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ON THE LIPSCHITZ OPERATOR ALGEBRAS

A. Ebadian and A. A. Shokri

Abstract. In a recent paper by H. X. Cao, J. H. Zhang and Z. B. Xu an
α-Lipschitz operator from a compact metric space into a Banach space A
is defined and characterized in a natural way in the sence that F : K → A

is a α-Lipschitz operator if and only if for each σ ∈ X∗ the mapping σ ◦ F
is a α-Lipschitz function. The Lipschitz operators algebras Lα(K,A) and
lα(K,A) are developed here further, and we study their amenability and
weak amenability of these algebras. Moreover, we prove an interesting result
that Lα(K,A) and lα(K,A) are isometrically isomorphic to Lα(K)⊗̌A and
lα(K)⊗̌A respectively. Also we study homomorphisms on the LαA(X,B).

1. Introduction

Let (K, d) be compact metric space with at least two elements and (X, ‖ · ‖) be
a Banach space over the scalar field F (= R or C). For a constant α > 0 and an
operator T : K → X, set

(1) Lα(T ) := sup
s 6=t

‖T (t)− T (s)‖
d(s, t)α ,

which is called the Lipschitz constant of T . Define

Tα(x, y) = T (x)− T (y)
d(x, y)α , x 6= y

Lα(K,X) = {T : K → X : Lα(T ) <∞}

and

lα(K,X) = {T : K → X : ‖Tα(x, y)‖ → 0 as d(x, y)→ 0} .
The elements of Lα(K,X) and lα(K,X) are called big and little Lipschitz operators,
respectively [1].

Let C(K,X) be the set of all continuous operators from K into X and for each
T ∈ C(K,X), define

‖T‖∞ = sup
x∈K
‖T (x)‖ .

For S, T in C(K,X) and λ in F, define
(S + T )(x) = S(x) + T (x) , (λT )(x) = λT (x) , (x ∈ X) .
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It is easy to see that (C(K,X), ‖ · ‖∞) becomes a Banach space over F and
Lα(K,X) is a linear subspace of C(K,X). For each element T of Lα(K,X), define
‖T‖α = Lα(T ) + ‖T‖∞.

In their papers [3, 4], Cao, Zhang and Xu proved that (Lα(K,X), ‖ · ‖α) is a
Banach space over F and lα(K,X) is a closed linear subspace of (Lα(K,X), ‖ · ‖α).
Now, let (A, ‖ · ‖) be a unital Banach algebra with unit e. In this paper, we show
that (Lα(K,A), ‖·‖α) is a Banach algebra under pointwise and scalar multiplication
and lα(K,A) is a closed linear subalgebra of (Lα(K,A), ‖ · ‖α) and study many
aspects of these algebras. The spaces Lα(K,A) and lα(K,A) are called big and
little Lipschitz operators algebras. Note that Lipschitz operators algebras are, in
fact, extensions of Lipschitz algebras. Sherbert [11, 12], Weaver [13, 14], Honary
and Mahyar [7], Johnson [8, 9], Alimohammadi and Ebadian [1], Ebadian [6], Bade,
Curtis and Dales [2], studied some properties of Lipschitz algebras. We will study
(weak) amenability of Lipschitz operators algebras. Also we study homomorphisms
on the LαA(X,B).

2. Characterizations of Lipschitz operators algebras

In this section, let (K, d) be a compact metric space which has at least two
elements and (A, ‖ · ‖) to denote a unital Banach algebra over the scalar field F
(= R or C).

Theorem 2.1. (Lα(K,A), ‖ · ‖α) is a Banach algebra over F and lα(K,A) is a
closed linear subspace of (Lα(K,A), ‖ · ‖α).

Proof. As we have already Lα(K,A) is a Banach space and lα(K,A) is a closed
linear subspace if it. Now let T , S ∈ Lα(K,A), and define

(TS)(t) = T (t)S(t) (t ∈ K) .

Then

‖TS‖α = ‖TS‖∞ + Lα(TS)

≤ ‖T‖∞‖S‖∞ + sup
t 6=s

‖T (t)S(t)− T (s)S(s)‖
d(t, s)α

≤ ‖T‖∞‖S‖∞ + ‖T‖∞Lα(S) + ‖S‖∞Lα(T )

≤
(
‖T‖∞ + Lα(T )

)(
‖S‖∞ + Lα(S)

)
= ‖T‖α‖S‖α .

