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HILBERT INEQUALITY FOR VECTOR VALUED FUNCTIONS

Namita Das and Srinibas Sahoo

Abstract. In this paper we consider a class of Hankel operators with operator
valued symbols on the Hardy space H2

Ξ(T) where Ξ is a separable infinite
dimensional Hilbert space and showed that these operators are unitarily
equivalent to a class of integral operators in L2(0,∞)⊗ Ξ. We then obtained
a generalization of Hilbert inequality for vector valued functions. In the
continuous case the corresponding integral operator has matrix valued kernels
and in the discrete case the sum involves inner product of vectors in the
Hilbert space Ξ.

1. Introduction

If am, bn ≥ 0 satisfy 0 <
∑∞
m=1 a

2
m <∞ and 0 <

∑∞
n=1 b

2
n <∞, then

(1.1)
∞∑
m=1

∞∑
n=1

ambn
m+ n

< π
( ∞∑
m=1

a2
m

∞∑
n=1

b2n

) 1
2

where the constant factor π is the best possible.
The integral version of the inequality (1.1) is as follows:
If f , g ≥ 0 and f , g ∈ L2(0,∞), then

(1.2)
∫ ∞

0

∫ ∞
0

f(x)g(y)
x+ y

dx dy < π
(∫ ∞

0
f2(x) dx

∫ ∞
0

g2(x) dx
) 1

2

where the constant factor π is the best possible.
The inequalities (1.1) and (1.2) are the well-known Hilbert’s inequality (see

Hardy et. al [4], Ch-9). Hardy and Riesz [3] gave the following generalizations of
(1.1) and (1.2) for conjugate parameters.

Let 1
p + 1

q = 1, 1 < p < ∞, am, bn ≥ 0 satisfy 0 <
∑∞
m=1 a

p
m < ∞ and

0 <
∑∞
n=1 b

q
n <∞. Then

(1.3)
∞∑
m=1

∞∑
n=1

ambn
m+ n

<
π

sin(π/p)

( ∞∑
m=1

apm

) 1
p
( ∞∑
n=1

bqn

) 1
q

where the constant factor π/ sin(π/p) is the best possible.
The integral version of the inequality (1.3) is as follows:
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Let 1
p + 1

q = 1, 1 < p <∞, f ∈ Lp(0,∞), g ∈ Lq(0,∞). Then

(1.4)
∫ ∞

0

∫ ∞
0

f(x)g(y)
x+ y

dx dy <
π

sin(π/p)

(∫ ∞
0

fp(x)dx
) 1
p
(∫ ∞

0
gq(x)dx

) 1
q

where the constant factor π/ sin(π/p) is the best possible.
The inequalities (1.3) and (1.4) are well-known as Hardy-Hilbert’s inequality.

These inequalities are important in analysis and its applications (see [6, Ch-5], [4,
Ch-9]).

Let L2(T) denote the Hilbert space of square integrable, Lebesgue measurable
complex valued functions on the unit circle T = {z ∈ C | |z| = 1}, with pointwise
algebraic operations and inner product

〈f, g〉 = 1
2π

∫ π

−π
f(eiθ)g(eiθ)dθ .

Let L∞(T) denote the Banach space of essentially bounded, Lebesgue measurable,
complex valued functions on T with pointwise algebraic operations and essential
supremum norm

‖f‖∞ = ess sup
|z|=1

|f(z)| .

For p = 2 or ∞, let Hp(T) be the closed subspace {f ∈ Lp(T) : f̂(n) = 0 for n <
0} of Lp(T), with the restriction of the norm of Lp. Here f̂(n) denote the nth Fourier
coefficient of f . The spaces H2(T) and H∞(T) are called Hardy spaces. The space
H2(T) is a Hilbert space and H∞(T) is a Banach space. Clearly, H∞(T) ⊂ H2(T).

For ϕ ∈ L∞(T), the Hankel operator Sϕ with symbol ϕ, from H2(T) into itself
is defined by Sϕf = PJ(ϕf) where P is the orthogonal projection from L2(T)
onto H2(T) and J : L2(T) → L2(T) is defined by Jf(eit) = f(e−it). There are
some useful unitary equivalences between Hankel operators and Hankel integral
operators as we discuss in the following examples.

Example 1.1. Consider the function

ϕ(eiθ) = −i(π − θ) , 0 ≤ θ < 2π .

Then ϕ ∈ L∞(T) and if

ϕ(eiθ) =
∞∑

n=−∞
ane

inθ

then

an =
{

0 if n = 0 ;
− 1
n if n 6= 0 .
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Hence the matrix of the Hankel operator Szϕ with respect to the standard ortho-
normal basis of H2(T) is the Hilbert’s matrix

Γ =



1 1
2

1
3 · · · · · ·

1
2

1
3

1
4 · · · · · ·

1
3

1
4

1
5 · · · · · ·

· · · · · · · · · · · · · · ·


.

