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F -MANIFOLDS AND INTEGRABLE SYSTEMS
OF HYDRODYNAMIC TYPE

Paolo Lorenzoni, Marco Pedroni, and Andrea Raimondo

Abstract. We investigate the role of Hertling-Manin condition on the struc-
ture constants of an associative commutative algebra in the theory of integrable
systems of hydrodynamic type. In such a framework we introduce the notion
of F -manifold with compatible connection generalizing a structure introduced
by Manin.

1. Introduction

In their seminal papers [6, 26], Dubrovin, Novikov, and Tsarev pointed out a deep
relation between the integrability properties of systems of PDEs of hydrodynamic
type
(1) uit = V ij u

j
x , i = 1, . . . , n ,

(sum over repeated indices is understood) and geometrical — in particular, Rie-
mannian — structures on the target manifold M , where (u1, . . . , un) play the role
of coordinates. Probably, the most important of such structures is the notion of
a Frobenius manifold, introduced by Dubrovin (see, e.g., [3]) in order to give a
coordinate-free description of the famous WDVV equations. A crucial ingredient
involved in the definition of Frobenius manifolds is a (1, 2)-type tensor field c giving
an associative commutative product on every tangent space:

(X ◦ Y )i := cijkX
jY k ,

where X and Y are vector fields. More recently [15], Hertling and Manin showed
that this product satisfies the condition

(2)
− [X ◦ Y, Z] ◦W − [X ◦ Y,W ] ◦ Z −X ◦ [Y,Z ◦W ]
+X ◦ [Y,Z] ◦W +X ◦ [Y,W ] ◦ Z − Y ◦ [X,Z ◦W ]
+ Y ◦ [X,Z] ◦W + Y ◦ [X,W ] ◦ Z = 0 ,

or, in terms of the components of c,
(3) (∂sckim)csjl− (∂sckjl)csim+(∂icsjl)cksm+(∂mcsjl)cksi− (∂lcsim)ckjs− (∂jcsim)ckls = 0 .
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They called a manifold endowed with an associative commutative multiplicative
structure satisfying condition (2), an F -manifold.

The aim of this paper is to study the properties of the PDEs of hydrodynamic
type associated with F -manifolds. The system (3) and its relation with integrable
systems has been considered from a different point of view in [16], where it is shown
to describe the evolution of the dispersionless KP hierarchy. Here, following the
insights coming from the case of the principal hierarchy in the context of Frobenius
manifolds, we will consider the PDEs of the form

(4) uit = (VX)ijujx, i = 1, . . . , n , (VX)ij := cijkX
k ,

where X is a vector field on M and c satisfies associativity, commutativity, and
(2). These assumptions have two important consequences, spelled out respectively
in Section 2 and 3:

1. For any choice of the vector field X, the Haantjes tensor associated with the
(1,1) tensor field VX vanishes.

2. They allow one to write the condition of commutativity of two flows of the
form (4) as a simple requirement on the corresponding vector fields on M .

Starting from Section 4, we put into the game an additional structure, namely a
connection ∇ satisfying the symmetry condition

(5) (∇Xc) (Y,Z) = (∇Y c) (X,Z) ,

for all vector fields X, Y , and Z. Remarkably, as shown by Hertling [14], condition
(2) follows from (5). According to Manin [18], we study the special case where
the connection ∇ is flat and we show how to construct an integrable hierarchy of
hydrodynamic type. The construction is divided in two steps. First — using a basis
of flat vector fields — one defines a set of flows, known as primary flows. Then,
from these flows one can define recursively the higher flows of the hierarchy. In
this way, each primary flow turns out to be the starting point of a hierarchy. This
construction is a straightforward generalization of the principal hierarchy defined
by Dubrovin in the case of Frobenius manifolds [3]. Notice however that we do not
need the connection to be necessarily metric.

The general (non-flat) case is studied in Section 5, where we introduce the
notion of F -manifold with compatible (non-flat) connection ∇ and we show that
the associated integrable systems of hydrodynamic type are defined by a family of
vector fields satisfying the following condition:

(6) cijm∇kXm = cikm∇jXm .

