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THE FIRST EIGENVALUE OF SPACELIKE SUBMANIFOLDS
IN INDEFINITE SPACE FORM Rn+p

p

Yingbo Han and Shuxiang Feng

Abstract. In this paper, we prove that the first eigenvalue of a complete
spacelike submanifold in Rn+p

p with the bounded Gauss map must be zero.

1. Introduction

Let Mn be a complete noncompact Riemannian manifold and Ω ⊂ Mn be a
domain with compact closure and nonempty boundary ∂Ω. The Dirichlet eigenvalue
λ1(Ω) of Ω is defined by

λ1(Ω) = inf
(∫

Ω |∇f |
2dM∫

M
f2dM

: f ∈ L2
1,0(Ω) {0}

)
,

where dM is the volume element on Mn and L2
1,0(Ω) the completion of C∞0 with

respect to the norm

‖ϕ‖2Ω =
∫
M

ϕ2dM +
∫
M

|∇ϕ|2 dM .

If Ω1 ⊂ Ω2 are bounded domains, then λ1(Ω1) ≥ λ1(Ω2) ≥ 0. Thus one may define
the first Dirichlet eigenvalue of Mn as the following limit

λ1(M) = lim
r→∞

λ1
(
B(p, r)

)
≥ 0 ,

where B(p, r) is the geodesic ball of Mn with radius r centered at p. It is clear that
the definition of λ1(M) does not depend on the center point p. It is interesting to
ask that for what geometries a noncompact manifold Mn has zero first eigenvalue.
Cheng and Yau [1] showed that λ1(M) = 0 if Mn has polynomial volume growth.

In [5], B. Wu proved the following result.

Theorem A. Let Mn be a complete spacelike hypersurface in Rn+1
1 whose Gauss

map is bounded, then λ1(M) = 0.

In this note, we discover that Wu’s result still holds for higher codimensional
complete spacelike submanifolds in Rn+p

p . In fact, we prove
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Theorem 3.1. Let Mn be a complete spacelike submanifold in Rn+p
p whose Gauss

map is bounded, then λ1(M) = 0.

2. The geometry of pseudo-Grassmannian

In this section we review some basic properties about the geometry of pseudo-
-Grassmannian. For details one referred to see [6, 3].

Let Rn+p
p be the (n + p)-dimensional pseudo-Euclidean space with index p,

where, for simplicity, we assume that n ≥ p. The case n < p can be treated
similarly. We choose a pseudo-Euclidean frame field {e1, . . . , en+p} such that
the pseudo-Euclidean metric of Rn+p

p is given by ds2 =
∑
i(ωi)2 −

∑
α ωα =∑

A εA(ωA)2, where {ω1, . . . , ωn=p} is the dual frame field of {e1, . . . , en+p}, εi = 1
and εα = −1. Here and in the following we shall use the following convention on
the ranges of indices:

1 ≤ i, j, · · · ≤ n; n+ 1 ≤ α, β, · · · ≤ n+ p ; 1 ≤ A,B, · · · ≤ n+ p .

The structure equations of Rn+p
p are given by

deA = −
∑
B

εAωABeB ,

dωA = −
∑
B

ωAB ∧ ωB , ωAB + ωBA = 0 ,

dωAB = −
∑
C

εCωAC ∧ ωCB .

Let Gpn,p be the pseudo-Grassmannian of all spacelike n-subspace in Rn+p
p , and

G̃pn,p be the pseudo-Grassmannian of all timelike p-subspace in Rn+p
p . They are

specific Cartan-Hadamard manifolds, and the canonical Riemannian metric on
Gpn,p and G̃pn,p is

dsG = ds
G̃

=
∑
iα

(ωαi)2 .

Let 0 be the origin of Rn+p
p . Let SO0(n+ p, p) denote the identity component

of the Lorentzian group O(n+ p, p). SO0(n+ p, p) can be viewed as the manifold
consisting of all pseudo-Euclidean frames (0; ei, eα), and SO0(n+ p, p)/SO(n)×
SO(p) can be viewed as Gpn,p or G̃pn,p. Any element in Gpn,p can be represented by
a unit simple n-vector e1 ∧ · · · ∧ en, while any element in G̃pn,p can be represented
by a unit simple p-vector en+1 ∧ · · · ∧ en+p. They are unique up to an action of
SO(n)× SO(p). The Hodge star ∗ provides an one to one correspondence between
Gpn,p and G̃pn,p. The product 〈, 〉 on Gpn,p for e1 ∧ · · · ∧ en, v1 ∧ · · · ∧ vn is defined by

〈e1 ∧ · · · ∧ en, v1 ∧ · · · ∧ vn〉 = det
(
〈ei, vj〉

)
.