It is not difficult to see that the Hilbert’s matrix Γ as an operator on l2(Z+) is
unitarily equivalent to the integral operator

(1.5)
(
K
h̃
f
)

(x) =
∫ ∞

0
h̃(x+ y)f(y)dy, f ∈ L2(0,∞) ,

where h̃(x) = e−x

x . This integral operator is known as Hankel integral operator. For
more details see [8].

Example 1.2. Consider the classical singular integral operator, the Carleman’s
operator defined on L2(0,∞) by

(1.6) (Khf) (x) =
∫ ∞

0
h(x+ y)f(y)dy,

where the kernel function is h(x) = 1
x . It is easy to verify (see [8]) that the

Carleman’s operator Kh is unitarily equivalent to the Hankel operator defined on
H2(T) whose matrix with respect to the standard orthonormal basis is

(1.7) S = 2



1 0 1
3 0 1

5 · · ·

0 1
3 0 1

5 · · · · · ·

1
3 0 1

5 · · · · · · · · ·

0 1
5 · · · · · · · · · · · ·

1
5 · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·


.

Such integral operators are widely studied in the literature (see [7, 8]). It is not
difficult to see that ‖Szϕ‖ = ‖K

h̃
‖ = ‖Kh‖ = π.

Example 1.3. Let ψ(z) = χ
(
i 1−z

1+z
)
, |z| = 1, z 6= −1 where

χ(t) =
{

1, t ∈ [−1, 1]
0, t /∈ [−1, 1] .
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Then ψ is the characteristic function of the set {z ∈ C : |z| = 1,Re z ≥ 0}. In the
Hilbert space l2(Z+) introduce the Hankel operator Γψ with symbol ψ defined by

(1.8) (Γψx)n =
∞∑
k=0

cn+k+1xk ,

for x = (x0, x1, x2, · · · ) ∈ l2(Z+), where ck are the Fourier coefficients of the
function ψ,

ck(ψ) = 1
2π

∫ 2π

0
eikθψ(eiθ) dθ = 2

πk
sin
(πk

2

)
, k ∈ N .

The operator Γψ defined in (1.8) is unitarily equivalent to the Hankel integral
operator K 1

2
defined on L2(0,∞) as(

K 1
2
f
)
(x) =

∫ ∞
0

2
π

sin(x+ y)
x+ y

f(y) dy .

For details see [5].

In this paper we observe that certain Hankel operators on H2
Ξ(T) are unitarily

equivalent to a class of integral operators on L2
Ξ(0,∞), where Ξ is an infinite

dimensional separable Hilbert space and using the unitary equivalence of these
operators generalize the Hilbert inequality for vector valued functions. In §22, we
deal with the Hankel integral operator K

h̃
defined in (1.5). We show that the norm

of K
h̃

as an operator on Lp(0,∞) is equal to π/ sin(π/p), 1 < p <∞ and derive the
associated integral inequality. As a consequence of this we have obtained an integral
inequality involving the kernel [cosh(t− s)]−1 in L2(−∞,∞). In §33, we obtain the
discrete and integral version of Hilbert’s inequality for Cn−valued functions and
show that in the continuous case the corresponding integral operator has matrix
valued kernel and in the discrete case the sum involves the inner product of vectors
in the Hilbert space Cn. In §44, we consider the case of H2

Ξ(T) and generalize the
results of §33. Further, we also generalize the discrete version of Hilbert inequality
for sequences in a Hilbert space H.

2. Norm of the Hankel integral operator K
h̃

and the associated inequalities

In this section we find the norm of K
h̃

as an operator from Lp(0,∞) into itself,
1 < p <∞. But we establish first the discrete version of a Hilbert type inequality.

Theorem 2.1. If am, bn ∈ C satisfy 0 <
∑∞
m=0 |am|2 <∞ and 0 <

∑∞
n=0 |bn|2 <

∞, then

(2.1)
∣∣∣ ∞∑
m, n=0
m+n even

amb̄n
m+ n+ 1

∣∣∣ ≤ π

2

( ∞∑
m=0
|am|2

) 1
2
( ∞∑
n=0
|bn|2

) 1
2

and the constant factor π
2 is the best possible.
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Proof. Let ψ(z) =
∑∞
n=0

2
2n+1z

−(2n+1). Then

ψ̂(−k) =
{

2
k if k is odd, k > 0;
0, otherwise.

Hence for m,n = 0, 1, 2, · · · ,

cmn = 〈Szψzm, zn〉 = 〈PJ(zψzm), zn〉 = 〈J(ψzm+1), zn〉

= 〈ψzm+1, z−n〉 = 〈ψ, z−(m+n+1)〉

=
{

2
m+n+1 if m+ n+ 1 is odd;
0, otherwise.