In the non-flat case the existence of solutions of the above system is not guaranteed.
Indeed we prove that every solution X of (6) satisfies the condition

(Rklmicnpk +Rklipc
n
mk +Rklpmc

n
ik)X l = 0 ,

where R is the curvature tensor of ∇. It is thus natural to introduce the following
requirement on the curvature:

(7) Rklmic
n
pk +Rklipc

n
mk +Rklpmc

n
ik = 0 .
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If the structure constants cijk admit canonical coordinates (i.e., coordinates such
that ckij = δki δ

k
j ), then condition (7) is related to the well-known semi-Hamiltonian

property introduced by Tsarev [26] as compatibility condition for the linear system
providing the symmetries of a diagonal system of hydrodynamic type.

In Section 6, motivated by the Hamiltonian theory of systems of hydrodynamic
type, we consider the case of metric connections and we introduce the notion of
Riemannian F -manifold.

We stress that the main novelties of the paper are contained in Section 5 and
6, where the known relations between integrable PDEs of hydrodynamic type
and Frobenius manifolds are extended to the non-flat case. In particular, the
compatibility condition (7) between the product c and the connection ∇ turns
out to be the geometric counterpart of the above mentioned semi-Hamiltonian
property.

2. The Haantjes tensor

An important class of systems of hydrodynamic type, widely studied in the
literature, consists in those systems which admit diagonal form. In this section
we review some diagonalizability properties from our point of view, and we show
— under a suitable hypothesis — the existence of canonical coordinates for the
corresponding F -manifold.

Recall that a system (1) is said to be diagonalizable if there exists a set of
coordinates

(
r1, . . . , rn

)
— usually called Riemann invariants — such that the

tensor V ij is diagonal in these coordinates: V ij (r) = vi δij . Then the system takes
the (diagonal) form

rit = vi(r1, . . . , rn)rix, i = 1, . . . , n .
It is important to recall that there exists an invariant criterion for the diagonaliza-
bility. One first introduces the Nijenhuis tensor of V as

NV (X,Y ) = [V X, V Y ]− V [X,V Y ]− V [V X, Y ] + V 2 [X,Y ] ,
where X and Y are arbitrary vector fields, and then defines the Haantjes tensor as
HV (X,Y ) = NV (V X, V Y )− V NV (X,V Y )− V NV (V X, Y ) + V 2NV (X,Y ) .

In the case when V has mutually distinct eigenvalues, then V is diagonalizable if
and only if its Haantjes tensor is identically zero. In this section, we consider the
Haantjes tensor of
(8) (VZ)ij = cijkZ

k ,

where c satisfies associativity, commutativity, and the Hertling-Manin condition
(2). For a (1, 1)- type tensor field of the form (8), the Nijenhuis tensor reads
NVZ (X,Y ) = [Z ◦X,Z ◦ Y ] + Z2 ◦ [X,Y ]− Z ◦ [X,Z ◦ Y ]− Z ◦ [Z ◦X,Y ] .

By using the Hertling-Manin condition (2) evaluated at X = Z, this can be written
as
NVZ (X,Y ) = [X ◦ Z,Z] ◦ Y − [X,Z] ◦ Z ◦ Y + [Z, Y ◦ Z] ◦X − [Z, Y ] ◦X ◦ Z,
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using this identity it is easy to prove the following

Theorem 1. The Haantjes tensor associated with VZ vanishes for any choice of
the vector field Z.

Proof. Let us write for simplicity N in place of NVZ . Then, we have that

HVZ (X,Y ) = N(Z◦X,Z◦Y )+Z2◦N(X,Y )−Z◦N(X,Z◦Y )−Z◦N(Z◦X,Y )
= [X ◦ Z2, Z] ◦ Y ◦ Z − [X ◦ Z,Z] ◦ Z2 ◦ Y + [Z, Y ◦ Z2] ◦X ◦ Z
− [Z, Y ◦ Z] ◦X ◦ Z2 + [X ◦ Z,Z] ◦ Y ◦ Z2 − [X,Z] ◦ Z3 ◦ Y
+ [Z, Y ◦ Z] ◦X ◦ Z2 − [Z, Y ] ◦X ◦ Z3 − [X ◦ Z,Z] ◦ Z2 ◦ Y
+ [X,Z] ◦ Z3 ◦ Y − [Z, Y ◦ Z2] ◦X ◦ Z + [Z, Y ◦ Z] ◦X ◦ Z2

− [X ◦ Z2, Z] ◦ Y ◦ Z + [X ◦ Z,Z] ◦ Z2 ◦ Y − [Z, Y ◦ Z] ◦X ◦ Z2

+ [Z, Y ] ◦X ◦ Z3 = 0 ,

where Z2 = Z ◦ Z and Z3 = Z ◦ Z ◦ Z. �

Suppose now that X is a vector field such that VX has everywhere distinct real
eigenvalues (v1, . . . , vn). Since the Haantjes tensor of VX vanishes, there exist local
coordinates (r1, . . . , rn) such that (VX)ij = δijv

i. These coordinates are Riemann
invariants of the corresponding system of hydrodynamic type. Moreover, we have

Proposition 2. The components of the tensor field c in the coordinates (r1, . . . , rn)
are given by

ckij = fiδ
k
i δ
k
j ,

where every fi depends on the variable ri only.

