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THE FIRST EIGENVALUE OF SPACELIKE SUBMANIFOLDS
IN INDEFINITE SPACE FORM R;H‘p

YINGBO HAN AND SHUXIANG FENG

ABSTRACT. In this paper, we prove that the first eigenvalue of a complete

spacelike submanifold in Rj ™ with the bounded Gauss map must be zero.

1. INTRODUCTION

Let M™ be a complete noncompact Riemannian manifold and Q@ C M™ be a
domain with compact closure and nonempty boundary 0€2. The Dirichlet eigenvalue
A1(Q) of Q is defined by
Jo IVSPaM
S feL7,(Q) {0 ),

f]w f2dM 1,0 { }

where dM is the volume element on M™ and L7 ;(2) the completion of C§° with
respect to the norm

A1 (Q) = inf (

lela = [ ar+ [ volan.
M M

If Q1 C Q9 are bounded domains, then A;(€21) > A1(£22) > 0. Thus one may define
the first Dirichlet eigenvalue of M™ as the following limit

A (M) = lim Al(B(p,r)) >0,

where B(p,r) is the geodesic ball of M™ with radius r centered at p. It is clear that

the definition of A\; (M) does not depend on the center point p. It is interesting to

ask that for what geometries a noncompact manifold M" has zero first eigenvalue.

Cheng and Yau [1] showed that A\; (M) = 0 if M™ has polynomial volume growth.
In [5], B. Wu proved the following result.

Theorem A. Let M™ be a complete spacelike hypersurface in R?‘H whose Gauss
map is bounded, then Ay (M) = 0.

In this note, we discover that Wu’s result still holds for higher codimensional
complete spacelike submanifolds in R;}*p. In fact, we prove
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Theorem 3.1. Let M™ be a complete spacelike submanifold in RZ“’ whose Gauss
map is bounded, then A\ (M) = 0.

2. THE GEOMETRY OF PSEUDO-GRASSMANNIAN

In this section we review some basic properties about the geometry of pseudo-
-Grassmannian. For details one referred to see [6l 3.

Let Rg“’ be the (n + p)-dimensional pseudo-Euclidean space with index p,
where, for simplicity, we assume that n > p. The case n < p can be treated
similarly. We choose a pseudo-Euclidean frame field {e1,...,e,1,} such that
the pseudo-Euclidean metric of R}F? is given by ds* = Y. (wi)® — >, wa =
Y aca(wa)?, where {w1, ... ,wy=p} is the dual frame field of {e1,...,en4p}, €; =1
and €, = —1. Here and in the following we shall use the following convention on
the ranges of indices:

1<i,j,---<n; n+l1<apf,---<n+p; 1<AB, --<n+p.

The structure equations of R;}“’ are given by

degy = — § EAWABER ,
B

de=—§ waB ANwp, wap+wpa=0,
B

dwap = — E eEcwac Nwep -
C

Let G7, , be the pseudo-Grassmannian of all spacelike n-subspace in R;}“‘p , and
G?.p be the pseudo-Grassmannian of all timelike p-subspace in R!'*?. They are
specific Cai‘@n-Hadamard manifolds, and the canonical Riemannian metric on
G? , and G, p is
dsg = dsa = Z(wm-)2 .
1Y

Let 0 be the origin of Rg“’ . Let SO°(n + p, p) denote the identity component
of the Lorentzian group O(n + p,p). SO°(n + p,p) can be viewed as the manifold
consisting of all pseudo-Euclidean frames (0;e;, e4), and SO°(n + p,p)/SO(n) x
SO(p) can be viewed as G%, , or G}, p. Any element in G% , can be represented by
a unit simple n-vector ey A - -+ A e,,, while any element in G%, , can be represented

by a unit simple p-vector e,41 A -+ A enqp. They are unique up to an action of
SO(n) x SO(p). The Hodge star * provides an one to one correspondence between

G?% , and G}, p. The product (,) on G  for ey A---Aen, v1i A+ Avy is defined by
(1 A ANep,v1 A Avy) = det((e,v;)) -

The product on C??L,Jp can be defined similarly.
Now we fix a standard pseudo-Euclidean frame e;, e, for R;”p , and take gy =

esrN---Ney €GY o = *go = €nt1 A+ Aepip € Gh . Then we can span the
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spacelike n-subspace ¢ in a neighborhood of gg by n spacelike vectors f;:
Ji=e+ szea )
«@

where (z;,) are the local coordinates of g. By an action of SO(n) x SO(p) we can
assume that

1231

(Zm) =
Hp
0

From [3] we know that the normal geodesic g(t) between gy and g has local
coordinates

tanh(At)

(zia) = tanh(\pt)
0

for real numbers A ... A, such that >-%_, A\? = 1. This means that g(¢) is spanned by

fi(t) = ex +tanh(Mt)entn, .., fp(t) = ep + tanh(Apt)entp, fpr1 = €py1,..., fo =
en. Consequently, g(t) can also be represented by a unit simple n-vector as following:

g(t) = (cosh(Ait)e; + Sinh()\lt)en+1) A+ A (cosh(Apt)ey
+ sinh(Apt)entp) Aepr1 Ao Aey,.