The product on G̃pn,p can be defined similarly.
Now we fix a standard pseudo-Euclidean frame ei, eα for Rn+p

p , and take g0 =
e1 ∧ · · · ∧ en ∈ Gpn,p, g̃0 = ∗g0 = en+1 ∧ · · · ∧ en+p ∈ G̃pn,p. Then we can span the



THE FIRST EIGENVALUE OF SPACELIKE SUBMANIFOLDS IN Rn+p
p 79

spacelike n-subspace g in a neighborhood of g0 by n spacelike vectors fi:

fi = ei +
∑
α

ziαeα ,

where (ziα) are the local coordinates of g. By an action of SO(n)× SO(p) we can
assume that

(ziα) =


µ1

. . .
µp

0

 .

From [3] we know that the normal geodesic g(t) between g0 and g has local
coordinates

(ziα) =


tanh(λ1t)

. . .
tanh(λpt)

0

 ,

for real numbers λ1 . . . λp such that
∑p
i=1 λ

2
i = 1. This means that g(t) is spanned by

f1(t) = e1 + tanh(λ1t)en+1, . . . , fp(t) = ep + tanh(λpt)en+p, fp+1 = ep+1, . . . , fn =
en. Consequently, g(t) can also be represented by a unit simple n-vector as following:

g(t) =
(

cosh(λ1t)e1 + sinh(λ1t)en+1
)
∧ · · · ∧

(
cosh(λpt

)
e1

+ sinh(λpt)en+p) ∧ ep+1 ∧ · · · ∧ en .

Set λα = λα−n, then it is clear that

cosh(λ1t)e1 + sinh(λ1t)en+1, . . . , cosh(λpt)e1 + sinh(λpt)en+p, ep+1, . . . , en ,

sinh(λn+1t)e1 + cosh(λn+1t)en+1, . . . , sinh(λn+pt)ep + cosh(λn+pt)en+p

is again a pseudo-Euclidean frame for Rn+p
p , so we have

g̃(t) = ∗g(t) =
(

sinh(λn+1t)e1 + cosh(λn+1t)en+1
)
∧ · · · ∧

(
sinh(λn+pt)ep

+ cosh(λn+pt)en+p
)
∈ G̃pn,p .

Thus we have

〈g0, g〉 = (−1)p〈∗g0, ∗g〉 = (−1)p〈g̃0, g̃〉 =
∏
α

cosh(λαt) .

In this note, we also need the following lemma,

Lemma 2.1 ([4]). Let µ1 ≥ 1, . . . , µp ≥ 1 and
∏
α µα = C. Then

∑
α cosh2(λα) ≤

C2 + p− 1, and the equality holds if and only if µi0 = C for some 1 ≤ i0 ≤ p and
µi = 1 for any i 6= i0.
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3. Main results for space-like submanifolds

In this note, we get the following result:

Theorem 3.1. Let Mn be a complete space-like submanifold in Rn+p
p whose Gauss

map is bounded, then we have λ1(M) = 0.

Proof. We choose a local frames e1 . . . , en+p in Rn+p
p such that restricted to Mn,

e1, . . . , en are tangent to Mn, en+1, . . . , en+p are normal to Mn, the Gauss map
is defined by en+1 ∧ · · · ∧ en+p : Mn → G̃pn,p. Let us fix p-vector and n-vector
an+1 ∧ · · · ∧ an+p ∈ G̃pn,p, a1 ∧ · · · ∧ an ∈ Gpn,p, where 〈aα, aβ〉 = −δαβ and
〈ai, aj〉 = δij . We defined the projection Π: Mn → Rna by

(1) Π(x) = x+
n+p∑

α=n+1
〈x, aα〉aα ,

where 〈, 〉 is the standard indefinite inner product on Rn+p
p and Rna the totally

geodesic Euclidean n-space determined by a = an+1 ∧ · · · ∧ an+p which is defined
by

(2) Rna = {x ∈ Rn+p
p : 〈x, an+1〉 = · · · = 〈x, an+p〉 = 0} .

It is clear from (1) that

(3) dΠ(X) = X +
n+p∑

α=n+1
〈X, aα〉aα

for any tangent vector field on Mn and consequently,

(4) |dΠ(X)|2 = |X|2 +
n+p∑

α=n+1
〈X, aα〉2 .

