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Abstract. In the presented paper we apply the theory of Lepage forms
on jet prolongations of fibred manifold with one-dimensional base to the
relativistic mechanics. Using this geometrical theory, we obtain and discuss
some well-known conservation laws in their general form and apply them to a
concrete physical example.

1. Introduction

In variational physical theories conservation laws are closely related to invariance
transformations connected with the corresponding Lagrange structure. This fact
is expressed by Noether theorems. Although it is usual in physics to treat these
problems directly in coordinates, the variational theories give a correct and effective
coordinate free way for to solve them. Our approach is presented in more general
form for mechanics as well as field theory in [5]. It is based on the theory of Lepage
forms and Lepage equivalents of Lagrangians on fibred manifolds developed by
Krupka (see e.g. [1]). Here we show the effectiveness of this approach by means
of some examples from mechanics. In mechanics itself this could look too simply.
Nevertheless, the use of such a method is very useful in situations where the base
of an underlying fibred manifold is multidimensional and thus the direct coordinate
calculations are not too lucid (moreover, they are sometimes incorrect from the
mathematical point of view). Immediate applications occur readily in classical field
theories, including classical bosonic strings.

2. Underlying structures

2.1. Notations.
Let (Y, π,X) be a fibred manifold with one-dimensional base X, total space Y of
dimension m+ 1 and the surjective submersion π : Y → X. Denote by (JrY, πr, X),
r ≥ 0, the r-jet prolongation of (Y, π,X) where we put J0Y = Y , π0 = π, and
πs,r : JsY → JrY , 0 ≤ r < s, canonical projections. Let (V, ψ) be a local fibred
chart on Y where V ⊂ Y is an open set and ψ = (t, qσ), 1 ≤ σ ≤ m. The pair
(U,ϕ), U = π (V ), ϕ = (t), is the associated fibred chart on X. A smooth mapping
γ : U → Y such that π ◦ γ = IdU is called a local section of π on U . Thus, the pair
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(Vr, ψr) where Vr = π−1
r,0 (V ), ψr = (t, qσ, qσ1 , . . . , qσr ) and qσk = dkqσγϕ−1

dtk , 1 ≤ k ≤ r,
is the associated fibred chart on (JrY, πr, X). For the simplicity we will use also
the notation qσ1 = q̇σ and qσ2 = q̈σ.

A vector field ξ on Y is called π-projectable if there is a vector field ξ0 on X
such that Tπ ξ = ξ0 ◦ π and it is called π-vertical if Tπ ξ = 0. For π-projectable
vector field it holds ξ = ξ0 (t) ∂

∂t +ξσ (t, qν) ∂
∂qσ and for its s-jet prolongation Jsξ =

ξ0 (t) ∂
∂t + ξσ (t, qν) ∂

∂qσ +
∑s
k=1 ξ

σ
k (t, qσ, qσ1 , . . . , qσk ) ∂

∂qσ
k

where ξσk = dξσk−1
dt − q

σ
k

dξ0

dt .
Analogously, a πs-projectable vector field, πs,r-projectable vector field, πs-vertical
vector field and πs,r-vertical vector field are defined.

A differential form η on JsY is called πs-horizontal if iξη = 0 for every πs-vertical
vector field on JsY and it is called contact if Jsγ∗η = 0 for every section γ of π.
Analogously, a πs,r-horizontal form is defined. Differential forms ωσ = dqσ −
qσ1 dt, ωσ2 = dqσ1 − qσ2 dt, . . . , ωσs−1 = dqσs−1− qσs dt and dqσs form the basis of 1-forms
on JsY adapted to the contact structure. Recall that every k-form η on JsY can
be uniquely decomposed as follows: π∗s+1,sη = pk−1η + pkη where pk−1η and pkη
are called (k − 1)-contact component and k-contact component of η, respectively.
A k-form η is called k-contact if pk−1η = 0, and is called (k − 1)-contact if pkη = 0.
For k = 1 we have pk−1η = p0η = hη the horizontal component of η.