Thus the matrix S given in (1.7) is the matrix of Szψ. Let f(z) =
∑∞
m=0 amz

m

and g(z) =
∑∞
n=0 bnz

n and suppose f, g ∈ H2(T). Now as we have mentioned in
example 1.2 that ‖Szψ‖ = ‖Kh‖. It follows from the Hilbert integral inequality
(1.2) that ‖Kh‖ = π. Hence ‖Szψ‖ = π. It follows from Cauchy-Schwarz inequality
that

|〈Szψf, g〉| ≤ ‖Szψ‖ ‖f‖ ‖g‖ ≤ π‖f‖ ‖g‖ .
But

|〈Szψf, g〉| =
∣∣∣〈Szψ( ∞∑

m=0
amz

m
)
,
( ∞∑
n=0

bnz
n
)〉∣∣∣

=
∣∣∣ ∞∑
m,n=0

amb̄n〈Szψzm, zn〉
∣∣∣

=
∣∣∣ 2

∞∑
m,n=0

m+n even

amb̄n
m+ n+ 1

∣∣∣ .
Thus ∣∣∣ ∞∑

m,n=0
m+n even

amb̄n
m+ n+ 1

∣∣∣ ≤ π

2

{ ∞∑
m=0
|am|2

} 1
2
{ ∞∑
n=0
|bn|2

} 1
2
.

�

We now proceed to show that the norm of the operator K
h̃

as an operator from
Lp(0,∞) into itself is equal to π

sin(π/p) , if 1 < p <∞. It also gives us the following
Hardy-Hilbert type integral inequality.

Theorem 2.2. Let 1
p + 1

q = 1, 1 < p <∞, f ∈ Lp(0,∞), g ∈ Lq(0,∞). Then∫ ∞
0

∫ ∞
0

e−(x+y)

x+ y
f(x)g(y) dx dy ≤ π

sin π
p

(∫ ∞
0

fp(x) dx
)1
p
(∫ ∞

0
gq(y) dy

)1
q

and the constant factor π
sin π

p
is the best possible.
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Proof. It follows from Hardy-Hilbert’s integral inequality (1.4), that∫ ∞
0

∫ ∞
0

e−(x+y)

x+ y
f(x)g(y) dx dy ≤ π

sin π
p

(∫ ∞
0
e−pxfp(x) dx

) 1
p
(∫ ∞

0
e−qygq(y) dy

) 1
q

≤ π

sin π
p

(∫ ∞
0

fp(x) dx
) 1
p
(∫ ∞

0
gq(y) dy

) 1
q

as e−pt ≤ 1 for t ∈ (0,∞).
It remains to show that the constant factor 1 in the inequality

(2.2)
∫ ∞

0
e−pxfp(x) dx ≤

∫ ∞
0

fp(x) dx

is the best possible.
Suppose there exists a constant k, 0 < k < 1 such that

(2.3)
∫ ∞

0
e−pxfp(x) dx < k

∫ ∞
0

fp(x) dx

for all f ∈ Lp(0,∞).
Setting

f̃(x) =
{

1, 0 ≤ x ≤ 1
p log 1

k

0, x > 1
p log 1

k .

we have ∫ ∞
0

f̃p(x) dx =
∫ 1

p log 1
k

0
dx = 1

p
log 1

k
;

hence f̃ ∈ Lp(0,∞). Now

(2.4)
∫ ∞

0

(
e−px − k

)
f̃p(x) dx = 1

p
+ k

p
log
(
k

e

)
.

Consider the function g(t) = −e−pt+1−kpt, t ∈ [0,∞). Then g′(t) = pe−pt−kp =
0 for t = 1

p log 1
k and g′′(t) = −p2e−pt < 0 for t = 1

p log 1
k . Hence g(t) > g(0) for

t = 1
p log 1

k . Therefore 1 + k log
(
k
e

)
> 0. Now from (2.4) we get∫ ∞

0

(
e−px − k

)
f̃p(x) dx > 0 .

This is a contradiction to the assumption (2.3), which shows that the constant
factor 1 in the inequality (2.2) is the best possible. Again the constant factor π

sin π
p

is the best possible in the Hardy-Hilbert’s integral inequality (1.4). Hence the result
follows. �

Remark 2.3. It follows from Theorem 2.2 that

‖Kh‖ = ‖K
h̃
‖ = π

sin(π/p) .

As a consequence of Theorem 2.2, we obtain the following integral inequality
involving the kernel [cosh(t− s)]−1 in L2(−∞,∞).
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Corollary 2.4. If f, g ∈ L2(−∞,∞) then∣∣∣ ∫ ∞
−∞

[cosh(t− s)]−1f(s)g(t) ds dt
∣∣∣ ≤ π‖f‖L2(−∞,∞)‖g‖L2(−∞,∞) .

Proof. Consider the map W : L2(0,∞)→ L2(−∞,∞) defined by

Wf(t) =
√

2etf(e2t) .

