that zn > 1 and that z > 1. We now
claim that

(2.13) z − 1 +
m∑
i=1

piz
−ki ≥ 0 .

Indeed, by using (2.1) and (2.5), for a given ε such that 0 < ε < 1, there is a
positive integer n1 such that pin ≤ (1− ε)pi for i = 1, 2, . . . ,m and n ≥ n1. Hence,
for all n ≥ n1, from (2.12) we may write

(2.14) zn ≥ 1− (1− ε)
m∑
i=1

pi(zn−ki−1 · zn−ki−2 . . . zn) ,

choose n2 such that n2 ≥ n1 − k and that
zn ≥ (1 + ε)z for n ≥ n2 + k .

Then, for n ≥ n2 + k, we obtain from (2.14) that

(2.15) zn ≥ 1− (1− ε)
m∑
i=1

piz
−ki(1 + ε)−ki .

Taking limit superior as n→∞ on the both sides of (2.15), we have

z ≥ 1− (1− ε)
m∑
i=1

piz
−ki(1 + ε)−ki .

Since ε is arbitrary, the inequality above implies (2.13), which proves our claim.
Define

F (λ) = λ− 1 +
m∑
i=1

piλ
−ki .

Then, it easy to see that F (0+) = −1 and F (z) ≥ 0 .This guarantees that the
characteristic equation of equation (2.4) has a positive root λ0. Therefore, bn = λn0
is a positive solution of equation (2.4), which completes the proof. �
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Using Lemma 2.1 we have the following main result.

Theorem 2.2. Assume that (2.1), (2.2) and (2.3) hold. If every solution of the
linearized difference equation (2.4) oscillates, then every solution of the non-linear
difference equation (1.1) oscillates.

Proof. Assume, for the sake of contradiction, that equation (1.1) has an eventually
positive solution {xn}. The case in which {xn} is eventually negative is similar and
is omitted. By (1.1), {xn} is eventually increasing sequence. We claim that {xn}
is not bounded above. Otherwise, there would be finite number L > 0 such that
lim
n→∞

xn = L. Since each fi is continuous on R, we get lim
n→∞

fi(xn−ki) = fi(L) > 0
for i = 1, 2, . . . ,m. So, taking limit as n→∞ on the both sides of equation (1.1)
we have

m∑
i=1

pifi(L) = 0, which contradicts the first condition of (2.1). Therefore,

{xn} is increasing and unbounded above, which implies that

(2.16) lim
n→∞

xn = +∞ .

We can now rewrite (1.1) in the form

xn+1 − xn +
m∑
i=1

pinxn−ki = 0 ,

where

pin = pi
fi(xn−ki)
xn−ki

for i = 1, 2, . . . ,m .

From (2.16) and (2.3), it is clear that

lim sup
n→∞

pin ≤ pi for i = 1, 2, . . . ,m .

So, the hypotheses of Lemma 2.1 are satisfied. This yields that the linearized
difference equation (2.4) has an eventually positive solution which contradicts the
hypothesis. �

We now obtain the oscillatory conditions of the linearized difference equation
(2.4) whenever every solution of equation (1.1) oscillates. We first need the following
lemma.

Lemma 2.3. For each i = 1, 2, . . . ,m, assume that (2.1) holds and that λ0 is a
positive root of the characteristic equation

(2.17) λ− 1 +
m∑
i=1

piλ
−ki = 0

of equation (2.4). Let k = min{k1, k2, . . . , km} and n1 ∈ N such that n1 ≥ −k and
let q ∈ (−∞, 0). If {xn} is a solution of the difference inequality

(2.18) xn+1 − xn +
m∑
i=1

pixn−ki ≤ 0 , n = −k − 1,−k, . . . , n1 − 1
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with the initial conditions
xn = qλn0 , n = 0, 1, . . . ,−k − 1 ,(2.19)

then we have

xnleqqλ
n
0 , n = −k,−k + 1, . . . , n1 .