So that we see that (Lα(K,A), ‖ · ‖α) is a Banach algebra and lα(K,A) is a closed
linear subspace of (Lα(K,A), ‖ · ‖α). �

Theorem 2.2. Let (K, d) be a compact metric space. Then Lα(K,A) is uniformly
dense in C(K,A).

Proof. Let f ∈ C(K,A). Then for every σ ∈ A∗ we have σ ◦ f ∈ C(K), so that
there is g ∈ Lα(K) such that ‖g − σ ◦ f‖∞ < ε. We define, the map η : C→ A by
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η(λ) = λ · e. It is easy to see that η ◦ g ∈ Lα(K,A), and for every σ ∈ A∗, we have

|σ
(
g(x) · e− f(x)

)
| = |g(x)− (σ ◦ f)(x)| < ε , (x ∈ K) .

Therefore |σ(η ◦ g − f)(x)| < ε for every σ ∈ A∗ and x ∈ K. This implies that
‖(η ◦ g − f)(x)‖ < ε for every x ∈ K. Therefore, ‖η ◦ g − f‖∞ < ε and the proof is
complete. �

Remark 2.3. Let A,B be unital Banach algebras over F. Then the injective tensor
A⊗̌B is a unital Banach algebra under norm ‖ · ‖ε, [10].

Theorem 2.4. Lα(K,A) = {F : K → A | σ ◦ F ∈ Lα(K,C), (∀σ ∈ A∗)}

Proof. Use the principle of Uniform Boundedness. �

Lemma 2.5. Let (E1, ‖ · ‖1), (E2, ‖ · ‖2) be Banach spaces. Then for G ∈ E1⊗̌E2

‖G‖ε = sup
{
‖
(

id⊗φ
)
(G)‖1 : φ ∈ E∗2 , ‖φ‖ ≤ 1

}
.

Proof. See [10]. �

Theorem 2.6. Let (K, d) be a compact metric space and A be a unital commutative
Banach algebra. Then Lα(K,A) is isometrically isomorphic to Lα(K)⊗̌A.

Proof. It is straightforward to prove that the mapping V : Lα(K)×A→ Lα(K,A)
defined by

V (f, a) = fa (f ∈ Lα(K), a ∈ A) ,
(fa)(x) := f(x)a (x ∈ K) ,

is bilinear. Therefore there exists a unique linear map T : Lα(K)⊗̌A→ Lα(K,A)
such that T (f ⊗ a) = V (f, a) = fa, [10]. For every G ∈ Lα(K)⊗̌A, there is m ∈ N,
fj ∈ Lα(K) and aj ∈ A (1 ≤ j ≤ m) such that G =

∑m
j=1 fj ⊗ aj , so we have

‖G‖ε = sup
φ∈A∗,‖φ‖≤1

‖(id⊗φ)(G)‖α = sup
φ∈A∗,‖φ‖≤1

∥∥∥(id⊗φ)
( m∑
j=1

fj ⊗ aj
)∥∥∥

= sup
φ∈A∗,‖φ‖≤1

∥∥∥ m∑
j=1

fjφ(aj)
∥∥∥
α

= sup
φ∈A∗,‖φ‖≤1

[
sup
x∈K

∣∣∣ m∑
j=1

fj(x)φ(aj)
∣∣∣

+ sup
x6=y

|
∑m
j=1 fj(x)φ(aj)−

∑m
j=1 fj(y)φ(aj)|

dα(x, y)

]
= sup
φ∈A∗,‖φ‖≤1

[
sup
x∈K

∣∣∣φ( m∑
j=1

fj(x)aj
)∣∣∣

+ sup
x6=y

∣∣φ(∑m
j=1(fj(x)aj − fj(y)aj)

)∣∣
dα(x, y)

]
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≤ sup
φ∈A∗,‖φ‖≤1

[
sup
x∈K
‖φ‖

∥∥∥ m∑
j=1

fj(x)aj
∥∥∥

+ sup
x 6=y
‖φ‖
‖
∑m
j=1 fj(x)aj −

∑m
j=1 fj(y)aj‖

dα(x, y)