The operator W is a unitary operator. Let f be a continuous function with compact
support in (0,∞) and h(x+ y) = 1

x+y , x = e2t, y = e2s. Then

(Khf)(x) =
∫ ∞

0

f(y)
x+ y

dy =
∫ ∞
−∞

f(e2s)2e2s

e2t + e2s ds = 1√
2et

∫ ∞
−∞

2eset

e2t + e2sWf(s) ds

= 1√
2et

∫ ∞
−∞

[cosh(t− s)]−1Wf(s) ds = (W ∗CWf)(x)

since if g ∈ L2(−∞,∞) then g(t)√
2et = 1√

2xg( 1
2 log x) = W ∗g(x). Thus Kh = W ∗CW

where C is the convolution with (cosh t)−1. That is,

(Cf)(t) =
∫ ∞
−∞

[cosh(t− s)]−1f(s) ds .

Since Kh and C are unitarily equivalent hence ‖C‖ = π and

|〈Cf, g〉| ≤ π‖f‖L2(−∞,∞)‖g‖L2(−∞,∞) .

Thus ∣∣∣ ∫ ∞
−∞

[cosh(t− s)]−1f(s)g(t) ds dt
∣∣∣ ≤ π‖f‖L2(−∞,∞)‖g‖L2(−∞,∞) .

�

3. Hilbert inequality for vector valued functions

In this section we generalize the discrete version of the Hilbert inequality (1.1)
and here the sum involves the inner product of vectors in a Hilbert space H. Let
L(H) denote the set of all bounded linear operators from the Hilbert space H into
itself.

Theorem 3.1. Let (xn) and (yn) be two sequences in H such that 0 <
∑∞
n=1 ‖xn‖2 <

∞ and 0 <
∑∞
n=1 ‖yn‖2 <∞. Then

(3.1)
∞∑
m=1

∞∑
n=1

|〈xm, yn〉|
m+ n

< π
{ ∞∑
m=1
‖xm‖2

} 1
2
{ ∞∑
n=1
‖yn‖2

} 1
2
,

where the constant factor π is the best possible.
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Proof. Let H 6= {0} be a Hilbert space and E be an orthonormal basis for H. The
set {e ∈ E| 〈z, e〉 6= 0 for some z = xm or yn} is countable, let us enumerate this
set as the sequence (e1, e2, e3, . . . ). Then every xm and yn can be expressed as

xm =
∞∑
k=1

amkek ; yn =
∞∑
k=1

bnkek ,

where amk = 〈xm, ek〉, bnk = 〈yn, ek〉. Then

〈xm, yn〉 =
∞∑
k=1

amkbnk .

By Parseval relation ‖xm‖2 =
∑∞
k=1 |amk|2, for every m and ‖yn‖2 =

∑∞
k=1 |bnk|2,

for every n. So, we have |amk| ≤ ‖xm‖ for all m and |bnk| ≤ ‖yn‖ for all n. Hence for
each k,

∑∞
m=1 |amk|2 <∞ and

∑∞
n=1 |bnk|2 <∞. Now using Hilbert’s inequality,

we have for each k,
∞∑
m=1

∞∑
n=1

|amk| |bnk|
m+ n

< π
{ ∞∑
m=1
|amk|2

} 1
2
{ ∞∑
n=1
|bnk|2

} 1
2
.

Taking summation over k from 1 to p, and using Cauchy-Schwartz inequality, we
get

p∑
k=1

∞∑
m=1

∞∑
n=1

|amk| |bnk|
m+ n

< π
{ p∑
k=1

∞∑
m=1
|amk|2

} 1
2
{ p∑
k=1

∞∑
n=1
|bnk|2

} 1
2

= π
{ ∞∑
m=1

p∑
k=1
|amk|2

} 1
2
{ ∞∑
n=1

p∑
k=1
|bnk|2

} 1
2
.

It follows therefore that for every p ≥ 1,

(3.2)
p∑
k=1

∞∑
m=1

∞∑
n=1

|amk| |bnk|
m+ n

< π
{ ∞∑
m=1
‖xm‖2

} 1
2
{ ∞∑
n=1
‖yn‖2

} 1
2
.

Notice that

|〈xm, yn〉| =
∣∣∣ ∞∑
k=1

amkbnk

∣∣∣ ≤ ∞∑
k=1
|amk| |bnk| .

It follows from the relation |amk| |bnk| ≤ 1
2 (|amk|2 + |bnk|2) and the convergence of

the series
∑∞
k=1 |amk|2 and

∑∞
k=1 |bnk|2. Thus letting p→∞ in (3.2), we obtain

(3.1). In particular for the Hilbert space H = R, (3.1) reduces to the Hilbert’s
inequality (1.1). Since the constant factor π in (1.1) is the best possible, so we
conclude that the constant factor π in (3.1) is the best possible. �

We shall now present the integral version of the inequality (3.1) and derive some
related inequalities using tensor products.