Set Ao = Aa—_n, then it is clear that

cosh(Ait)er + sinh(Ait)enq1, ..., cosh(Apt)er + sinh(Apt)enip, €pti1, ..., en,

sinh(A41t)er + cosh(Apt1t)enta, - .., sinh(A,4pt)e, + cosh(Aptpt)entp
is again a pseudo-Euclidean frame for Rg“’ , so we have
g(t) = *g(t) = (Sinh()\n+1t)61 + COSh(}\n+1t)en+1) ARERWA (sinh()\nﬂ;t)ep
+ cosh(Appt)enip) € Gh., p-
Thus we have

(90, 9) = (=1)P(*g0,*9) = (=1)"(go0, g. Hcosh (Aat)

In this note, we also need the following lemma,

Lemma 2.1 ([]). Let jiy > 1,...,p, > 1 and [[,, pta = C. Then Y, cosh®(\,) <
C? +p — 1, and the equality holds if and only if u;, = C for some 1 < iy < p and
w; =1 for any i # ig.
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3. MAIN RESULTS FOR SPACE-LIKE SUBMANIFOLDS

In this note, we get the following result:

Theorem 3.1. Let M™ be a complete space-like submanifold in R;}*p whose Gauss
map is bounded, then we have Ay (M) = 0.

Proof. We choose a local frames e; ..., ep4p in RZ“’ such that restricted to M™,
€1,...,ey are tangent to M", e,41,...,€n4p are normal to M", the Gauss map

is defined by ent1 A - Aepyp: M — G p. Let us fix p-vector and n-vector

Ung1 A= ANangp € Ghp, ax A=+~ Na, € G¥ , where (aq,a3) = —dap and

(@i, a;) = 0;;. We defined the projection II: M™ — R} by

n+p

(1) (z) =z + Z (T, a0)0q

a=n+1

where (,) is the standard indefinite inner product on R;”rp and R the totally
geodesic Euclidean n-space determined by a = ap41 A -+ A apqp which is defined
by

(2) R ={z € RZ+p Sz, anq1) = = (T, Qpgp) = 0} .
It is clear from that

n+p
(3) dI(X) =X+ Y (X,a4)aa

a=n+1
for any tangent vector field on M™ and consequently,

n-+p
(4) AP = [X PP+ Y (X a0)®.
a=n+1
From the equation , we know that the map II: M™ — R} increases the distance.
If a map, from a complete Riemannian manifold M; into another Riemannian
manifold Ms of same dimension, increases the distance, then it is a covering map
and My is complete (in [2, VIII, Lemma 8.1]). Hence II is a covering map, but R?
being simply connected this means that II is in face a diffeomorphism between
M™ and Rj, and thus M" is noncompact. Now assume that the Gauss map

€nt1 A Aepyp: M™ — Gh o, is bounded, then there exists p > 0 such that
(5) 1< (=1)P(ent1 A Anip, Gnp1 Ao AGnip) < p.
From Section [2| we know that by an action of SO(n) x SO(p) we can assume that

en+1 = sinh(A,41t)ar + cosh(Apq1t)ant1, .- €ntp
= sinh(Ap4pt)ar + cosh(Ap4pt)antp

where > A2 =1and t € R.
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Write

n+p

(6) o =a' — Z (@, ep)es,

B=n+1

where a! denote the component of a, which is tangent to M", and a = n +
1,...,n+p. Since {(aq,ag) = —d,3, we have

n—+p

(7) —1=laj P = > (aa,ep)’ =lag|” = cosh®(Aat),
B=n+1

where a =n+1,...,n+ p. It follows from Lemma and Eq. , , we have

n+p n+p
(8) 1+ Z lal |> = Z cosh?(A\at) —p+1 < HcoshQ()\at) < p?
a=n-+1 a=n-+1
From Eq. and , we have
n+p n+p
9 JdIX)P = [XP+ Y (Xal) <IXP(+ D lagl) <p°IXP.
a=n+1 a=n-+1

for any tangent vector field on M™. Let B(p,r) is the geodesic ball of M™ with
radius r centered at p € M™. We claim that II(B(p,r)) C B(p, pr), where B(p, pr)
denotes the geodesic ball of R with radius pr centered at p = II(p). In fact, for
any ¢ € II(B(p,r)) let ¢ € B(p,r) be the unique point such that II(q) = ¢, and
7: [a,b] — M™ is the minimal geodesic joining p and ¢, then from (9) we have

- b b
A5 < Ler) = [ dn(y@) e <p [ [(O]dt = pL(2) = pilp.q) < pr.

where d and d denote the distance in R} and M™, respectively. This prove our
claim.
Let dV denotes the n-dimensional volume element on R. Using (3)) and @ it
follows that
I (dV)(Xy,...,Xn) = det (dH(Xl)7 o dIN(X ), antts - - - ,anﬂ,)
= det(X17 cee )X’I’L7a"l’b+17 e 7a7‘b+1))
= (=1)"(ent1 A+ A €ntps An+1 Ao A an+p>
det(Xq,.. Xmenﬂ,...,enﬂ,)
= (=D)P(ent1 A Alnip, Gnp1t Ao Alnyp)
dM(Xla )
for any tangent vector fields X7, ..., X,, of M™. In other words,

(10) T (dV) ( )p<€n+1 VANREIWAN En+p, An+1 VANREIWAN an+p>dM Z dM .
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Since II(B(p, 7)) C B(p, pr) and II: M™ — R™ is diffeomorphism, it follows from
Eq. that

P = Vol (B(F, pr)) = Vol (I(B(p, r))) = /H o
p,"‘

(11) :/ *dv z/ dM = Vol (B(p, 7)),
B(p,r) B(p,r)

where w,, denotes the volume of unit ball in Euclidean n-space. (11)) means that
the order of the volume growth of M™ is not larger than n, thus by [I] we see that
A (M) =0. O
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