]
≤ sup
x∈K

∥∥∥ m∑
j=1

fj(x)aj
∥∥∥+ sup

x6=y

‖
∑m
j=1 fj(x)aj −

∑m
j=1 fj(y)aj‖

dα(x, y)

=
∥∥∥ m∑
j=1

fjaj

∥∥∥
∞

+ pα

( m∑
j=1

fjaj

)
=
∥∥∥ m∑
j=1

fjaj

∥∥∥
α

=
∥∥∥T( m∑

j=1
fj ⊗ aj

)∥∥∥
α

= ‖TG‖α =⇒ ‖G‖ε ≤ ‖TG‖α .

Now let γ > 0 be arbitrary, such that ‖TG‖α > γ. Then ‖
∑m
j=1 fjaj‖α > γ, and

so we have ∥∥∥ m∑
j=1

fjaj

∥∥∥
∞

+ pα

( m∑
j=1

fjaj

)
> γ

⇒ sup
x∈K

∥∥∥ m∑
j=1

fj(x)aj
∥∥∥+ sup

x 6=y

‖
∑m
j=1 fj(x)aj −

∑m
j=1 fj(y)aj‖

dα(x, y) > γ

⇒ sup
φ∈A∗,‖φ‖≤1

[
sup
x∈K

∣∣∣ m∑
j=1

fj(x)φ(aj)
∣∣∣

+ sup
x 6=y

|
∑m
j=1 fj(x)φ(aj)−

∑m
j=1 fj(y)φ(aj)|

dα(x, y)

]
> γ

⇒ sup
φ∈A∗,‖φ‖≤1

[∥∥∥ m∑
j=1

fjφ(aj)
∥∥∥
∞

+ pα

( m∑
j=1

fjφ(aj)
)]

> γ

⇒ sup
φ∈A∗,‖φ‖≤1

[
‖(id⊗φ)

( m∑
j=1

fj ⊗ aj
)∥∥∥
∞

+ pα

(
(id⊗φ)

( m∑
j=1

fj ⊗ aj
))]

> γ

⇒ sup
φ∈A∗,‖φ‖≤1

∥∥∥(id⊗φ)
( m∑
j=1

fj ⊗ aj
)∥∥∥

α
> γ

⇒
∥∥∥ m∑
j=1

fj ⊗ aj
∥∥∥
ε
> γ ⇒ ‖G‖ε > γ .

Since γ > 0 is arbitrary, then we have ‖TG‖α ≤ ‖G‖ε. Therefore ‖TG‖α = ‖G‖ε,
and this implies that T is a linear isometry map. So T one-one and continuous
map. Now, we show that T is a onto map. For this, we show that the range
of T , RT is a closed and dense subset of Lα(K,A). It is easy to see that RT
is closed. Let f ∈ Lα(K,A) and γ > 0. There exist a1, . . . , an ∈ A such that
X := f(K) ⊂

⋃n
i=1 B(ai, γ). Set Uj = f−1(B(aj , γ)) where j = 1, . . . , n. Then there
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exist f1, . . . , fn ∈ Lα(K,A) and σ ∈ A∗such that supp(fj) ⊂ Uj for j = 1, . . . , n
and σ ◦ (f1 + . . .+ fn) = 1. For every x ∈ K we have,∥∥f(x)−

(
(σ ◦ f1)a1 + · · ·+ (σ ◦ fn)an

)
(x)
∥∥

=
∥∥f(x)

(
(σ ◦ f1)(x) + · · ·+ (σ ◦ fn)(x)

)
−
(
(σ ◦ f1)(x)a1 + · · ·+ (σ ◦ fn)(x)an

)∥∥
=
∥∥(σ ◦ f1)(x)

(
f(x)− a1

)
+ · · ·+ (σ ◦ fn)(x)

(
f(x)− an

)∥∥
≤

n∑
i=1

∣∣(σ ◦ fi)(x)
∣∣ ∥∥f(x)− ai

∥∥ < γ ,

since supp fj ⊂ Uj . Therefore,∥∥f − ((σ ◦ f1)a1 + · · ·+ (σ ◦ fn)an
)∥∥
α
< γ .