Let L2
Cn(T) denote the Hilbert space of Cn-valued, norm-square integrable,

measurable functions on T and H2
Cn(T) the corresponding Hardy space of functions

in L2
Cn(T) with vanishing negative Fourier coefficients. We note that L2

Cn(T) =
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L2(T)⊗ Cn and H2
Cn(T) = H2(T)⊗ Cn where the Hilbert space tensor product is

used. When endowed with the inner product defined by

〈f, g〉L2
Cn (T) =

∫
T
〈f(z), g(z)〉Cndz , for f, g ∈ L2

Cn(T) ,

the spaces L2
Cn(T) and H2

Cn(T) become separable Hilbert spaces. Here the measures
dz denotes the normalized Lebesgue measure on T. If Φ is a bounded, measurable
Mn = Mn(C)-valued function (the algebra of n× n matrices with complex entries)
in L∞Mn

(T) = L∞(T)⊗Mn, then SΦ denotes the Hankel operator defined on H2
Cn(T)

by
SΦf = P̃ J̃(Φf) for f ∈ H2

Cn(T) ,

where P̃ is the orthogonal projection of L2
Cn(T) onto H2

Cn(T) and J̃ : L2
Cn(T) →

L2
Cn(T) is defined by J̃F (eit) = F (e−it) and (Φf)(eit) = Φ(eit)f(eit).
Let Φ ∈ L∞Mn

(T) and

Φ =


φ11 0 · · · 0
0 φ22 · · · 0
...

...
. . .

...
0 0 · · · φnn

 .

Then each entry φij of Φ is in L∞(T) and

SΦ =


Sφ11 0 · · · 0

0 Sφ22 · · · 0
...

...
. . .

...
0 0 · · · Sφnn

 .

This is so as H2
Cn(T) = H2(T)⊕H2(T)⊕ · · · ⊕ H2(T)︸ ︷︷ ︸

n−times

.

Let L2
Cn(0,∞) = L2(0,∞)⊗Cn = L2(0,∞)⊕L2(0,∞)⊕ · · · ⊕L2(0,∞). For F ,

G ∈ L2
Cn(0,∞), the norm is defined by

‖F‖L2
Cn

=
(∫ ∞

0
‖F (x)‖2Cn dx

) 1
2

and the inner product is defined by

〈F,G〉 =
∫ ∞

0
〈F (x), G(x)〉Cn dx .

With the above inner product L2
Cn(0,∞) is a Hilbert space. For detail see [1]. Let

H(x+ y) =


e−(x+y)

x+y 0 · · · 0
...

...
. . .

...
0 0 · · · e−(x+y)

x+y


n×n

.
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Define BH : L2
Cn(0,∞)→ L2

Cn(0,∞) by

(BHF ) (x) =
∫ ∞

0
H(x+ y)F (y) dy .

The map BH is well-defined, linear and for G ∈ L2
Cn(0,∞),

〈BHF,G〉 =
∫ ∞

0

∫ ∞
0

G∗(x)H(x+ y)F (y) dy dx ,

where G∗(x) denotes the adjoint of G(x). Notice that

BH =


K
h̃11

0 · · · 0
0 K

h̃22
· · · 0

...
...

. . .
...

0 0 · · · K
h̃nn


where h̃ij(x) = e−x

x for all i, j = 1, 2, . . . , n.

Lemma 3.2. The operator BH : L2
Cn(0,∞) → L2

Cn(0,∞) is a bounded operator
and ‖BH‖ = π.

Proof. Let F = (f1, f2, . . . , fn)T , where fi ∈ L2(0,∞) for all i = 1, 2, . . . , n. Then
G = BHF = (g1, g2, . . . , gn)T and gi ∈ L2(0,∞) for all i = 1, 2, . . . , n.

Now

‖BHF‖2 =
∫ ∞

0
‖(BHF )(x)‖2Cn dx =

∫ ∞
0
‖G(x)‖2Cn dx

=
∫ ∞

0

( n∑
j=1
|gj(x)|2

)
dx =

n∑
j=1

∫ ∞
0
|gj(x)|2 dx

=
n∑
j=1

∫ ∞
0

∣∣(K
h̃jj
fj
)
(x)
∣∣2 dx

=
n∑
j=1
‖K

h̃jj
fj‖2 ≤

n∑
j=1
‖K

h̃jj
‖2‖fj‖2 ≤

n∑
j=1

π2‖fj‖2

= π2
n∑
j=1

∫ ∞
0
|fj(x)|2 dx = π2

∫ ∞
0

( n∑
j=1
|fj(x)|2

)
dx

= π2
∫ ∞

0
‖F (x)‖2Cn dx = π2‖F‖2 .

Thus ‖BH‖ ≤ π.
Now it remains to show that that ‖BH‖ ≥ π.
Let f ∈ L2(0,∞) and F = (f, 0, · · · , 0)T . Then ‖F‖ = ‖f‖. So,

|〈K
h̃11
f, f〉| = |〈BHF, F 〉| ≤ ‖BH‖‖F‖2 = ‖BH‖‖f‖2

gives π = ‖K
h̃11
‖ ≤ ‖BH‖ as K

h̃11
is self-adjoint. Hence ‖BH‖ = π. �
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Now we generalize the Theorem 2.2, for the case p = q = 2, to vector-valued
functions.

