ARCHIVUM MATHEMATICUM (BRNO)
Tomus 46 (2010), 87-97

HYPERSURFACES WITH CONSTANT k-TH MEAN
CURVATURE IN A LORENTZIAN SPACE FORM

SHICHANG SHU

ABSTRACT. In this paper, we study n(n > 3)-dimensional complete connected
and oriented space-like hypersurfaces M™ in an (n+1)-dimensional Lorentzian
space form M{”Ll(c) with non-zero constant k-th (k < n) mean curvature and
two distinct principal curvatures A and p. We give some characterizations of
Riemannian product H™(c1) x M™ ™ (c2) and show that the Riemannian
product H™(c1) x M™ ™ (c2) is the only complete connected and oriented
space-like hypersurface in M{hLl () with constant k-th mean curvature and two
distinct principal curvatures, if the multiplicities of both principal curvatures
are greater than 1, or if the multiplicity of X is » — 1, lim A* # Hj and

s—too
the sectional curvature of M™ is non-negative (or non-positive) when ¢ > 0,
non-positive when ¢ < 0, where M™ ™" (c2) denotes R™"~™, S"~"™(c3) or
H"™~ ™ (c2), according to ¢ = 0, ¢ > 0 or ¢ < 0, where s is the arc length of
the integral curve of the principal vector field corresponding to the principal
curvature p.

1. INTRODUCTION

Let M]""!(c) be an (n + 1)-dimensional Lorentzian space form with constant
sectional curvature c. According to ¢ > 0, ¢ =0 or ¢ < 0, it is called a de Sitter
space, a Minkowski space or an anti-de Sitter space, respectively, and it is denoted
by S7H(c), R or H"!(c). A hypersurface in a Lorentzian manifold is said to
be space-like if the induced metric on the hypersurface is positive definite.

In connection with the negative settlement of the Bernstein problem due to
Calabi [4], Cheng-Yau [5] and Chouque-Bruhat et al. [6] proved for ¢ > 0 and
T. Ishihara [9] proved for ¢ < 0 the following theorem:

Theorem 1.1. Let M™ be an n-dimensional (n > 2) complete mazimal space-like
hypersurface in an (n + 1)-dimensional Lorentzian space form M (c). Then
(i) if ¢ > 0, M™ is totally geodesic;
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(i) if ¢ < 0, then S < n and S = n if and only if M" = H™(—1) X
H"™(—-2-), (1 <m < n—1), where S denotes the norm square of the se-

cond fundamental form of M™.

As a generalization of Theorem complete space-like hypersurfaces with
constant mean curvature or constant scalar curvature in a Lorentz manifold have
been investigated by many mathematicians. For example, let M™ be an n-complete
space-like hypersurface with constant mean curvature in a de Sitter space S{H'l(c),
Goddard [7] conjectured that every such hypersurface must be totally umbilical.
Akutagawa [2] and Ramanthan [I3] have proved independently that Goddard’s
conjecture is true if H?> < ¢ when n = 2, and n?H? < 4(n — 1)c when n > 3.
Further discussions in this regard have been carried out by many other authors,
we can see ([8]-[10] and [I4]). Z. Hu et al. [§] studied the complete connected and
oriented space-like hypersurfaces in an (n + 1)-dimensional de Sitter space ST (1)
with constant scalar curvature n(n — 1)r and with two distinct principal curvatures
and gave some characterizations of Riemannian product H™(c1) x S™ ™ (cq) in
terms of the squared norm of the second fundamental form of M™. By considering
the sectional curvature of M™, Zheng [16] proved the following result:

Theorem 1.2. Let M™ be an n-dimensional compact space-like hypersurface in
an (n + 1)-dimensional de Sitter space S?H(c) with constant scalar curvature
n(n — D)r. If r < ¢ and the sectional curvature of M™ is non-negative, then M™ is
isometric to a sphere.

We denote by h the second fundamental form of M™ and denote by A1, Ao, ..., A,
the principal curvatures at an arbitrary point of M™. From [I1], we know that the
k-th mean curvature Hy of M" is defined by

Po(t) = (1+tA) (A +tAe)...(14+th) =1+ C Hyt + -+ CPH,t"

that is, the k-th mean curvature Hy, is the normalized k-th symmetric function of
principal curvatures of the hypersurface M™ defined by

(1.1) CrHy = > Aiy - Aig s

1<y <ig<--<ip<n

where CF = #lk),

We should note that if &k = 1, H; is the mean curvature of M™ and if k£ = 2, from
and , we have Hy = ¢ — r, where r is the normalized scalar curvature of
M™.