Proof. In diagonal coordinates we have

(VX)ij = cijkX
k = viδij ,

hence, we get
cjpqc

i
jkX

k = cjpqv
iδij = cipqv

i .

On the other hand, due to the associativity of the algebra, we can also write

cjpqc
i
jkX

k = cjpkc
i
jqX

k = cijqv
jδjp = cipqv

p (no sum over p),

and therefore,
cipq
(
vi − vp

)
= 0 .

Since the algebra is commutative and the eigenvalues of VX are pairwise distinct,
this means that the structure constants, in the coordinates (r1, . . . , rn), take the
form

(9) cijk = fiδ
i
jδ
i
k ,

where the fi are arbitrary functions, depending in principle on all the variables
r1, . . . , rn. The requirement on the structure constants c to satisfy the Hertling-Manin
condition (3) implies further constraints on the functions fi. Indeed, substituting
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(9) into (3), we get a set of equations which the fi must satisfy; considering for
instance the case i = k = l = m 6= j, we get

fi ∂jfi = 0 ,
which means that every fi is either constant or it depends on ri only. It is easy to
check that conditions (3) give no further restrictions on the fi; the proposition is
proved. �

If the functions fi are everywhere different from zero, then it is easy to show
that there exist local coordinates, called canonical coordinates, such that ckij = δki δ

k
j .

Moreover, in this case, the vector field

e =
n∑
i=1

1
fi

∂

∂ri

is globally defined and is the unit of the algebra.

Remark 3. If the algebra has a unity e, then the Hertling-Manin condition implies
Lieec = 0 .

Indeed, for X = Y = e the Hertling-Manin condition becomes
−[e, Z ◦W ] + [e, Z] ◦W + [e,W ] ◦ Z = 0 .

Remark 4. An alternative proof of the existence of canonical coordinates has
been given in [15] under the assumption of semisimplicity of the algebra, that is,
the existence of a basis of idempotents. Here we assume the existence of a vector
field X such that VX has everywhere distinct real eigenvalues.

3. Commutativity of the flows

As a consequence of the Hertling-Manin condition, the conditions for the com-
mutativity of two hydrodynamical flows take a rather simple form.

Proposition 5. The flows
(10) uit = [VX ]ijujx = cijkX

jukx

and
(11) uiτ = [VY ]ijujx = cijkY

jukx

commute if and only if the vector fields X and Y satisfy the condition(
(LieXc) (Y, Z)− (LieY c) (X,Z) + [X,Y ] ◦ Z

)
◦ Z = 0 ,

for any vector field Z. Equivalently,(
(LieXc) (Y,Z)− (LieY c) (X,Z) + [X,Y ] ◦ Z

)
◦W

+
(

(LieXc) (Y,W )− (LieY c) (X,W ) + [X,Y ] ◦W
)
◦ Z = 0

for all pairs (Z,W ) of vector fields. In local coordinates this means that

cris
[

(LieXc)ijq Y
q − (LieY c)ijqX

q + cijq[X,Y ]q
]

+ crij
[

(LieXc)isq Y
q − (LieY c)isqX

q + cisq[X,Y ]q
]

= 0 .
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Proof. It is well-known [23] that the commutativity of the flows (10) and (11) is
equivalent to the following requirements:

1. The (1, 1)-tensor fields VX and VY (seen as endomorphism of the tangent
bundle) commute.

2. For any vector field Z the following condition is satisfied:
[VX(Z), VY (Z)]− VX

(
[Z, VY (Z)]

)
+ VY

(
[Z, VX(Z)]

)
= 0 ,

that is to say,
[Z ◦X,Z ◦ Y ]−X ◦ [Z,Z ◦ Y ] + Y ◦ [Z,Z ◦X] = 0 .