From the equation (4), we know that the map Π: Mn → Rna increases the distance.
If a map, from a complete Riemannian manifold M1 into another Riemannian
manifold M2 of same dimension, increases the distance, then it is a covering map
and M2 is complete (in [2, VIII, Lemma 8.1]). Hence Π is a covering map, but Rna
being simply connected this means that Π is in face a diffeomorphism between
Mn and Rna , and thus Mn is noncompact. Now assume that the Gauss map
en+1 ∧ · · · ∧ en+p : Mn → G̃pn,p is bounded, then there exists ρ > 0 such that

(5) 1 ≤ (−1)p〈en+1 ∧ · · · ∧ en+p, an+1 ∧ · · · ∧ an+p〉 ≤ ρ .

From Section 2 we know that by an action of SO(n)× SO(p) we can assume that

en+1 = sinh(λn+1t)a1 + cosh(λn+1t)an+1, . . . , en+p

= sinh(λn+pt)a1 + cosh(λn+pt)an+p ,

where
∑
α λ

2
α = 1 and t ∈ R.
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Write

(6) aα = a> −
n+p∑

β=n+1
〈aα, eβ〉eβ ,

where a>α denote the component of aα which is tangent to Mn, and α = n +
1, . . . , n+ p. Since 〈aα, aβ〉 = −δαβ , we have

(7) − 1 = |a>α |2 −
n+p∑

β=n+1
〈aα, eβ〉2 = |a>α |2 − cosh2(λαt) ,

where α = n+ 1, . . . , n+ p. It follows from Lemma 2.1 and Eq. (5), (7), we have

(8) 1 +
n+p∑

α=n+1
|a>α |2 =

n+p∑
α=n+1

cosh2(λαt)− p+ 1 ≤
∏

cosh2(λαt) ≤ ρ2 .

From Eq.(4) and (8), we have

(9) |dΠ(X)|2 = |X|2 +
n+p∑

α=n+1
〈X, a>α 〉2 ≤ |X|2(1 +

n+p∑
α=n+1

|a>α |2) ≤ ρ2|X|2 .

for any tangent vector field on Mn. Let B(p, r) is the geodesic ball of Mn with
radius r centered at p ∈Mn. We claim that Π(B(p, r)) ⊂ B̃(p̃, ρr), where B̃(p̃, ρr)
denotes the geodesic ball of Rna with radius ρr centered at p̃ = Π(p). In fact, for
any q̃ ∈ Π(B(p, r)) let q ∈ B(p, r) be the unique point such that Π(q) = q̃, and
γ : [a, b]→Mn is the minimal geodesic joining p and q, then from (9) we have

d̃(p̃, q̃) ≤ L(Π ◦ r) =
∫ b

a

∣∣dΠ
(
γ′(t)

)∣∣ dt ≤ ρ ∫ b

a

|γ′(t)| dt = ρL(γ) = ρd(p, q) ≤ ρr ,

where d̃ and d denote the distance in Rna and Mn, respectively. This prove our
claim.

Let dV denotes the n-dimensional volume element on Rna . Using (3) and (6) it
follows that

Π∗(dV )(X1, . . . , Xn) = det
(
dΠ(X1), . . . ,dΠ(Xn), an+1, . . . , an+p

)
= det(X1, . . . , Xn, an+1, . . . , an+p)
= (−1)p〈en+1 ∧ · · · ∧ en+p, an+1 ∧ · · · ∧ an+p〉

det(X1, . . . , Xn, en+1, . . . , en+p)
= (−1)p〈en+1 ∧ · · · ∧ en+p, an+1 ∧ · · · ∧ an+p〉
dM(X1, . . . , Xn)

for any tangent vector fields X1, . . . , Xn of Mn. In other words,

(10) Π∗(dV ) = (−1)p〈en+1 ∧ · · · ∧ en+p, an+1 ∧ · · · ∧ an+p〉dM ≥ dM .
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Since Π(B(p, r)) ⊂ B̃(p̃, ρr) and Π: Mn → Rna is diffeomorphism, it follows from
Eq. (10) that

ρnrnωn = Vol
(
B̃(p̃, ρr)

)
≥ Vol

(
Π(B(p, r))

)
=
∫

Π(B(p,r))
dV

=
∫
B(p,r)

Π∗dV ≥
∫
B(p,r)

dM = Vol
(
B(p, r)

)
,(11)

where ωn denotes the volume of unit ball in Euclidean n-space. (11) means that
the order of the volume growth of Mn is not larger than n, thus by [1] we see that
λ1(M) = 0. �
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