2.2. Lagrange structures.
Let W ⊂ Y be an open set. A horizontal 1-form Λ on Wr = π−1

r,0 (W ) is called

Lagrangian of order r, i.e. Λ = L (t, qσ, qσ1 , . . . , qσr ) dt+ dχ(t,qσ,...,qσr−1)
dt dt. The pair

(π,Λ) is called Lagrange structure and h dχ = dχ
dt dt is trivial Lagrangian. Let Ω be

a compact submanifold of X with boundary ∂Ω. Denote by ΓΩ,W the set of sections
γ of π defined on a neighbourhood of Ω such that γ (Ω) ⊂W . The mapping

(1) ΛΩ : ΓΩ,W 3 γ → ΛΩ (γ) =
∫

Ω
Jrγ∗Λ

is called the variational function or the action function of the Lagrangian Λ over Ω.
For the π-projectable vector field ξ on Y we have so-called first variation of the
action function ΛΩ induced by ξ

(2) (∂JrξΛΩ) : ΓΩ,W 3 γ → (∂JrξΛΩ) (γ) =
∫

Ω
Jrγ∗∂JrξΛ .

The section γ of π is called extremal of the Lagrange structure (π,Λ) on Ω if∫
Ω J

rγ∗∂JrξΛ = 0 for every π-projectable vector field ξ defined in a neighbourhood
of γ (Ω) such that supp ξ ⊂ π−1 (Ω).

3. Lepage equivalents and conservation laws

3.1. Lepage equivalents.
Let us recall the concept of Lepage equivalent in mechanics (cf. [3], for the quite
general definition concerning a field theory see [5], [1]). Let W ⊂ Y be an open set.
A 1-form % on Ws = π−1

s,0 (W ) is called a Lepage 1-form, if p1d% is a πs+1,0-horizontal
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(n + 1)-form. Recall that a 1-form % on Ws is a Lepage 1-form, if and only if it
holds hiξ d% = 0 for every πs,0-vertical vector field ξ on Ws (see [1]).

Let Λ = L̄dt = Ldt + dχ
dt dt be a r-th order Lagrangian (including a possible

r-th order trivial Lagrangian, i.e. the total derivative of a function χ on Wr−1).
The Lepage equivalent of Λ is such a Lepage form θΛ for which hθΛ = Λ (up to a
possible projection). For mechanics, the Lepage equivalent is unique and it is of
order 2r − 1. It holds

(3) θΛ = L̄dt+
r−1∑
i=0

(
r−i−1∑
k=0

(−1)k dk

dtk
∂L̄

∂qσi+1+k

)
ωσi .

For example, for a first order Lagrangian we have

(4) θΛ = Ldt+ ∂L

∂q̇σ
ωσ + dχ .

Now, using the formula ∂Ξη = iΞdη + diΞη and taking into account the properties
of the Lepage equivalent of Λ we obtain the infinitesimal first variational formula
(5) Jrγ∗∂JrξΛ = J2r−1γ∗iJ2r−1ξ dθΛ + dJ2r−1γ∗iJ2r−1ξθΛ .

Integrating (5) and applying the Stokes theorem we obtain

(6)
∫

Ω
Jrγ∗∂JrξΛ =

∫
Ω
J2r−1γ∗iJ2r−1ξ dθΛ +

∫
∂Ω
J2r−1γ∗iJ2r−1ξθΛ .

The π2r,0-horizontal form EΛ = p1 dθΛ is the well-known Euler-Lagrange form of Λ.
The following theorem is an immediate consequence of preceding considerations.

Theorem. Let Λ be a Lagrangian of order r on Wr = π−1
r,0 (W ) and let θΛ be

its Lepage equivalent. Then, the section γ ∈ ΓΩ,W is the extremal of Lagrange
structure (π,Λ) on Ω if and only if for every π-vertical vector field ξ on W such
that supp (ξ ◦ γ) ⊂ Ω it holds
(7) J2r−1γ∗iJ2r−1ξ dθΛ = 0 ,
or equivalently, EΛ vanishes along J2rγ.

3.2. Invariance transformations and conservation laws.
A local automorphism α on Y is called an invariance transformation of Lagrangian Λ
if it holds
(8) Jrα∗Λ− Λ = 0 .
A π-projectable vector field ξ on Y is called a generator of invariance transfor-
mations of Lagrangian Λ if its local one-parametrical group consists of invariance
transformations of Λ. Then
(9) ∂JrξΛ = 0 .
Thus, for the extremal γ on Ω and for a generator of invariance transformations ξ
we have, using (6), (7) and (9),

(10)
∫
∂Ω
J2r−1γ∗iJ2r−1ξθΛ = 0 .
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The last integral represents the flow of the quantity J2r−1γ∗iJ2r−1ξθΛ through the
boundary ∂Ω of Ω. It holds

J2r−1γ∗iJ2r−1ξθΛ = J2rγ∗π∗2r,2r−1iJ2r−1ξθΛ = hiJ2r−1ξθΛ .

