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MODULE (ϕ,ψ)-AMENABILITY OF BANACH ALGEBRAS

Abasalt Bodaghi

Abstract. Let S be an inverse semigroup with the set of idempotents E
and S/ ≈ be an appropriate group homomorphic image of S. In this paper
we find a one-to-one correspondence between two cohomology groups of the
group algebra `1(S) and the semigroup algebra `1(S/ ≈) with coefficients in
the same space. As a consequence, we prove that S is amenable if and only if
S/ ≈ is amenable. This could be considered as the same result of Duncan and
Namioka [5] with another method which asserts that the inverse semigroup S
is amenable if and only if the group homomorphic image S/ ∼ is amenable,
where ∼ is a congruence relation on S.

1. Introduction

For a discrete semigroup S, `∞(S) is the Banach algebra of bounded complex-val-
ued functions on S with the supremum norm and pointwise multiplication. For each
a ∈ S and f ∈ `∞(S), let laf and raf denote the left and the right translations
of f by a, that is (laf)(s) = f(as) and (raf)(s) = f(sa), for each s ∈ S. Then a
linear functional m ∈ (`∞(S))∗ is called a mean if ‖m‖ = 〈m, 1〉 = 1; m is called a
left (right) invariant mean if m(laf) = m(f) (m(raf) = m(f), respectively) for all
s ∈ S and f ∈ `∞(S). A discrete semigroup S is called amenable if there exists a
mean m on `∞(S) which is both left and right invariant (see [5]).

A Banach algebra A is amenable if every bounded derivation from A into any
dual Banach A-module is inner, equivalently if H1(A, X∗) = {0} for every Banach
A-module X, where H1(A, X∗) is the first Hochschild cohomology group of A with
coefficients in X∗. This concept was introduced by Barry Johnson in [7]. He showed
that discrete group G is amenable if and only if the Banach algebra `1(G) is
amenable. This fails to be true for discrete semigroups. M. Amini in [1] introduced
the concept of module amenability for a class of Banach algebras, and showed that
for an inverse semigroup S, the semigroup algebra `1(S) is module amenable as
a Banach module on `1(E), where E is the set of idempotents of S, if and only
if S is amenable (see also [3]). If A and A are Banach algebras such that A is a
Banach A-module with compatible actions, then each A-module endomorphism
ϕ (not necessarily C-linear) on A induces a continuous endomorphism ϕ̂ on A/J ,
where J is a closed ideal of A, in particular generated by α · (ab) − (ab) · α for
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all a ∈ A and α ∈ A. In section two, for each pair A-module endomorphism
ϕ and ψ on A, we define module (ϕ,ψ)-amenability of Banach algebras, and
among other results investigate the relation between module (ϕ,ψ)-amenability
of A and (ϕ̂, ψ̂)-amenability of A/J . In section three we show that if S is an
inverse semigroup with a directed upward set of idempotents E, then there exists
a one-to-one correspondence between the quotient spaces H`1(E)

(ϕ,ψ) (`1(S), X∗), the
first relative (to `1(E)) (ϕ,ψ)-cohomology group of `1(S) with coefficients in X∗

and H(ϕ̂,ψ̂)(`
1(S/ ≈), X∗), the first (ϕ̂, ψ̂)-cohomology group of `1(S/ ≈), where

S/ ≈ is the maximal group homomorphic image of S, which s ≈ t whenever δs− δt
belongs to the closed linear span of the set

{δset − δst : s, t ∈ S, e ∈ E} .
Finally we show that S is amenable if and only if S/ ≈ is amenable. The fact S

is amenable if and only if S/ ∼ is amenable, where ∼ is a congruence relation on S
is first proved by Duncan and Namioka [5] (see also [10, Propositin A.0.5]). Also it
was proved in [12] that with a two-sided stable equivalence relation ' on S, if the
semigroup S/ ' has a left invariant mean, then so does S.

2. module (ϕ,ψ)-amenability of Banach algebras

Let A and B be Banach algebras. We denote by Hom(A,B) the metric space of
all bounded homomorphisms from A into B, with the metric derived from Ł(A,B);
the bounded linear operators from A into B, and denote Hom(A,A) by Hom(A).