Theorem 3.3. If F,G ∈ L2
Cn(0,∞), then∣∣∣ ∫ ∞

0

∫ ∞
0
G∗(x)H(x+ y)F (y) dx dy

∣∣∣ ≤ π(∫ ∞
0
‖F (x)‖2 dx

) 1
2
(∫ ∞

0
‖G(y)‖2 dy

) 1
2
,

where the constant factor π is the best possible.

Proof. Since ‖BH‖ = π, so, the result follows from the fact that
|〈BHF,G〉| ≤ π‖F‖L2

Cn
‖G‖L2

Cn
, for all F,G ∈ L2

Cn(0,∞) .

�

Now let φlj(eiθ) = −i(π − θ)eiθ, 0 ≤ θ < 2π, 1 ≤ l, j ≤ n and

Φ =


φ11 0 · · · 0
0 φ22 · · · 0
...

...
. . .

...
0 0 · · · φnn

 .

It is not difficult to see that

SΦ =


Sφ11 0 · · · 0

0 Sφ22 · · · 0
...

...
. . .

...
0 0 · · · Sφnn


is unitarily equivalent to

BH =


K
h̃11

0 · · · 0
0 K

h̃22
· · · 0

...
...

. . .
...

0 0 · · · K
h̃nn

 ,

where h̃ij(x) = e−x

x , 1 ≤ i, j ≤ n. Hence ‖SΦ‖ = π.
Let ek = (0, 0, . . . , 0, 1, 0, . . . , 0) with 1 in the kth place and γkl = eilt ⊗ ek,

k = 1, 2, . . . , n, l = 0, 1, 2, . . . . Then {ek}nk=1 form an orthonormal basis for Cn and
{γkl}k=1,2,...,n;l=0,1,...,∞ form an orthonormal basis for H2

Cn(T) = H2(T)⊗ Cn.

Theorem 3.4. Let F̃ = f ⊗ x ∈ H2
Cn(T) and G̃ = g ⊗ y ∈ H2

Cn(T). Then∣∣∣ ∞∑
l, l′=0

n∑
k=1

〈f ⊗ x, eilt ⊗ ek〉〈g ⊗ y, eil′t ⊗ ek〉
l + l′ + 1

∣∣∣ ≤ π‖f ⊗ x‖ ‖g ⊗ y‖ .
Proof. Notice that

〈F̃ , γkl〉 = 〈f ⊗ x, eilt ⊗ ek〉 = 〈f, eilt〉〈x, ek〉
and

〈G̃, γml′〉 = 〈g ⊗ y, eil
′t ⊗ em〉 = 〈g, eil

′t〉〈y, em〉 .
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Hence

〈SΦF̃ , G̃〉 =
n∑

k, m=1

∞∑
l, l′=0

〈F̃ , γkl〉〈G̃, γml′〉〈SΦ(γkl), γml′〉

=
n∑

k, m=1

∞∑
l, l′=0

〈F̃ , γkl〉〈G̃, γml′〉〈(Sφ ⊗ ICn)(eilt ⊗ ek), eil
′t ⊗ em〉

=
n∑

k, m=1

∞∑
l, l′=0

〈f, eilt〉〈x, ek〉〈g, eil′t〉 〈y, em〉 〈Sφeilt ⊗ ek, eil
′t ⊗ em〉

=
n∑

k, m=1

∞∑
l, l′=0

〈f, eilt〉〈x, ek〉〈g, eil′t〉 〈y, em〉 〈Sφeilt, eil
′t〉〈ek, em〉

=
n∑
k=1

∞∑
l, l′=0

〈f, eilt〉〈x, ek〉〈g, eil′t〉 〈y, ek〉 〈Sφeilt, eil
′t〉 .

Thus ∣∣〈SΦF̃ , G̃〉
∣∣ =

∣∣∣ ∞∑
l, l′=0

n∑
k=1

〈f ⊗ x, eilt ⊗ ek〉〈g ⊗ y, eil′t ⊗ ek〉
l + l′ + 1

∣∣∣
and since SΦ is a bounded linear operator in H2

Cn(T) and ‖SΦ‖ = π, we obtain∣∣〈SΦF̃ , G̃〉
∣∣ ≤ π‖F̃‖H2

Cn (T)‖G̃‖H2
Cn (T) = π‖f ⊗ x‖ ‖g ⊗ y‖ .

The result follows. �

Corollary 3.5. If
∑n
k=1

∑∞
l=0 |akl|2 <∞ and

∑n
k=1

∑∞
l′=0 |bkl′ |2 <∞, then∣∣∣ ∞∑

l,l′=0

n∑
k=1

aklbkl′

l + l′ + 1

∣∣∣ ≤ π( n∑
k=1

∞∑
l=0
|akl|2

) 1
2
( n∑
k=1

∞∑
l′=0
|bkl′ |2

) 1
2

and the constant π is best possible.