This implies that ∥∥∥f − n∑
i=1

T (σ ◦ fi ⊗ ai)
∥∥∥
α
< γ .

We conclude that R̄T = Lα(K,A). So RT = Lα(K,A), since RT is closed. Hence
T is a onto map. Also by product • on Lα(K)⊗̌A

(f⊗a) • (g⊗b) = fg ⊗ ab (f, g ∈ Lα(K), a, b ∈ A) ,

clearly T is homomorphism. �

Furthermore T is open map, for this purpose, let τ and τ ′ be topologies on
Lα(K)⊗̌A and Lα(K,A) respectively. Let U ∈ τ , we show that T (U) ∈ τ ′. Let p be a
limit point in Lα(K,A)\T (U). Then there exists a sequence {pn} in Lα(K,A)\T (U)
converges to p. Since T is onto, there is a sequence {qn} and q in Lα(K)⊗̌A such
that T (qn) = pn and Tq = p. Therefore T (qn) converges to p in Lα(K). Since
qn ∈ Lα(K)⊗̌A, we can find m ∈ N, f (n)

j ∈ Lα(K) and a(n)
j ∈ A such that whenever

1 ≤ j ≤ m we have

(1) T (qn) =
m∑
j=1

f
(n)
j a

(n)
j .

Also, since q ∈ Lα(K)⊗̌A there exist r ∈ N, gi ∈ Lα(K) and bi ∈ A such that

(2) p = T (q) =
r∑
i=1

gibi .

Since ‖T (qn) − p‖α → 0 as n → ∞, for every positive number γ there exists a
positive integer N such that

(3)
∥∥∥ m∑
j=1

f
(n)
j a

(n)
j −

r∑
i=1

gibi

∥∥∥
α
< γ ,
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when n ≥ N . By applying (3), we have

sup
(x∈K)

∥∥∥ m∑
j=1

f
(n)
j (x)a(n)

j −
r∑
i=1

gi(x)bi
∥∥∥+ sup

(x6=y)

1
d(x, y)α

×
∥∥∥ m∑
j=1

f
(n)
j (x)a(n)

j −
r∑
i=1

gi(x)bi −
m∑
j=1

f
(n)
j (y)a(n)

j +
r∑
i=1

gi(y)bi
∥∥∥ < γ .

Therefore if σ ∈ A∗ with ‖σ‖ ≤ 1 then

sup
(x∈K)

∥∥∥ m∑
j=1

f
(n)
j (x)σ(a(n)

j )−
r∑
i=1

gi(x)σ(bi)
∥∥∥+ sup

(x 6=y)

1
d(x, y)α

×
∥∥∥ m∑
j=1

f
(n)
j (x)σ(a(n)

j )−
r∑
i=1

gi(x)σ(bi)
m∑
j=1

f
(n)
j (y)σ(a(n)

j ) +
r∑
i=1

gi(y)σ(bi)
∥∥∥ < γ .

This implies that

(4)
∥∥∥ m∑
j=1

f
(n)
j σ(a(n)

j )−
r∑
i=1

giσ(bi)
∥∥∥
α
< γ

Now by using (4), for every φ ∈ Lα(K)∗ with ‖φ‖α ≤ 1 we have,∣∣∣φ( m∑
j=1

f
(n)
j σ(a(n)

j )−
r∑
i=1

giσ(bi)
)∣∣∣ < γ ,

hence

(5)
∣∣∣ m∑
j=1

φ(f (n)
j )σ(a(n)

j )−
r∑
i=1

φ(gi)σ(bi)
∣∣∣ < γ ,

By (5), we conclude

(6) sup
∣∣∣ m∑
j=1

φ(f (n)
j )σ(a(n)

j )−
r∑
i=1

φ(gi)σ(bi)
∣∣∣ < γ , ‖σ‖ ≤ 1 , ‖φ‖α ≤ 1 .

Therefore ‖qn − q‖ε ≤ γ and hence qn → q or qn → T−1p in Lα(K)⊗̌A. This show
that p ∈ T (U)c.

Remark 2.7. By using the above theorem we can prove that lα(K,A) ∼= lα(K)⊗̌A.