In this paper, we investigate complete hypersurfaces in a Lorentzian space form
M7 (c) with constant k-th mean curvature Hj, and with two distinct principal
curvatures. In order to state our theorem clearly, we introduce, see U.-H. Ki et al.
[10], the well-known standard models of complete space-like hypersurfaces with
constant k-th mean curvature in an (n + 1)-dimensional Lorentzian space form

Ry S0 (e) or HP M (c):

1
H™(c;) x R*™™ = {(aj,y) € Ryt = R g™ |z = - > O},
1
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where ¢; < 0 and m = 1,...,n — 1. We note that H™(c;) x R*™ in R}*! has
two distinct principal curvatures \/—c; with multiplicity m and 0 with multiplicity
n—m;

1 1
= {@.y) € SI7HQ) C R = BRI X R = -y =
1 2

Whereé+é:%,cl<0, cog>0and m=1,...,n— 1. We note that H™(c1) x

S (eg) in S7(¢) has two distinct principal curvatures v/c — ¢; with multiplicity
m and y/c — co with multiplicity n — m;

Hm(cl) X H?’L—'HL(C2)
1

1
—{(@y) e B e) € RY*? = R X BRI Jaf? = -yt = ——
C1 Co

where é + é = %, cg < 0,c < 0and m = 1,...,n — 1. We note that
H™(cy) x H*™(c) in H'M(c) has two distinct principal curvatures +v/c — ¢;
with multiplicity m and F+/c — ¢z with multiplicity n — m.

From U.-H. Ki et al. [T0], H'(c1) x S" Y(cz), H(c1) x R*! or H'(c1) x
H"(cy) is, in particular, called a hyperbolic cylinder in S (c), RT™ or H*(c);
H" (1) x 8 (cg) or H" (1) x R is also called a spherical cylinder or Euclidean
cylinder in S7*(c) or R,

From above, we know that the hyperbolic cylinders, spherical cylinder or Eucli-
dean cylinder has two distinct principal curvatures one of which is simple. Without
loss of generality, we can denote the two distinct principal curvatures by A and p,

and say that A\ with multiplicity n — 1 and p with multiplicity 1. Therefore, from
(1.1), we obtain

CpHy = O A+ TNty
this implies that
(1.2) N (n — B)\ + kp] = nHy, .

For the hyperbolic cylinder H'(c;) x R"~!, we know that A = 0 and p # 0. If
k > 2, from (1.2)), we have Hy = 0.
We shall prove the following result:

Main Theorem. Let M™ be an n-dimensional (n > 3) complete connected and
oriented space-like hypersurface in an (n+1)-dimensional Lorentzian space form
M) with non-zero constant k-th (k < n) mean curvature Hy, and with two
distinct principal curvatures A and . Then

(1) if the multiplicities of both principal curvatures are greater than 1, then M™
is isometric to the Riemannian product H™(c1) x M™ ™ (cg), where 1 <m < n—1,
M™™(cg) denotes R"™"™, 8" ™(c3) or H" ™ (cq), according as ¢ =0, ¢ >0 or
c<0.
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(2) if the multiplicity of X ism —1 and lim \¥ # Hy, where s is the arc length

s—+oo
of the integral curve of the principal vector field corresponding to the principal
curvature p, then

(i) for ¢ >0, M™ is isometric to the hyperbolic cylinder H'(c1) x S"1(ca) or
spherical cylinder H"~*(c1) x S(c2), % + é =1 ¢ <0, co >0, if the sectional
curvature of M™ is non-negative or non-positive on M™;

(i) for ¢ =0, M™ is isometric to the Euclidean cylinder H"~'(c1) x R' or
the hyperbolic cylinder H'(c1) x R"~1 and k = 1, where ¢; < 0, if the sectional
curvature of M™ is non-positive on M™;

(iii) for ¢ < 0, M™ is isometric to the hyperbolic cylinder H'(c1) x H" Y(ca),
% + % =1 ¢ <0, ¢ <0, if the sectional curvature of M™ is non-positive on

n

c’

Remark 1.1. If c=1, k =1 and k = 2, the result of (1) in Main Theorem was
proved by A. Brasil Jr. et al. [3] and Z. Hu et al. [§], respectively.