Proof. It is possible to find xk, yk, k = 1, 2, . . . , n, and sequences (cl)∞l=0, (cl′)∞l′=0
such that akl = xkcl, bkl′ = ykcl′ ,

∑∞
l=0 |cl|2 < ∞ and

∑∞
l′=0 |cl′ |2 < ∞. Let

f(eit) =
∑∞
l=0 cle

ilt and g(eit) =
∑∞
l′=0 cl′e

il′t. Then f , g ∈ H2(T). So, for x =
(xk)nk=1, y = (yk)nk=1 ∈ Cn, we have f ⊗ x, g ⊗ y ∈ H2

Cn(T). Now

‖f ⊗ x‖2 = ‖f‖2‖x‖2 =
∞∑
l=0
|cl|2

n∑
k=1
|xk|2 =

n∑
k=1

∞∑
l=0
|cl|2|xk|2 =

n∑
k=1

∞∑
l=0
|akl|2 .

Similarly,

‖g ⊗ y‖2 =
n∑
k=1

∞∑
l′=0
|bkl′ |2 .

On the other hand, 〈f⊗x, eilt⊗ek〉 = 〈f, eilt〉〈x, ek〉 = xkcl = akl and 〈g⊗y, eil′t⊗
ek〉 = 〈g, eil′t〉〈y, ek〉 = ykcl′ = bkl′ . Hence the results follows from Theorem 3.4.
Since ‖SΦ‖ = π, the constant π is the best possible. �
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4. Hankel operators with operator valued symbols

Let Ξ be a separable infinite dimensional Hilbert space. The measure m will
denote the normalised Lebesgue measure on T. The space L2

Ξ is defined to be the
set of all (equivalence classes of) measurable, norm-square integrable, Ξ-valued
functions defined on T. When endowed with the inner product defined by the
equation

〈f, g〉 =
∫

T
〈f(z), g(z)〉Ξ dm , f, g ∈ L2

Ξ ,

the space L2
Ξ becomes a separable Hilbert space. The subspace of L2

Ξ consisting of
those functions with vanishing negative Fourier coefficients will be denoted by H2

Ξ.
Each function in H2

Ξ admits a natural analytic continuation into D.
A function Φ from T into L(Ξ) is called weakly measurable in case the complex-va-

lued function z 7→ 〈Φ(z)x, y〉 is Lebesgue measurable for every x and y in Ξ. If Φ
is weakly measurable then the real-valued function z → ‖Φ(z)‖ is measurable and
the space of all (equivalence classes of) weakly measurable, essentially bounded,
L(Ξ)-valued functions on T will be denoted by L∞L(Ξ)(T).

The space L∞L(Ξ)(T) is a C∗− algebra with the algebraic operations defined
pointwise and norm defined by the equation

‖Φ‖∞ = ess sup
z∈T

‖Φ(z)‖ , Φ ∈ L∞L(Ξ)(T)

where ‖Φ(z)‖ = sup
n

sup
m
|〈Φ(z)en, em〉|, z ∈ T, {en}∞n=0 is the orthonormal basis

for Ξ and involution is defined by the equation Φ∗(z) = (Φ(z))∗. The mapping
ζ → Φ(ζ)f , ζ ∈ T are measurable for f ∈ Ξ. This follows from the Pettis theorem
(see [1]) as Ξ is separable.

For a function Φ ∈ L∞L(Ξ)(T) we define the Fourier coefficients

Cn(Φ) = 1
2π

∫ 2π

0
e− intΦ(eit) dt , n ∈ Z .

The integral is understood in the strong sense, i.e.,

Cn(Φ)f = 1
2π

∫ 2π

0
e− intΦ(eit)fdt, f ∈ Ξ.

We have clearly ‖Cn(Φ)‖ ≤ ‖Φ‖∞ for all integers n. The space H∞L(Ξ)(T) is the
subspace of L∞L(Ξ)(T) consisting of those functions Φ whose Fourier coefficients
Cn(Φ) vanish if n < 0. For Φ ∈ L∞L(Ξ)(T), we define the Hankel operator SΦ

from H2
Ξ(T) into itself as SΦf = Q(J(Φf)) where Q is the orthogonal projection

from L2
Ξ(T) onto H2

Ξ(T) and the symbol Φf denote the function on T defined by
(Φf)(eit) = Φ(eit)f(eit) and J : L2

Ξ(T)→ L2
Ξ(T) is defined by JF (eit) = F (e−it).

In the following theorem we extend Theorem 3.3 for Ξ-valued functions.

Theorem 4.1. Let H(x) = e−x

x ⊗ IΞ where IΞ is the identity operator from
the Hilbert space Ξ into itself. Let L2

Ξ(0,∞) = L2(0,∞) ⊗ Ξ and define KH :



242 N. DAS AND S. SAHOO

L2
Ξ(0,∞)→ L2

Ξ(0,∞) by

(KHF )(x) =
∫ ∞

0
H(x+ y)F (y) dy .

Then for F,G ∈ L2
Ξ(0,∞),∣∣∣ ∫ ∞

0

〈
(KHF )(x), G(x)

〉
Ξ dx

∣∣∣ ≤ π‖F‖L2
Ξ(0,∞)‖G‖L2

Ξ(0,∞) .