Proof. Since each pi < 0, observe that λ0 > 1. So, the case where k = −1 is clear.
Assume now that k ≤ −2. Let zn = xn

xn−1
(n = 1, 2, . . . ,−k − 1,−k, . . . ) provided

that xn−1 6= 0. By using (2.17), (2.18) and (2.19), we have

0 ≤ z−k − 1 +
m∑
i=1

pi
x−k−1−ki
x−k−1

= z−k − 1 +
m∑
i=1

piλ
−ki
0 ⇒ z−k ≥ λ0 ,

which implies that x−k ≤ qλ−k0 . In a similar manner,

0 ≤ z−k+1 − 1 +
m∑
i=1

pi
x−k−ki
x−k

= z−k+1 − 1 +
m∑
i=1

piλ
−ki
0 ⇒ z−k+1 ≥ λ0 ,

which implies that x−k+1 ≤ qλ−k+1
0 . So, the proof follows from induction. �

Theorem 2.4. Assume that (2.1) and (2.2) hold. Assume further that there exists
a positive constant δ such that one of the following items is satisfied:

fi(u) ≤ u for u ≤ −δ and i = 1, 2, . . . ,m ,(2.20)

fi(u) ≥ u for u ≥ δ and i = 1, 2, . . . ,m .(2.21)
If every solution of (1.1) oscillates, then every solution of the linearized equation
(2.4) also oscillates.

Proof. Suppose that (2.20) holds. The case of (2.21) is similar and is omitted.
Assume now, for the sake of contradiction, that (2.4) has an eventually negative
solution (bn). Then, from [6, Lemma 7.1.1], we conclude that the characteristic
equation of (2.4)

λ− 1 +
m∑
i=1

piλ
−ki = 0

has a positive root λ0. Since pi ∈ (−∞, 0), it is clear that λ0 > 1. Let {xn} be the
solution of (1.1) with the initial conditions

xn = qλn0 , n = 0, 1, . . . ,−k − 1
where k = min{k1, k2, . . . , km} and q = −δλk+1

0 . Note that if we prove
(2.22) xn < 0 for n = −k,−k + 1, . . .
then we get a contradiction for the oscillatory of equation (1.1).

If condition (2.22) were not true, then there would be an integer n1 such that
n1 ≥ −k and that xn < 0 for n = 0, 1,= . . . , n1 − 1 but xn1 ≥ 0 holds. By (1.1)
we have

xn+1 < xn for n = −k − 1,−k, . . . , n1 − 1 .
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This yields that

xn < x−k−1 = qλ−k−1
0 = −δ < 0 for n = −k,−k + 1, . . . , n1 .

Hence, we get

(2.23) xn < −δ for n = −k,−k + 1, . . . , n1 .

By using (2.20) and (2.23), it follows from (1.1) that

xn+1 − xn +
m∑
i=1

pixn−ki ≤ 0 for n = −k − 1,−k, . . . , n1 − 1 .

Since the hypotheses of Lemma 2.3 hold, we obtain that xn1 ≤ qλn1
0 < 0. This

contradiction completes the proof. �

By combining Theorem 2.2 with Theorem 2.4 we obtain the following necessary
and sufficient conditions for every solution of the non-linear difference equation
(1.1).

Corollary 2.5. Assume that (2.1) and (2.2) hold. Assume further that either
(2.20) or (2.21) is satisfied and let

lim
u→∞

fi(u)
u

= 1 for i = 1, 2, . . . ,m .

Then, every solution of equation (1.1) oscillates if and only if every solution of the
associated linearized equation (2.4) oscillates.

3. Oscillation conditions for equation (1.2)

Consider the nonlinear advanced difference equation (1.2) such that, for i =
1, 2, . . . ,m, ki ∈ {. . . ,−2,−1} and the condition

(3.1) lim inf
u→∞

fi(u)
u

= Mi , 0 < Mi < +∞

holds. In this section, we will use the convention 00 = 1.
Then we have the following

Theorem 3.1. For each i = 1, 2, . . . ,m, let ki ∈ {. . . ,−2,−1}, pin ≤ 0 (n ∈ N)
and lim sup

n→∞
pin = pi < 0. Assume that (2.2) and (3.1) hold. If the condition

(3.2)
m∑
i=1

piMi
(ki + 1)ki+1

kkii
> 1

is satisfied, then every solution of equation (1.2) oscillates.