Let X be a A-module and let σ and τ be in Hom(A). A bounded linear mapping
D : A → X is called a (σ, τ)-derivation if

D(ab) = D(a) · σ(b) + τ(a) ·D(b) (a, b ∈ A) .
A bounded linear mapping D : A → X is called a (σ, τ)-inner derivation if there

exists x ∈ X such that
D(a) = x · σ(a)− τ(a) · x (a ∈ A) .

We use notations Z(σ,τ)(A, X) for the space of all continuous (σ, τ)-derivations
D : A → X, and B(σ,τ)(A, X) for those which are (σ, τ)-inner derivation. Also we
use notation H(σ,τ)(A, X) for the quotient space Z(σ,τ)(A, X)/B(σ,τ)(A, X) which
call the first (σ, τ)-cohomology group of A with coefficients in X. Derivations of
these forms are studied in [8].

Throughout this paper, A and A are Banach algebras such that A is a Banach
A-bimodule with compatible actions, that is

α · (ab) = (α · a)b, (ab) · α = a(b · α) (a, b ∈ A, α ∈ A) .
Let X be a Banach A-bimodule and a Banach A-bimodule with compatible actions,
that is

α · (a · x) = (α · a) · x , a · (α · x) = (a · α) · x ,

(α · x) · a = α · (x · a) (a ∈ A, α ∈ A, x ∈ X)
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and the same for the right or two-sided actions. Then we say that X is a Banach
A-A-module. If moreover

α · x = x · α (α ∈ A, x ∈ X)
then X is called a commutative A-A-module. If X is a (commutative) Banach
A-A-module, then so is X∗, where the actions of A and A on X∗ are defined by
〈α · f, x〉 = 〈f, x · α〉 , 〈a · f, x〉 = 〈f, x · a〉 (a ∈ A, α ∈ A, x ∈ X, f ∈ X∗)

and the same for the right actions.
Note that when A acts on itself by algebra multiplication, it is not in general a

Banach A-A-module, as we have not assumed the compatibility condition
a · (α · b) = (a · α) · b (α ∈ A, a, b ∈ A) .

If A is a commutative A-module and acts on itself by multiplication from both
sides, then it is also a Banach A-A-module.

If A is a Banach A-module with compatible actions, then so is the dual space A∗.
If moreover A is a commutative A-module, then A∗ is commutative A-A-module.

Now let A and B be A-modules. Then a A-module morphism from A to B
is a norm-continuous map T : A −→ B with T (a ± b) = T (a) ± T (b) which is
multiplicative, that is
T (α·a) = α·T (a) , T (a·α) = T (a)·α , T (ab) = T (a)T (b) , (a, b ∈ A, α ∈ A) .
We denote by HomA(A,B), the space of all such morphisms and denote HomA(A,A)
by HomA(A).

Let A and A be as above and X be a Banach A-A-module. Suppose that ϕ and
ψ in HomA(A). A bounded map D : A −→ X is called a module (ϕ,ψ)-derivation
if
D(a± b) = D(a)±D(b) , D(ab) = D(a) · ϕ(b) + ψ(a) ·D(b) (a, b ∈ A) ,

and
D(α · a) = α ·D(a) , D(a · α) = D(a) · α (a ∈ A, α ∈ A) .

Note that D : A −→ X is bounded if there exist M > 0 such that ‖D(a)‖ ≤M‖a‖
for all a ∈ A. Although D is not necessarily linear, but still its boundedness implies
its norm continuity (since D preserves subtraction). There is a similar justification
for HomA(A,B) . When X is commutative A-A-module, each x ∈ X defines a
module (ϕ,ψ)-derivation Dx

(ϕ,ψ)(a) = x · ϕ(a) − ψ(a) · x on A. These are called
module (ϕ,ψ)-inner derivations.

Definition 2.1. Let ϕ and ψ be in HomA(A). The Banach algebra A is called mo-
dule (ϕ,ψ)-amenable (as an A-module) if for any commutative Banach A-A-module
X, each module (ϕ,ψ)-derivation D : A −→ X∗ is (ϕ,ψ)-inner.

We use the notations ZA
(ϕ,ψ)(A, X∗) for the space of all module (ϕ,ψ)-derivations

D : A −→ X∗, BA
(ϕ,ψ)(A, X∗) for those which are inner (ϕ,ψ)-derivations, and

HA
(ϕ,ψ)(A, X∗) for the quotient space which we call the first relative (to A) (ϕ,ψ)-co-

homology group of A with coefficients in X∗. Hence A is module (ϕ,ψ)-amenable
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if and only if HA
(ϕ,ψ)(A, X∗) = {0} for all commutative Banach A-A-module X.