We call

(11) Ψ (ξ) = hiJ2r−1ξθΛ

the elementary flow, as a quantity obeying a conservation law along extremals. The
definition relation (11) includes possible trivial Lagrangians as well, i.e. it contains
the “free” term hiJ2r−1ξ dχ (see above).

A local automorphism α on Y is called an invariance transformation of Euler-La-
grange form EΛ = Eσω

σ ∧ dt if it holds

(12) J2rα∗EΛ − EΛ = 0 .

A π-projectable vector field ξ on Y is called a generator of invariance trans-
formations of Euler-Lagrange form EΛ, if its local one-parametrical group of
transformations consists of invariance transformations of EΛ, i.e.

(13) ∂J2rξEΛ = 0 .

Because of the identity
J2rα∗EΛ = EJrα∗Λ

(see e.g. [1]), it is evident that every invariance transformation of Λ is an invariance
transformation of EΛ, and for every invariance transformation of EΛ the Lagrangian
Λ̃ = Jrα∗Λ−Λ, or alternatively Λ̃ = ∂JrξΛ, is trivial. Thus, it holds ∂JrξΛ = − h dη,
where η is a function on Wr−1 and sign “-” is formal. The corresponding flows (the
quantities remaining constant along extremals) can be obtained as follows. It holds

Jrγ∗∂JrξΛ = J2r−1γ∗iJ2r−1ξ dθΛ + dJ2r−1γ∗iJ2r−1ξθΛ .

The left-hand side can be written as −Jrγ∗h dη = −Jrγ∗ dη = −dJrγ∗η. The first
term on the right-hand side vanishes along extremals. So we have

dJ2r−1γ∗
(
iJ2r−1ξθΛ + η

)
= 0 ,

Ψ(ξ) = hiJ2r−1ξθΛ + η ,(14)

where η is a function on Wr−1. Recall that ξ is a generator of invariance transfor-
mations of EΛ.

In the following, we will focus on invariance transformations of Lagrangians
only.

4. Lagrangians for relativistic particles

4.1. First order Lagrange structures.
As typical Lagrangians of relativistic particles are of the first order, let us discuss
this case in general. The corresponding Lagrange structure is

(π,Λ), (Y, π,X), dimX = 1, dimY = 5, Λ = L(τ, xµ, ẋµ) dτ + dχ
dτ dτ
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where χ = χ(τ, xµ). The base X is a space of “non-physical” parameter, every
fibre over τ ∈ X is the time-space with metrics g = (gαβ), 1 ≤ α, β ≤ 4 where
gαβ = gαβ(xµ). The expression of Λ includes the minimal Lagrangian Ldτ and
an arbitrary trivial Lagrangian h dχ = dχ

dτ dτ . In examples we also put x4 = ct,
where t is the time coordinate (see Sec. 4.3). Following the previous section we
have

Ψ (ξ) = hiJ1ξθΛ , θΛ = Ldτ + ∂L

∂ẋµ
ωµ + dχ , ξ = ξ0 ∂

∂τ
+ ξµ

∂

∂xµ
,

Ψ (ξ) =
(
L− ẋµ ∂L

∂ẋµ

)
ξ0 + ∂L

∂ẋµ
ξµ + Ψ0, Ψ0 = ∂χ

∂τ
ξ0 + ∂χ

∂xµ
ξµ(15)

where ξ is a generator of invariance transformations of the Lagrangian. It is given by

0 = ∂J1ξΛ = iJ1ξdΛ + diJ1ξΛ .

After some simple calculations we obtain the condition for components of generators
of invariance transformations — Noether equation

(16) ∂L

∂xµ
ξµ + ∂L

∂ẋµ
dξµ

dτ − ẋ
µ ∂L

∂ẋµ
dξ0

dτ + ∂L

∂τ
ξ0 + L

dξ0

dτ + dΨ0

dτ = 0 .

4.2. Generalized quadratic Lagrangian.
Let us generalize the standard quadratic Lagrangian by considering metrics fX =
fττ (τ) dτ ⊗ dτ on the base X of the underlying fibred manifold, i.e.

f = fττ (τ) dτ ⊗ dτ + gαβ(xµ) dxα ⊗ dxβ .