Proof. Assume that {xn} is an eventually positive solution of (1.2). Then, it is easy
to see that {xn} is eventually increasing sequence. As in the proof of Theorem 2.2
we claim that {xn} is unbounded above. Otherwise, there exists L > 0 such that
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lim
n→∞

xn = L. This implies that lim
n→∞

fi(xn−ki) = fi(L) > 0. Taking limit inferior
as n→∞ in (1.2) we have

(3.3) lim inf
n→∞

{ m∑
i=1

(−pin)fi(xn−ki)
}

= 0 .

It follows from (3.3) that
m∑
i=1

lim inf
n→∞

{(−pin)fi(xn−ki)} ≤ 0 ,

or
m∑
i=1

fi(L) lim inf
n→∞

(−pin) = −
m∑
i=1

pifi(L) ≤ 0 ,

which is impossible since pi < 0 and fi(L) > 0 for i = 1, 2, . . . ,m. So, {xn} is
eventually increasing and unbounded above, which gives lim

n→∞
xn = +∞. On the

other hand, dividing equation (1.2) by xn and letting zn = xn+1

xn
we get eventually

that

(3.4) zn = 1−
m∑
i=1

pin
fi(xn−ki)
xn−ki

(zn−ki−1 · zn−ki−2 . . . zn) .

Let lim inf
n→∞

zn = z. Observe that zn > 1 and z ≥ 1. Taking limit inferior as n→∞
on the both sides of (3.4) we may write

z ≥ 1 +
m∑
i=1

lim inf
n→∞

(−pin) lim inf
n→∞

(fi(xn−ki)
xn−ki

)
lim inf
n→∞

zn−ki−1 . . . lim inf
n→∞

zn

= 1−
m∑
i=1

Miz
−ki lim sup

n→∞
pin = 1−

m∑
i=1

piMiz
−ki .

Therefore,
m∑
i=1

piMiz
−ki ≥ 1− z ,

which implies that z 6= 1 and that

(3.5)
m∑
i=1

piMi
z−ki

1− z ≤ 1 .

Now consider the function g defined by g(z) = z−ki

1− z . Then, it is not difficult to

see that g′
( ki
ki + 1

)
= 0 and g′′

( ki
ki + 1

)
< 0. Since pi < 0 for i = 1, 2, . . . ,m, we

conclude that
m∑
i=1

piMi
(ki + 1)ki+1

kkii
=
m∑
i=1

piMig

(
ki

ki + 1

)
≤
m∑
i=1

piMi
z−ki

1− z .
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Hence by (3.5)
m∑
i=1

piMi
(ki + 1)ki+1

kkii
≤ 1 ,

which contradicts (3.2).
In a similar manner, one can easily show that equation (1.2) has no eventually

negative solution. So, the proof is completed. �

Finally, using Theorem 3.1 we have the following result.

Corollary 3.2. Let ki and pi be the same as in Theorem 3.1. Assume that (2.2)
and (3.1) hold. If

(3.6) m
( m∏
i=1
|pi|Mi

)1/m∣∣∣ (k̄ + 1)k̄+1

k̄k̄

∣∣∣ > 1 ,

where k̄ = 1
m

m∑
i=1

ki, then every solution of equation (1.2) oscillates.

Proof. Assume that {xn} is an eventually positive solution of (1.2). By using (3.5)
and (3.6), and also applying the arithmetic-geometric mean inequality, we have

1 ≥
m∑
i=1

piMi
z−ki

1− z ≥ m
[ m∏
i=1

piMi
z−ki

1− z

]1/m
= m

z−k̄

z − 1

[ m∏
i=1

(−pi)Mi
]1/m

≥ m
∣∣∣ (k̄ + 1)k̄+1

(k̄)k̄
∣∣∣( m∏
i=1
|pi|Mi

)1/m
,

which contradicts (3.6) and completes the proof. �
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