We note that if ϕ and ψ are identity maps, then module (ϕ,ψ)-amenability is the
same as module amenability (see [1]).

From [1, Proposition 2.1] we see that (ϕ,ψ)-amenability of A implies its module
(ϕ,ψ)-amenability if A has a bounded approximate identity for A. Therefore
(ϕ,ψ)-amenability is stronger than module (ϕ,ψ)-amenability.

Proposition 2.2. Let A be a Banach algebra and ψ,ϕ ∈ HomA(A). If A is a
module (ϕ,ψ)-amenable, then A is module (λ ◦ ϕ, µ ◦ ψ)-amenable, for any λ and
µ in HomA(A).

Proof. Let X be a commutative Banach A-A-module and D : A → X∗ be a
module (λ ◦ϕ, µ ◦ψ)-derivation. We consider another A-module structure on X via

a • x = λ(a) · x , x • a = x · µ(a) (a ∈ A, x ∈ X) .

It is easy to check that X with this product is a Banach A-A-module. We have

D(ab) = D(a)·(λ◦ϕ)(b)+(µ◦ψ)(a)·D(b) = D(a)•ϕ(b)+ψ(a)•D(b) , (a, b ∈ A) .

Thus D is a module (ϕ,ψ)-derivation, and so, there exists f ∈ X∗ such that
D(a) = f • ϕ(a)− ψ(a) • f . Therefore D(a) = f · (λ ◦ ϕ)(a) + (µ ◦ ψ)(a) · f . �

Corollary 2.3. If A is module amenable (as an A-module), then A is module
(ϕ,ψ)-amenable, for each ϕ and ψ in HomA(A).

In the following proposition we show that the converse of Corollary 2.3 in a
special case.

Proposition 2.4. Let A be an Banach A-module and ϕ ∈ HomA(A). If ϕ is an
epimorphism and A is module (ϕ,ϕ)-amenable, then A is module amenable.

Proof. Assume that X is a commutative Banach A-A-module and D : A → X∗ is
a module derivation. Obviously d = D ◦ ϕ is a module (ϕ,ϕ)-derivation and so, by
module (ϕ,ϕ)-amenability ofA there exists f ∈ X∗ such that d(a) = f ·ϕ(a)−ϕ(a)·f
for all a ∈ A. Let b ∈ A, then there exist a ∈ A such that ϕ(a) = b. Hence
D(b) = D(ϕ(a)) = d(a) = f ·ϕ(a)−ϕ(a) · f = f · b− b · f . Therefore D is a module
inner derivation. �

Proposition 2.5. Let A and B be Banach A-modules and ϕ ∈ HomA(A), ψ ∈
HomA(B). If there is λ in HomA(A,B) such that λ ◦ ϕ = ψ ◦ λ and range of
λ is a dense subset of B, then module (ϕ,ϕ)-amenability of A implies module
(ψ,ψ)-amenability of B.

Proof. Let X be a commutative Banach B-A-module and D : B → X∗ be a module
(ψ,ψ)-derivation. X can be considered as Banach A-module by the following actions

a ∗ x = λ(a) · x , x ∗ a = x · λ(a) (a ∈ A, x ∈ X) .
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Then X with this product is a Banach A-A-module, so D = D ◦ λ : A → X∗ is
(ϕ,ϕ)-derivation because

D(ab) = D
(
λ(a)λ(b)

)
= D(a) · ψ

(
λ(b)

)
+ ψ

(
λ(a)

)
·D
(
λ(b)

)
= D

(
λ(a)

)
· λ
(
ϕ(b)

)
+ λ

(
ϕ(a)

)
·D
(
λ(b)

)
= D(a) ∗ ϕ(b) + ϕ(a) ∗D(b) ,

for all a, b in A. Due to module (ϕ,ϕ)-amenability of A, there exist f ∈ X∗ such
that D(a) = f ∗ ϕ(a) − ϕ(a) ∗ f . Thus D(λ(a)) = f · ψ(λ(a)) + ψ(λ(a)) · f . By
density of range of λ and continuity of D, D is inner. �

By using the Proposition 2.5, if ϕ and ψ are identity map and λ(A) is dense
in B, then module amenability of A implies module amenability B. Therefore
Proposition 2.5 could be considered as a generalization of [1, Proposition 2.5].