Denoting F = det (fττ ) we can write

(17) Λ = Ldτ + dχ
dτ dτ = −1

2
√
F
(
fττgαβ ẋ

αẋβ +m2c2
)

dτ + dχ
dτ dτ .

The Lepage equivalent is then

θΛ = 1
2
√
F
{(
fττ gαβ ẋ

αẋβ −m2c2
)

dτ − 2fττ gαβ ẋβ dxα
}

+ dχ .

Putting L into (15) we obtain the flows

(18) Ψ(ξ) = 1
2
√
F
{(
fττ gαβ ẋ

αẋβ −m2c2
)
ξ0 − 2fττ gαβ ẋαξβ

}
+ Ψ0

where ξ = ξ0 ∂
∂τ + ξµ ∂

∂xµ are again invariance transformations given by the Noether
equation (16). Using the condition

fττ · fττ = 1 =⇒ ḟττ f
ττ + ḟττ fττ = 0
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we obtain after some calculations the following condition for invariance transform-
ations

∂J1ξΛ =− 1
2
√
F

{
ẋαẋβ

[(
fττ

∂gαβ
∂xµ

ξµ + fττ gµα
∂ξµ

∂xβ
+ fττ gµβ

∂ξµ

∂xα

)
−fττ gαβ

(
dξ0

dτ −
1
2 ξ

0 ḟ
ττ

fττ

)]
+ ẋα

(
2fττ gµα

∂ξµ

∂τ
− 2√

F

∂Ψ0

∂xα

)
+m2c2

(
dξ0

dτ −
1
2 ξ

0 ḟ
ττ

fττ
− 2
m2c2

√
F

∂Ψ0

∂τ

)}
= 0 .

All coefficients of this polynomial in velocities must vanish, i.e.

dξ0

dτ −
1
2ξ

0 ḟ
ττ

fττ
− 2
m2c2

√
F

∂Ψ0

∂τ
= 0 , 2fττ gµα

∂ξµ

∂τ
− 2√

F

∂Ψ0

∂xα
= 0(

∂gαβ
∂xµ

ξµ + gµα
∂ξµ

∂xβ
+ gµβ

∂ξµ

∂xα

)
− gαβ

(
dξ0

dτ −
1
2ξ

0 ḟ
ττ

fττ

)
= 0 .

Recall that Ψ0 is given by (15), i.e. it contains unknown components of invariance
transformations.
For minimal Lagrangian, i.e. χ = 0, we obtain

(19) dξ0

dτ −
1
2ξ

0 ḟ
ττ

fττ
= 0, gαβ

∂ξα

∂τ
= 0, ∂gαβ

∂xµ
ξµ + gµβ

∂ξµ

∂xα
+ gαµ

∂ξµ

∂xβ
= 0 .

We can see that the third condition is the equation for Killing vector field, the
solution of the first two equations is

ξ0(τ) = K
√
fττ = K√

F
where K is a constant, ∂ξα

∂τ
= 0 .

Thus, we can choose metrics fττ arbitrarily. The choice of a general Lagrangian
changes the conditions (19) slightly, the main difference is the equation for ξµ, now
the equation for the component of a homothetic Killing field.

4.3. A relativistic particle as a non-holonomic mechanical system.
In the preceding sections we have described a non-zero mass particle in the special
relativity theory as a system on the five-dimensional fibred manifold π : R×R4 → R,
where R4 is the Minkowski space-time. The evolution space of such a particle is
the prolongation π1 : R × R4 × R4 → R. This corresponds to a “non-physical”
parameter τ measured along the base of the underlying fibred manifold, trajectories
of the particle being four-dimensional curves. Such a situation corresponds to
a four-dimensional observer. On the other hand, the existence of the standard
condition on four-velocity can be considered as a constraint condition in evolution
space. Thus, a relativistic particle can be considered as a first order mechanical
system subjected to the non-holonomic constraint. This enables us to adapt the
description of the particle motion to a three-dimensional observer. Such an approach
was applied in [4] on the base of the geometrical theory of non-holonomic constraints
formulated in [2].
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The standard condition for four-velocity is

(20) (ẋ4)2 −
3∑
p=1

(ẋp)2 = 1 =⇒ ẋ4 = ±

√√√√1 +
3∑
p=1

(ẋp)2 ,

where (τ, xµ), 1 ≤ µ ≤ 4, are coordinates on R×R4, x` for 1 ≤ ` ≤ 3 are cartesian
coordinates and x4 = ct, where c is the light speed and t is time. Moreover,
ẋµ = dxµ/dτ . The constraint condition (20) defines a constraint submanifold Q
in the evolution space π1 : R × R4 × R4 → R. Excluding points with ẋ4 = 0
the condition (20) gives a constraint submanifold Q as a union of two connected
components Q+ and Q−, given by signs “+” and “-”, respectively. Without loss of
generality we choose the component Q+.