Remark 1.2. Let M™ be an n-dimensional (n > 3) space-like hypersurface in an
(n + 1)-dimensional Lorentzian space form M{"*(c) (¢ < 0). We should note that
there is no space-like hypersurface in H f“(c) or R with non-negative sectional
curvature. In fact, if Ay, Ao,..., A, are the principle curvatures of M™, then the
sectional curvature of the plane section spanned by {e;, e;} is Rijij = c— XX, @ # j.
For ¢ <0, if the sectional curvature is non-negative, we have R;;;; = ¢ — \jA; > 0,
this is, A;A; < ¢ < 0. We infer that Aq, Ao, ..., A, must have not the same sign each
other, this implies that n = 2. Since we assume that n > 3, we have a contradiction.

2. PRELIMINARIES

Let M™ be an n-dimensional space-like hypersurface in an (n + 1)-dimensional
Lorentzian space form M (¢). We choose a local field of semi-Riemannian
orthonormal frames {ey,..., e, 1} in MP"!(c) such that at each point of M",
{e1,...,e,} span the tangent space of M"™ and form an orthonormal frame there.

We use the following convention on the range of indices:
1<ABC,...<n+1; 1<i,jk...<n.

Let {w1,...,wn41} be the dual frame field so that the semi-Riemannian metric of
M7 (c) is given by ds? = S w? — w2, | =Y eaw?, where ¢; = 1 and €541 = —1.
i A

The structure equations of M{""'(c) are given by

(2.1) dws =Y epwapAwp, wap+wpa=0,
B
(2.2) dWAB:ZECWACAwCB+QA37

c
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where
(2.3) Qup = —— Y K A
. AB =3 ABCDWC AWp ,
C.D
(2.4) Kapcp = €aepc(dacdpp — 04pdBC) -

Restricting these forms to M™, we have
(25) Wn41 = 0.

Cartan’s Lemma implies that

(2.6) Wntli = Z hijwj,  hij = hji.
J

The structure equations of M™ are

(27) dwi = Zwij A Wy, Wij + Wi = 0,
J
1
(28) dwij = Zwik Nwgj — 5 Z Rl-jklwk A wy,
% kil
(2.9) Rijr = c(6irdji — 6udji) — (hichji — hahji) ,

where R;ji; are the components of the curvature tensor of M" and
(210) h = Z hijwi X wj
4,7

is the second fundamental form of M™.
From the above equation, we have

(2.11) n(n—1)(r—c) =5 —n*H?,

where n(n — 1)r is the scalar curvature of M™, H is the mean curvature, and
S=> hfj is the norm square of the second fundamental form of M™.
2

We choose ey, ..., e, such that h;; = A;d;;. From (2.6) we have
(212) Wn41i = )\iwi, 1= 1,2,...,71.
Hence, we have from the structure equations of M™

dwp41; = dA; AN wi + Ajdw;

(213) = d)\z-/\wi—l—)\iZwij ANwj .
J
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On the other hand, we have on the curvature forms of M""*(c),

1
Qpt1i = —3 Z Ky 11icpwe Awp
C.D

> eldnt100ip — Sny1p6ic)we Awp
C.D

(214) = CWn+1 A W; = 0.

N =

Therefore, from the structure equations of M} (c), we have

dwn 115 = E Wnt15 N Wji — Wt int1 A Wntti + Qpgti

J
(2.15) = Z )\jwi]‘ A Wi .
J
From (2.13) and (2.15)), we obtain
(216) d)\l A w; + Z()\'L - )\j)wij AN w; = 0.
J
Putting
(2.17) Yij = (X = Aj)wi
we have 1;; = ;. (2.16) can be rewritten as
(218) Z(i/}z] + 5¢jd>\j) ANw; = 0.

J

By E. Cartan’s Lemma, we get

(2.19) Yij + 0idN; = Z Qijrwr
%

where @Q);;1 are uniquely determined functions such that for all index ¢, j, &

(2.20) Qijk = Qikj -

3. PROOF OF MAIN THEOREM

We firstly state a Proposition which is well-known due to Otsuki [12] for Rie-
mannian space forms (and for Lorentzian space forms see [§] or [3]).