Let A be a Banach A-module with compatible actions and J be the closed ideal
of A generated by elements (α · a)b − a(b · α) for all a, b ∈ A and α ∈ A, then
the quotient Banach algebra A/J is Banach A-module with compatible actions.
Suppose that ϕ,ψ ∈ HomA(A) such that ϕ(J) ⊆ J, ψ(J) ⊆ J . Then one can define
maps ϕ̂, ψ̂ : A/J → A/J by ϕ̂(a+ J) = ϕ(a) + J and ψ̂(a+ J) = ψ(a) + J .

We say that A has a bounded approximate identity for A if there is a bounded
net {ζj} in A such that ‖ζj · a− a‖ → 0 and ‖a · ζj − a‖ → 0, for each a ∈ A.

Proposition 2.6. Let ϕ, ψ be in HomA(A). If A has a bounded approximate
identity for A, then (ϕ̂, ψ̂)-amenability of A/J implies module (ϕ,ψ)-amenability
A.

Proof. Let X be a commutative Banach A-A-module and D : A → X∗ be a
module (ϕ,ψ)-derivation. We can show that J ·X = X · J = 0, so X is a Banach
A/J-module with module actions

(a+ J) · x := a · x , x · (a+ J) := x · a (x ∈ X, a ∈ A) .

Consider D̂ : A/J → X, defined by D̂(a + J) = D(a) for all a ∈ A. D̂ is well
defined because

D(α · ab− ab · α) = α ·D(ab)−D(ab) · α
= α ·

(
D(a) · b+ a ·D(b)

)
−
(
D(a) · b+ a ·D(b)

)
· α

= α ·
(
D(a) · b

)
−
(
D(a) · b

)
· α

+ α ·
(
a ·D(b)

)
−
(
a ·D(b)

)
· α = 0 .

Now for each a, b in A we have

D̂(ab+ J) = D(ab) = D(a) · ϕ(b) + ψ(a) ·D(b)

= D̂(a+ J) ·
(
ϕ(b) + J

)
+
(
ψ(a) + J

)
· D̂(b+ J)

= D̂(a+ J) · ϕ̂(b+ J) + ψ̂(a+ J) · D̂(b+ J) .
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Since A has the bounded approximate identity (ζi) for A, then for each ρ ∈ C and
a ∈ A we have

ϕ̂(ρa+ J) = ϕ(ρa) + J = lim
i
ϕ(ρa · ζi) + J = lim

i
ϕ(a · ρζi) + J

= lim
i
ρϕ(a · ζi) + J = ρϕ(a) + J = ρϕ̂(a+ J) .

Now, it follows from the proof of [1, Proposition 2.1] that D̂ is C-linear, and so it
is (ϕ̂, ψ̂)-inner. Hence there exist f ∈ X∗ such that

D(a) = D̂(a+ J) = f · ϕ̂(a+ J)− ψ̂(a+ J) · f = f · ϕ(a)− ψ(a) · f .
Therefore D is a module (ϕ,ψ)-inner. �

We say the Banach algebra A acts trivially on A from left if for each α ∈ A and
a ∈ A, α · a = f(α)a, where f is a continuous linear functional on A.

Proposition 2.7. Let ϕ, ψ be as above and A be module (ϕ,ψ)-amenable as an
A-module with trivial left action. If A/J has an identity, then A/J is (ϕ̂, ψ̂)-amenable.

Proof. Without loss of generality we assume that X is an unital A/J-module and
D̂ : A/J → X∗ be an (ϕ̂, ψ̂)-derivation. Then X is a A-module via

a · x := (a+ J) · x, x · a := x · (a+ J) (x ∈ X, a ∈ A) ,
and also X is A-module with trivial actions, that is α · x = x · α = f(α)x
for all x ∈ X and α ∈ A. Since f(α)a − a · α ∈ J [2, Lemma 3.1], we have
f(α)a + J = a · α + J for all α ∈ A. Hence the actions of A and A on X
are compatible. Therefore X is a commutative Banach A-A-module. Consider
D = D̂ ◦ π : A → X∗ where π : A → A/J is the natural A-module. Obviously
D(a±b) = D(a)±D(b) for all a, b ∈ A, and A/J has an identity, so by [2, Theorem
3.2], D(a · α) = D(a) · α,D(α · a) = D(a) = α ·D(a) for all a ∈ A and α ∈ A. Also
we have