Choosing appropriate coordinates, one can express the constraint condition (as
well as equations of motion of the particle) in a form adapted to a three-dimensional
observer. For ẋ4 6= 0 consider new coordinates (τ, x`, t, v`, ẋ4), 1 ≤ ` ≤ 3, defined
by the transformation equations

(21) ẋ` = 1
c
v`ẋ4 .

These coordinates are global, but they are not fibred coordinates for original
projection π of the underlying fibred manifold. Note that (t, x`, v`) are coordinates
on R×R3×R3, adapted to the fibration R×R3 → R of R4. Here ~r = (x1, x2, x3) is
a usual position vector and ~v = (v1, v2, v3) is the usual velocity. In new coordinates
we have for the constraint (20)

(22)
(

1− v2

c2

)
(ẋ4)2 = 1 =⇒ ẋ4 = c

dt
dτ = 1√

1− v2

c2

.

5. Quadratic Lagrangian

Now, let us put in (17) fττ = m2 and χ = 0, i.e.

(23) Λ = Ldτ, L = −m2 gαβ ẋ
α ẋβ − 1

2mc
2.

As the two special cases of invariance transformations we can consider
1) ξ0 = 1, ξµ = 0, i.e. the vector field is ξ = ξ0 = ∂

∂τ ,
2) ξ0 = 0, i.e. the vector field ξV = ξµ ∂

∂xµ is vertical, ξµ being components of
the Killing vector field.

We obtain corresponding flows

Ψ(ξ0) = −m2
(
gαβ ẋ

αẋβ − c2
)
, Ψ(ξV ) = −mgαβ ẋβ ξα .

Denote
(24) Ψτ = m

2
(
gαβ ẋ

αẋβ − c2
)

and Ψα = mgαβ ẋ
β .

The quantity (Ψα) represents the four-momentum of the particle, as it will be
shown below. Recall that the problem is regular, because of regularity of metrics g.
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Let us to consider the Hamilton formulation of our problem, i.e. calculate the
momenta and Hamiltonian.

pµ = − ∂L

∂ẋµ
= mgαµẋ

α =⇒ ẋα = 1
m
pµ g

µα ,

H = L+ pµẋ
µ = 1

2m gµνpµ pν −
1
2mc

2 .

Hamiltonian equations thus read (after Legendre transformation (τ, xµ, ẋµ) →
(τ, , xµ, pµ))

(25) dpα
dτ = − ∂H

∂xα
= − 1

2m
∂gµν

∂xα
pµpν ,

dxα

dτ = ∂H

∂pα
= 1
m
gαβ pβ .

Note that in Minkowski metrics pµ =
(
Ec−1, −~p

)
where ~p is the usual three

dimensional momentum.

Example. Consider Friedman-Robertson-Walker metrics (cf. [6])

g44 = 1 , gik = −a2 (x4) [δik + δim δkn
Kxmxn

1−Kr2

]
where K = 0,±1 .

After some calculations we obtain for the Killing vectors
1) ξ[J]i =

√
1−Kr2 δJi, ξ[J]4 = 0, J = 1, 2, 3,

2) ξ[J]i = δlmε
iJmxl, ξ[J]4 = 0, J = 1, 2, 3

and for the flows

Ψ (ξ) = m

2
[(
gαβ ẋ

αẋβ − c2
)
ξ0 − 2gαβ ẋβξα

]
.

Specially, consider the Killings vectors ξ[J]i =
√

1−Kr2 δJi. Using the coordinates
for a three-dimensional observer introduced in sec. 4.3 and relations (21) and (22),
we have three conservation laws

(26) m

√
1−Kr2√
1− v2

c2

vi = Ci

with vi = −gijvj . Defining vivi = v2 we obtain, after some calculations,

(27) m2v2

1− v2

c2

= 1
a2 (t) (1−Kr2)

(
δij −Kxixj

)
CiCj .

As for momentum it holds p = mv√
1− v2

c2

, one gets important and well-known relation

(28) p (t) a (t) = p (t0) a (t0) .

The momentum is inversely proportional to the Robertson-Walker scale factor.
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