3. (Weak) Amenability of Lα(K,A)

Let A be a Banach algebra and X be a Banach A-module over F. The linear
map D : A → X is called an X-derivation on A, if D(ab) = D(a) · b + a · D(b),
for every a, b ∈ A. The set of all continues X-derivations on A is a vector space
over F which is denoted by Z1(A,X). For each x ∈ X the map δx : A → X,
defined by δx(a) = a · x− x · a, is a continues X-derivation on A. The X-derivation
D : A → X is called an inner derivation on A if there exists an x ∈ X such that
D = δx. The set of all inner X-derivations on A is a linear subspace of Z1(A,X)
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which is denoted by B1(A,X). The quotient space Z1(A,X)/B1(A,X) is deno-
ted by H1(A,X) and is called the first cohomology group of A with coefficients in X.

Definition 3.1. The Banach algebra A over F is called amenable if for every
Banach A-module X over F, H1(A,X∗) = {0}. The Banach algebra A over F is
called weakly amenable if H1(A,A∗) = {0}.

The notion of amenability of Banach algebras were first introduced by B. E.
Johnson in 1972 [8]. Bade, Curtis and Dales [2], studied the (weak) amenability of
Lipschitz algebras in 1987 [2]. In this section, we study the (weak) amenability of
Lα(K,A).

For every Banach algebra B, let ΦB be the space of maximal ideal of B.

Definition 3.2. Let A be a commutative Banach algebra and let φ ∈ ΦA ∪ {0}.
The non-zero linear functional D on A is called point derivation at φ if

D(ab) = φ(a)D(b) + φ(b)D(a), (a, b ∈ A) .

Lemma 3.3. For each non-isolated point x ∈ K and σ ∈ A∗, if the map
φ : Lα(K,A)→ C is given by

φ(f) = (σ ◦ f)(x),
(
f ∈ Lα(K,A)

)
then φ ∈ ΦLα(K,A).

Proof. Obvious. �

Let (K, d) be a fixed non-empty compact metric space, set

∆ =
{

(x, y) ∈ K ×K : x = y
}
, W = K ×K −∆ .

We now examine the amenability and weak amenability of Lipschitz operators
algebras Lα(K,A) and lα(K,A).

Theorem 3.4. Let (K, d) be an infinite compact metric space and take α ∈ (0, 1].
Then Lα(K,A) is not weakly amenable.

Proof. Let x be a non-isolated point in K. We define

Wx :=
{
{(xn, yn)}∞n=1 : (xn, yn) ∈W, (xn, yn)→ (x, x) as n→∞

}
.

For the net w = {(xn, yn)}∞n=1 in Wx and σ ∈ A∗, we put

w(f) = (σ ◦ f)(xn)− (σ ◦ f)(yn)
d(xn, yn)α ,

(
f ∈ Lα(K,A)

)
then ‖w(f)‖∞ ≤ ‖σ‖ ‖f‖α. Hence, w is continues. Now set

Dw(f) = LIM
(
w(f)

)
,
(
f ∈ Lα(K,A)

)
,
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where LIM(·) is Banach limit [12]. We show that the linear map Dw is a non-zero
point derivation at φ, which φ is given by Lemma 6. We have,
Dw(fg) = LIM(w(fg))

= LIM (σ ◦ fg)(xn)− (σ ◦ fg)(yn)
d(xn, yn)α

= LIM 1
d(xn, yn)α

[
σ ◦
(
f(xn)g(xn)− f(xn)g(yn)

)]
= LIM 1

d(xn, yn)α
[
σ ◦
(
f(xn)

(
g(xn)− g(yn)

)
+ g(yn)

(
f(xn)− f(yn)

))]
= (σ ◦ f)(x) LIM

(
w(g)

)
+ (σ ◦ g)(x) LIM

(
w(g)

)
= φ(f)Dw(g) + φ(g)Dw(f)

Therefore, by the continuity f , g and properties of Banach limit we conclude Dw

is a non-zero, continues point derivation at φ on Lα(K,A), an so by [5], Lα(K,A)
is not weakly amenable. �

Corollary 3.5. Lα(K,A) is not amenable.
Theorem 3.6. Let K ⊆ C be an infinite compact set, and take α ∈ (0, 1). Then
lα(K,A) is not amenable.
Proof. Let x0 ∈ K. We define

Mx0 := {f ∈ lα(K,A) : (σ ◦ f)(x0) = 0 ∀σ ∈ A∗} .
If σ ∈ A∗, then for each f ∈M2

x0
we have

(σ ◦ f)(x)
d(x, x0)2α −→ 0 as d(x, x0) −→ 0 .