D(ab) = D̂
(
π(ab)

)
= D̂(a+ J) · ϕ̂(b+ J) + ψ̂(a+ J) · D̂(b+ J)
= D(a) · (ϕ(b) + J) + (ψ(a) + J) ·D(b)
= D(a) · ϕ(b) + ψ(a) ·D(b) ,

for all a, b ∈ A, that is D ∈ ZA
(ϕ,ψ)(A, X∗). Hence there exist f ∈ X∗ such that

D(a) = f · ϕ(a)− ψ(a) · f for all a ∈ A. Therefore D̂ is (ϕ̂, ψ̂)-inner. �

3. module (ϕ,ψ)-amenability of semigroup algebras

Recall that a discrete semigroup S is called an inverse semigroup if for each
s ∈ S there is a unique element s∗ ∈ S such that ss∗s = s and s∗ss∗ = s∗. An
element e ∈ S is called an idempotent if e = e∗ = e2. The set of idempotents of S
is denoted by E. We start this section with a definition of inverse semigroups.

Throughout this section, S is an inverse semigroup with set of idempotents E.
There is a natural order on E, defined by

e ≤ d⇐⇒ ed = e (e, d ∈ E) .
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It is easy to see that E is indeed a commutative subsemigroup of S (see [6, Theorem
V.1.2]). In particular `1(E) could be regarded as a subalgebra of `1(S), and thereby
`1(S) is a Banach algebra and a Banach `1(E)-module with compatible canonical
actions [1]. However, for technical reasons, here we let `1(E) act on `1(S) by
multiplication from right and trivially from left, that is

δe · δs = δs , δs · δe = δse = δs ∗ δe (s ∈ S, e ∈ E) .

In this case, J is the closed linear span of {δset−δst s, t ∈ S, e ∈ E}. We consider
the following equivalence relation on S

s ≈ t⇐⇒ δs − δt ∈ J (s, t ∈ S) .

Recall that E is called directed upward if for every e, f ∈ E there exist g ∈ E
such that eg = e and fg = f . This is precisely the assertion that S satisfies the
condition D1 of Duncan and Namioka [5]. It is shown in [2] that if E is directed
upward, then the quotient S/ ≈ is a discrete group. Unital inverse semigroups have
a directed upward set of idempotents. Also if E is totally ordered, it is clearly
directed upward. The examples of the latter include the bicyclic semigroup and the
semigroup of natural numbers with max operation. On the other hand, the set of
idempotents of the free inverse semigroup on two generators is not directed upward.
Indeed, if the generators are a and b, there is no idempotent which is bigger than
both aa∗ and bb∗.

Consider the quotient map π : S → S/ ≈, s 7→ [s]. As in [11, Theorem 3.3],
we may observe that `1(S)/J ∼= `1(S/ ≈). Now, if ϕ ∈ Hom`1(E)(`1(S)), by
using the discussion before Proposition 2.6 we define ϕ̂ in Hom(`1(S/ ≈)) by
ϕ̂(δs + J) = ϕ(δs) + J and extended by linearity (see also the proof of Pro-
position 2.6). The following result is the main aim of this section. In fact we
show that there exists a one-to-one correspondence between H`1(E)

(ϕ,ψ) (`1(S), X∗) and
H(ϕ̂,ψ̂)(`

1(S/ ≈), X∗), where ϕ and ψ are in Hom`1(E)(`1(S)) and X is a commu-
tative Banach `1(S)-`1(E)-module.

Theorem 3.1. Let S be an inverse semigroup with a directed upward set of
idempotents E. If `1(S) is an `1(E)-module with trivial left action and ϕ, ψ are in
Hom`1(E)(`1(S)), then

H
`1(E)
(ϕ,ψ)

(
`1(S), X∗

) ∼= H(ϕ̂,ψ̂)

(
`1(S/ ≈), X∗

)
.