Proposition 3.1. Let M™ be a space-like hypersurface in an (n + 1)-dimensional
Lorentzian space form M{ZH (¢) such that the multiplicities of the principal cur-
vatures are constant. Then the distribution of the space of the principal vectors
corresponding to each principal curvature is completely integrable. In particular,
if the multiplicity of a principal curvature is greater than 1, then this principal
curvature is constant on each integral submanifold of the corresponding distribution
of the space of the principal vectors.
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Proof of Main Theorem. (1) Let A and p be the two distinct principal curva-
tures of multiplicities m and n — m respectively, where 1 < m < n — 1. From (1.1),
we have

C”Iij: Z Ail"')\ik7
1<i1<ip<...<ip<n
where the principal curvatures \; = X or p (¢ = 1,...,n). This is always a equality
of Hy, A and u, we can denote it by
(3.1) CEHy = F(\ ).

Denote by Dy and D,, the integral submanifolds of the corresponding distribution
of the space of principal vectors corresponding to the principal curvature A and p,
respectively. From Proposition 3.1} we know that A is constant on D). Since the
k-th mean curvature Hy is constant, implies that p is constant on D). By
making use of Proposition again, we have (1 is constant on D,,. Therefore, we
know that p is constant on M™. By the same assertion we know that A is constant
on M™". Therefore M" is isoparametric. By the congruence Theorem of Abe, Koike
and Yamaguchi [I], we know that M" is isometric to the Riemannian product
H™(c1) x M™ ™(c2), where M™ ™ (cg) denotes R, S" "™ (cq) or H" ™ (ca),
according as c =0, c > 0 or ¢ < 0.

(2) From now on, we consider n(n > 3)-dimensional complete connected and
oriented space-like hypersurface with non-zero constant k-th mean curvature Hy,

and with two distinct principal curvatures, one of which is simple. Without loss of
generality, we may assume

M=X=-=X 1 =X, A\y=u,
where \; for ¢ = 1,2, ..., n are the principal curvatures of M™. Therefore, we obtain
CFHy = Ck_ \F 4 CFIN—1,
this implies that
(3.2) N~ (n — )X + kp) = nHy, .
For k > 2, if A = 0 at some point, from (3.2)), we have H = 0 at this point, this is
a contraction. Therefore, we have for all k&
n n—k
3.3 = —H M- ——.
(3.3) K Lk 2
Since i
A¥ — Hy,
Ap=namT 70
we know that \¥ — Hj, # 0.
Let @ = [\¥ — Hy|~#. We denote the integral submanifold through = € M™
corresponding to A by M7~ (z). Since {wy,...,w,} is the dual frame field of M",
putting

(34) d\ = Z)\’k Wk du: Z”’kwk’
k=1 k=1
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from Proposition [3.1] we have

(3.5) M=Xda=-=Xp,1=0 on M} z).
From (3.3)), we have

(1l —k) x n—k
(3.6) dy = [TH;CA -2 } dX.
Thus, we also have
(3.7) [l = o= = ftyn1=0 on M} (z).

In this case, we may consider locally \ is a function of the arc length s of the integral
curve of the principal vector field e, corresponding to the principal curvature pu.

From (2.19) and (3.5), we have for 1 < j <n —1,

dA=dX\; =Y Qjjkwk
k=1

n—1
(38) = Z ijkwk + ijnwn = )\m Wn, .
k=1

Therefore, we have
(39) ijkzo, 1§]€§7’L—1, and ijn:)\,n.
By (2.19) and (3.7)), we have

d/J = d)\n = Z ankwk
k=1
(3.10) 1

n
= § ankwk + annwn = § Hyi Wi = [y Wh, -
k=1 =1

Hence, we obtain

(3~11) Qrnk =0, 1<k<n—1, and Qunn = fhyn -
From (3.6, we get

1—k —k
(312) ann = Wy = {%Hk/\ik - z A >\m .

From the definition of %;;, if i # j, we have ¢;; = 0 for 1 < i < n —1 and
1 <j <n-—1. Therefore, from (2.19),if i Zjand 1 <i<m—land1<j<n-—1
we have

(3.13) Qijx =0, forany k.

Since for all index 4, j, k (2.20) holds, we have from (3.11) that Q;n, = 0. By
E19), B9, G-11), (B.12) and (B.13), we get

(3.14) Vjn = Z Qjnkwrk = Qjjnwj + Qjnnwn = Ay wj .
k=1
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From (2.19), (3.3)) and (3.14))we have

Q/Jjn )\m k)\k_l)‘m
3.15 = - S BA A
( ) Wy )\_'u /\_MWJ TL()\k—Hk)wj

Therefore, from the structure equations of M™ we have

n—1
dw,, = Zwk A Win + Wpn Awy, = 0.
k=1
Therefore, we may put w, = ds. By (3.6) and (3.10)), we get
D= ds, A= 2
ds
and
d
di = pion ds, i = =
ds
Then we have
_ k—1dA
EAFIN,, kA 1@