For β ∈ (α, 2α), set fβ(x) := η
(
d(x, x0)β

)
, x ∈ K where, the map η : C → A

defined by η(λ) = λ · e. Then fβ ∈Mx0 and {fβ +M2
x0

: β ∈ (α, 2α)} is a linearly
independent set in Mx0

M2
x0

because x0 is non-isolated in K. Therefore M2
x0

has infinite
codimension in Mx0 , and so Mx0 6= M2

x0
then by [5] Mx0 has not a bounded

approximate identity, and since Mx0 is closed ideal in lα(K,A), then lα(K,A) is
not amenable. �

Theorem 3.7. Let (K, d) be a compact metric space and A be a unital commutative
Banach algebra. If 1

2 < α < 1, then lα(T, A) is not weakly amenable, where T is
unit circle in complex plane.
Proof. By Remark 2.7, we have lα(T, A) ∼= lα(T)⊗̌A. Since by [5], lα(T) is not
weakly amenable, hence lα(T, A) is not weakly amenable. �

Corollary 3.8. Let A be a finite-dimensional weakly amenable Banach algebra. If
0 < α < 1

2 , then lα(K,A) is weakly amenable.

Proof. By [10], lα(K)⊗̂A is weakly amenable. Now by [10], we have lα(K)⊗̂A ∼=
lα(K)⊗̌A and this implies that lα(K)⊗̌A is weakly amenable and so lα(K,A) is
weakly amenable. �
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4. Homomorphisms on the LαA(X,B)

Definition 4.1. Let (X, d) be a compact metric space in C, α ∈ (0, 1], (B, ‖ · ‖) be
a commutative Banach algebra with unit e, and B∗ be the dual space of B, define

A(X,B) =
{
f ∈ C(X,B) : Λ ◦ f is analytic in interior of X,Λ ∈ B∗

}
LαA(X,B) =

{
f ∈ Lα(X,B) : Λ ◦ f is analytic in interior of X, Λ ∈ B∗

}
lαA(X,B) =

{
f ∈ lα(X,B) : Λ ◦ f is analytic in interior of X, Λ ∈ B∗

}
In this case, we have

LαA(X,B) = Lα(X,B) ∩A(X,B)

and

lαA(X,B) = lα(X,B) ∩A(X,B) .

So LαA(X,B) ∼= LαA(X)⊗̌B and lαA(X,B) ∼= lαA(X)⊗̌B.

Theorem 4.2. Every character χ on LαA(X,B) (and lαA(X,B)) is of form χ = ψ◦δz
for some character ψ on B and some z ∈ X.

Proof. Since LαA(X,B) ∼= LαA(X)⊗̌B, let j : Lα(X) → LαA(X,B), h 7→ h ⊗ e, be
the canonical embedding. Then there is z ∈ X such that χ ◦ j is the evaluation in
z, that is χ ◦ j = δz where δz(ϕ) = ϕ(z). Consider the ideal

I :=
{
f ∈ LαA(X,B) : f(z) = 0

}
.

We will show that I is contained in the kernel of χ. Given f ∈ I we define,

ϕ(ω) :=
{
ω − z if ω 6= z;
0 if ω = z.

and

g(ω) :=


f(ω)
ω − z

if ω 6= z;

f ′(z) if ω = z.

Since f has a Taylor series expansion

f(ω) =
∞∑
n=1

f (n)(z)
n! (ω − z)n

around z, it is easy to see that Λ ◦ g is holomorphic (Λ ∈ B∗), and hence g ∈
LαA(X,B). We have

χ(f) = χ
(
j(ϕ)g

)
= (χ ◦ j)(ϕ)χ(g) = δz(ϕ)χ(g) = ϕ(z)χ(g) = 0 .

The evaluation δz is an epimorphism and since ker δz = I ⊂ kerχ, we obtain
the desired factorization χ = ψ ◦ δz for some character ψ on B. �
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