The first requirement is automatically verified due to the associativity of the algebra.
Making use of identity (2), the second one becomes
(12) ([Z ◦X,Y ] + [X,Z ◦ Y ]− [X,Z] ◦ Y − [X,Y ] ◦ Z −X ◦ [Z, Y ]) ◦ Z = 0 .
A simple calculation shows that the quantity in the bracket, namely

[Z ◦X,Y ] + [X,Z ◦ Y ]− [X,Z] ◦ Y − [X,Y ] ◦ Z −X ◦ [Z, Y ] ,
is equal to
(13) (LieXc) (Y,Z)− (LieY c) (X,Z) + [X,Y ] ◦ Z .
Substituting (13) into (12), we get the result. �

Corollary 6. A sufficient condition for the commutativity of the hydrodynamic
flows (10) and (11) is that
(14) (LieXc) (Y,Z)− (LieY c) (X,Z) + [X,Y ] ◦ Z = 0
for all vector fields Z, that is,

(15) (LieXc)ipq Y
q − (LieY c)ipqX

q + cipq[X,Y ]q = 0
or, equivalently,
(16) LieXVY − LieY VX − V[X,Y ] = 0 .

4. Dubrovin principal hierarchy

In this section, we adapt Dubrovin’s construction of the principal hierarchy [3]
to the case of F -manifolds with compatible flat connection introduced by Manin in
[18].

Definition 7. An F -manifold with compatible flat connection is a manifold
endowed with an associative commutative multiplicative structure given by a
(1, 2)-tensor field c and a flat torsionless connection ∇ satisfying the symmetry
condition
(17) ∇lcijk = ∇jcilk ,
meaning that ∇c is totally symmetric:
(18) (∇Xc) (Y,Z) = (∇Y c) (X,Z) ,
for all vector fields X, Y , and Z.
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Notice that Hertling-Manin condition (2) does not appear in the above definition.
Indeed, as proved by Hertling in [14], it is a consequence of the existence of a
torsionless (even non-flat) connection ∇ satisfying (17).

Remark 8. Notice that in flat coordinates condition (17) reads
∂lc

i
jk = ∂jc

i
lk.

This, together with the commutativity of the algebra, implies that
cijk = ∂jC

i
k = ∂j∂kC

i .

Therefore, condition (17) is equivalent to the local existence of a vector field C
satisfying, for any pair (X,Y ) of flat vector fields, the condition

X ◦ Y = [X, [Y,C]] .
The above condition appears in the original definition of Manin [18].

Let us construct now the principal hierarchy. In order to do so, the first step
consists in defining the primary flows. Since the connection is flat, we can consider
a basis (X(1,0), . . . , X(n,0)) of flat vector fields; the primary flows are thus defined
as
(19) uit(p,0)

= cijkX
k
(p,0)u

j
x .

Proposition 9. The primary flows (19) commute.

Proof. Since the X(p,0) are flat and the torsion vanishes, they commute and
LieX(p,0)c = ∇X(p,0)c .

Therefore, the commutativity condition (14) for the vector fields X = X(p,0) and
Y = X(q,0) follows from condition (17). �

Starting from the primary flows (19) one can introduce the “higher flows” of
the hierarchy, defined as
(20) uit(p,α)

= cijkX
j
(p,α)u

k
x ,

by means of the following recursion relations:
(21) ∇jXi

(p,α) = cijkX
k
(p,α−1) .

Remark 10. The flatness of the connection ∇, the symmetry of the tensor ∇c
(condition (17)) and the associativity of the algebra with structure constants cijk
are equivalent to the flatness of the one-parameter family of connections defined,
for any pair of vector fields X and Y , by

∇̃XY = ∇XY + zX ◦ Y, z ∈ C .
The vector fields obtained by means of the recursive relations (21) are nothing but
the z-coefficients of a basis of flat vector fields of the deformed connection [3].

In order to show that the higher flows (20) are well-defined, it is necessary to
prove the following

Proposition 11. The recursive relations (21) are compatible.
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Proof. We note that the recursive relations (21) can be written in the form

∂jX
i
(p,α) = −ΓijkXk

(p,α) + cikjX
k
(p,α−1),

thus, we have
(∂j∂m − ∂m∂j)Xi

(p,α) =
[
∂mΓijl − ∂jΓiml − ΓijkΓkml + ΓimkΓkjl

]
X l

(p,α)

−
[
∂mc

i
jl − ∂jciml − Γikjckml − Γklmcijk + Γikmckjl + Γkljcimk

]
×X l

(p,α−1) +
[
cijkc

k
ml − cimkckjl

]
X l

(p,α−2) .