Proof. Since S/ ≈ is a discrete group, `1(S)/J ∼= `1(S/ ≈) has an identity.
Also S is an inverse semigroup with a directed upward set of idempotents E, so
E satisfies condition D1 of Duncan and Namioka. Hence `1(E) has a bounded
approximate identity [5]. Now, if (ζj) is a bounded approximate identity of `1(E),
then ζj ∗ δs = ζj ∗ δss∗s = (ζj · δss∗) ∗ δs → δs, and similarly for the right side
multiplication. Therefore `1(E) has a bounded approximate identity for `1(S). It
follows from Proposition 2.6 and Proposition 2.7 that the map

Z
`1(E)
(ϕ,ψ)

(
`1(S), X∗

)
→ Z(ϕ̂,ψ̂)

(
`1(S/ ≈), X∗

)
, (D 7→ D̂) .
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induce an isomorphism between the quotient spaces H
`1(E)
(ϕ,ψ) (`1(S), X∗) and

H(ϕ̂,ψ̂)(`
1(S/ ≈), X∗). �

The following corollary is a result of Theorem 3.1 in which ϕ and ψ are identity
maps.

Corollary 3.2. With the hypothesis of above theorem, S is amenable if and only
if S/ ≈ is amenable.

Proof. The discrete group S/ ≈ is amenable if and only if `1(S/ ≈) is amenable
by Johnson’s theorem [7]. We conclude from Theorem 3.2, `1(S/ ≈) is amenable if
and only if `1(S) is module amenable (as an `1(E)-module). Now the result follows
from [1, Theorem 3.1]. �

Let ∼ be the congruence relation on S where s ∼ t if and only if there exist
e ∈ E such that se = te. The quotient semigroup G(S) ≡ S/ ∼ is then a group.
It is indeed the maximal group homomorphic image of S [9]. Also the inverse
semigroup S is amenable if and only if the discrete group G(S) is amenable [5,
Theorem 1]. Now consider epimorphisms P : S → S/ ≈; s 7→ [s] and Q : S → G(S);
s 7→ [[s]], then maximality of G(S) implies that there is a group homomorphism
R : S/ ≈→ G(S) such that R ◦ P = Q. Clearly R is onto. To see it is one-to-one,
let [[s]] = [[t]], then there is e ∈ E such that se = te. Since δsa − δsea ∈ J for
all s, a ∈ S and e ∈ E, δs − δse = δss∗s − δss∗se = δss∗s − δses∗s ∈ J . Hence
δs − δt = δs − δse + δse − δt = (δs − δse) − (δt − δte) ∈ J , so [s] = [t]. Therefore
R is a group isomorphism. Now if S/ ≈ is amenable, then by Corollary 3.2 and
[1, Theorem 3.1], `1(S) is `1(E)-module amenable. Therefore `1(S) is module
(ϕ,ψ)-amenable, for each ϕ,ψ ∈ Hom`1(E)(`1(S)) by Corollary 2.3. We close this
section by some examples.

Example 3.3. (i) Let (N,∨) be the commutative semigroup of positive integers
with maximum operation m ∨ n = max(m,n), then each element of N is an
idempotent, hence N/ ≈ is the trivial group with one element. So N/ ≈ is amenable.
Therefore (N,∨) is amenable by the above corollary.

(ii) Let C be the bicyclic inverse semigroup generated by a and b, that is
C = {ambn : m,n ≥ 0} , (ambn)∗ = anbm .

The set of idempotents of C is EC = {anbn : n = 0, 1, . . .} which is totally ordered
with the following order

anbn ≤ ambm → m ≤ n .

It have been showed in [2] that C/ ≈ is isomorphic to integer numbers Z, hence it is
amenable. Therefore `1(C) is module (ϕ,ψ)-amenable for all ϕ, ψ ∈ Hom`1(EC)

(
`1(C)

)
.

(iii) Let S be an amenable E-unitary inverse semigroup with infinite number of
idempotents (see [6] and [10]). Then `1(S) is module amenable [1]. So if ϕ and ψ are
in Hom`1(E)(`1(S)), then `1(S) is module (ϕ,ψ)-amenable, but not (ϕ,ψ)-amenable
even when ϕ and ψ are identity maps [5].

(iv) If S is a Brandt semigroup of an amenable group over an infinite index set
(see [5] and [10]), then `1(S) is module amenable [1]. Therefore we conclude by
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Corollary 2.3 that `1(S) is module (ϕ,ψ)-amenable for all ϕ,ψ ∈ Hom`1(E)(`1(S))
without having a bounded approximate identity [5].
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