Proof. Let h̃(x) = e−x

x and define K
h̃
∈ L(L2(0,∞)) by

(K
h̃
f)(x) =

∫ ∞
0

e−(x+y)

x+ y
f(y) dy .

It is not difficult to see that the operator KH is well-defined and since L2
Ξ(0,∞) =

L2(0,∞)⊗Ξ we haveKH =
∑∞
n=0⊕Kh̃

= K
h̃
⊗IΞ where (K

h̃
⊗IΞ)(f⊗z) = K

h̃
f⊗z

if f ∈ L2(0,∞) and z ∈ Ξ. Now ‖KH‖ =
∥∥∑∞

n=0⊕Kh̃

∥∥ = ‖K
h̃
‖ = π. Thus by

Cauchy-Schwarz inequality it follows that∣∣〈KHF,G〉
∣∣ ≤ ‖KH‖ ‖F‖L2

Ξ(0,∞)‖G‖L2
Ξ(0,∞)

= π‖F‖L2
Ξ(0,∞)‖G‖L2

Ξ(0,∞) .

Hence ∣∣∣ ∫ ∞
0

〈
(KHF )(x), G(x)

〉
Ξ dx

∣∣∣ ≤ π‖F‖L2
Ξ(0,∞)‖G‖L2

Ξ(0,∞) .

�

Theorem 4.2. If F̃ = f ⊗ x, G̃ = g ⊗ y ∈ H2
Ξ(T) = H2(T)⊗ Ξ, then∣∣∣ ∞∑

l, l′=0

∞∑
k=0

〈f ⊗ x, eilt ⊗ ek〉〈g ⊗ y, eil′t ⊗ ek〉
l + l′ + 1

∣∣∣ ≤ π‖f ⊗ x‖ ‖g ⊗ y‖ .
Proof. Let φ(eiθ) = −i(π−θ)eiθ, 0 ≤ θ < 2π and Φ = φ⊗ IΞ. Then Φ ∈ L∞L(Ξ)(T).
Let SΦ be the Hankel operator from H2

Ξ(T) into itself with symbol Φ. Notice that
since H2

Ξ(T) = H2(T) ⊗ Ξ, we have SΦ = Sφ ⊗ IΞ. Thus ‖SΦ‖ = ‖Sφ‖ = π. Let
Υkl = eilt ⊗ ek, k = 0, 1, 2, . . . and l = 0, 1, 2, . . . . The sequence {Υkl} form an
orthonormal basis for H2

Ξ(T). Then

〈SΦF̃ , G̃〉 =
∞∑

l, l′=0

∞∑
k=0

〈f ⊗ x, eilt ⊗ ek〉〈g ⊗ y, eil′t ⊗ ek〉
l + l′ + 1 .

Since ∣∣〈SΦF̃ , G̃〉
∣∣ ≤ ‖SΦ‖ ‖F̃‖ ‖G̃‖ = π‖f ⊗ x‖ ‖g ⊗ y‖ ,

the result follows. �

Corollary 4.3. Let F̃ = f⊗x and G̃ = g⊗y where f , g ∈ H2(T) and x, y ∈ Ξ. Let
cl(f) and cl′(g) denote the lth and l′ th Fourier coefficients of f and g respectively.
Then ∣∣∣ ∞∑

l, l′=0

〈cl(f)x, cl′(g)y〉Ξ
l + l′ + 1

∣∣∣ ≤ π‖F̃‖H2
Ξ(T)‖G̃‖H2

Ξ(T) .
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Proof. Let Υkl = eilt ⊗ ek, k = 0, 1, 2, . . . and l = 0, 1, 2, . . . . Then the sequence
{Υkl} form an orthonormal basis for H2

Ξ(T). Hence 〈F̃ ,Υkl〉 = cl(f)〈x, ek〉 and
〈g̃,Υkl′〉 = cl′(g)〈y, ek〉. Also
∞∑

l, l′=0

∞∑
k=0

〈f ⊗ x, eilt ⊗ ek〉〈g ⊗ y, eil′t ⊗ ek〉
l + l′ + 1 =

∞∑
l, l′=0

∞∑
k=0

〈cl(f)x, ek〉〈cl′(g)y, ek〉
l + l′ + 1

=
∞∑

l, l′=0

∞∑
k=0

〈cl(f)x, ek〉〈ek, cl′(g)y〉
l + l′ + 1 =

∞∑
l, l′=0

〈cl(f)x, cl′(g)y〉Ξ
l + l′ + 1 .

Now the result follows from Theorem 4.2. �

Corollary 4.4. If
∑∞
l,k=0 |akl|2 <∞ and

∑∞
l′,k=0 |bkl′ |2 <∞, then∣∣∣ ∞∑

k, l, l′=0

aklbkl′

l + l′ + 1

∣∣∣ ≤ π( ∞∑
k, l=0

|akl|2
) 1

2
( ∞∑
k, l′=0

|bkl′ |2
) 1

2

and the constant π is sharp.

Proof. The proof is similar to the proof of Corollary 3.5. �
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