CIn T O — Hy) T T W — Hy) Y
 d{log |\* — Hy |7} ,
o ds 7

From (3.16) and the structure equations of M7 (c), we have

(3.16)

n—1
dwjn = Z Wik N Wkn + Win A Wnp — Wing1 A Wptin + an
k=1
n—1
= Z Wik N Wkn — Wint+1 A Wnyln — W5 AWy
k=1
d{log [\* — Hy|
N ds

1, n—1
i ijk/\wk —(c—=Ap)wj A ds.
k=1

From (3.16)), we have

2 k_ 1 k _ 1
_ d*{log |\* — Hy|} | dlog |\ — Hy[+}

dwjn ds? ds A wj ds j
d?{log |\* — Hy| 7} d{log |\F — Hy|7} &
= Fr) ds N\ wj + ds Z Wik N\ Wi
k=1
d{log|\* — Hy|7} | [d{log|\* — Hy|7}12
_{_ ds? +[ ds } }wj/\ds

d{log [\F — H %) =t
i {log | - k| }ijk/\wk-
k=1
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From the above two equalities, we have

d*{log |\* — Hy[=} [ d{log|\F — Hy|7} 2
; - 1o,
(317) - — (e~ ) =0
Since we define @ = |A\¥ — Hj| =%, we obtain from the above equation
d2
(3.18) Iz +w(c—Au) =0.

Now we prove the second part of Main Theorem.

(i) For ¢ > 0, if the sectional curvature of M™ is non-negative, that is, for
i # j, Rijij = ¢ — A\Aj > 0, we have ¢ — Ay > 0. From (3.18]), we have ddzs? <0.

Thus, —w is a monotonic function of s € (—00,400). Therefore, by the similar
assertlon in Wei [I5], we have w(s) must be monotonic when s tends to infinity.
Since A\¥ # Hj and )\ is continuous, we know that there is no sy € (—00, +00), such

that lim A\* = Hj,. From the definition of w(s) and liI:EI A\F £ Hj,, we infer that

s— S0

the positive function w(s) is bounded. Since w(s) is bounded and monotonic when
s tends to infinity, we know that both lim w(s) and hm w(s) exist and then
§——00

we get
. dw(s) . dw(s)
1 1 =1 =0.
(3.19) SHanoo ds slinoo ds 0
From the monotonicity of digs), we have dwdgs) = 0 and w(s) = constant. From

@ = |A¥ — Hy|~% and (B:2), we have A and p are constant, that is, M" is
isoparametric. Therefore, by the congruence Theorem of Abe, Koike and Yamaguchi
[, we know that M™ is isometric to the hyperbolic cylinder H'(c1) x S"1(cz) or
spherical cylinder H"~!(c1) x S*(ca), 2 o +L=1"¢<0c>0

If the sectional curvature of M™ is non—p051tive7 that is, for i # j, Ry =
¢ — XA <0, we have ¢ — Ap < 0. From (3.18]), ‘5;2” > 0. Similar to the
assertion of the proof above, we know that Main Theorem is true.

(ii) For ¢ = 0, if the sectional curvature of M is non—positive that is, for ¢ # j ,
Riji5 = —XiA; <0, we have —Ap < 0. From 7
a monotonic function of s € (—o0, +00). d Z >0 w1th the boundedness
of w(s), similar to the assertion of the proof in (), we know that A and p are
constant, that is, M™ is isoparametric. Therefore, by the congruence Theorem of
Abe, Koike and Yamaguchi [I] and the discussion of Section [1} we know that M™
is isometric to the Euclidean cylinder H"~1(c;) x R! or the hyperbolic cylinder
H'(c1) x R*1, in this case k = 1, where ¢; < 0.

(iii) For ¢ < 0, if the sectional curvature of M" is non—positive that ib for
i # 7, Riji; = ¢ — XA <0, we have ¢ — Ay < 0. From , We have 4 d
Thus, 42 is a monotonic function of s € (—oo, +00).
boundedness of w(s), similar to the assertion of the proof in (i), we know that A
and p are constant, that is, M™ is isoparametric. Therefore, by the congruence
Theorem of Abe, Koike and Yamaguchi [I], we know that M™ is isometric to the

dw
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hyperbolic cylinder H'(¢;) x H"~!(cy), where ﬁ + % = %, c1 <0, cag <0. This
completes the proof of Main Theorem. O
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