The flatness of the connection ∇, together with identity (17) and the associativity
of the algebra, implies the vanishing of the quantity above. Therefore, relations
(21) are compatible. �

Since the primary flows (19) commute and the recursive relations (21) are
compatible, it only remains to prove the following

Theorem 12. The flows of the principal hierarchy commute.

Proof. Let us consider the hydrodynamic flows associated with the vector fields
X(p,α) and X(q,β). In order to show that these flows commute, we prove that they
satisfy the sufficient condition (15). In local coordinates it reads:

Xm
(p,α)(∂mcijk)Xk

(q,β) −X
m
(q,β)(∂mcijk)Xk

(p,α)+

−cljk(∂lXi
(p,α))Xk

(q,β) + cilk(∂jX l
(p,α))Xk

(q,β)+

+cijl(∂kX l
(p,α))Xk

(q,β) + cljk(∂lXi
(q,β))Xk

(p,α)+

−cilk(∂jX l
(q,β))Xk

(p,α) − c
i
jl(∂kX l

(q,β))Xk
(p,α)+

−cijk
(

(∂lXk
(p,α))X l

(q,β) + (∂lXk
(q,β))X l

(p,α)

)
= 0 .

In particular, if the coordinates are flat, the first row vanishes due to the symmetry
of the tensor ∇c. Moreover, using the recursive relations (21) we obtain

− cljkcilnXn
(p,α−1)X

k
(q,β) + cilkc

l
jnX

n
(p,α−1)X

k
(q,β)+

+ cijlc
l
knX

n
(p,α−1)X

k
(q,β) + cljkc

i
lnX

n
(q,β−1)X

k
(p,α)+

− cilkcljnXn
(q,β−1)X

k
(p,α) − c

i
jlc

l
knX

n
(q,β−1)X

k
(p,α)+

− cijkckmnXn
(p,α−1)X

m
(q,β) + cijkc

k
mnX

n
(q,β−1)X

m
(p,α)

which vanishes due to the associativity of the algebra. �

Remark 13. The flows of the principal hierarchy are well-defined even in the
case when the torsion of the flat connection ∇ does not vanish. However, their
commutativity depends crucially on this additional assumption.

5. F -manifolds with compatible connection
and related integrable systems

From the point of view of the theory of integrable systems of hydrodynamic type,
the “flat case” and its associated principal hierarchy are exceptional. Therefore, it is
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quite natural to extend the notion of F -manifolds with compatible flat connection
to the non-flat case. As a starting point, we consider an F -manifold endowed with
a connection ∇ satisfying (17). If ∇ is flat, we know how to construct integrable
systems of hydrodynamic type. Indeed, the starting point of the construction of
the previous section is a basis of flat vector fields, and the recursive procedure (21)
defining the “higher” vector fields and the corresponding flows is well-defined as
a consequence of the vanishing of the curvature. In the non-flat case, in order to
define integrable systems of hydrodynamic type one needs to find an alternative
way to select the vector fields.

5.1. Hydrodynamic-type systems associated with F -manifolds. In the flat
case, the vector fields X defining the principal hierarchy satisfy the condition

(22) (∇ZX) ◦W = (∇WX) ◦ Z

for all pairs (Z,W ) of vector fields, that is, in local coordinates,

(23) cijm∇kXm = cikm∇jXm .

Indeed, in the case of the flat vector fields X(p,0) defining the primary flows, both
sides of (23) vanish due to

∇kXm
(p,0) = 0, p = 1, . . . , n ,

while the vector fields defining the higher flows of the hierarchy satisfy (23) due to
the associativity of the algebra:

cijm∇kXm
(p,α) = cijmc

m
klX

l
(p,α−1) = cikmc

m
jlX

l
(p,α−1) = cikm∇jXm

(p,α) .

A crucial remark is the following: if ∇ satisfies condition (17), then any pair
of solutions of (23) defines commuting flows even if the connection ∇ is not flat.
More precisely, we have the following

Proposition 14. If X and Y are two vector fields satisfying condition (22), then
the associated flows

(24) uit = cijkX
kujx

and

(25) uiτ = cijkY
kujx

commute.

Proof. Recall from Proposition 5 that the flows (24) and (25) commute if and
only if

(26) ((LieXc) (Y, Z)− (LieY c) (X,Z) + [X,Y ] ◦ Z) ◦ Z = 0

for any vector field Z. On the other hand, the vanishing of the torsion of ∇ gives
the identity

(LieXc) (Y,Z) = (∇Xc) (Y,Z)−∇c(Y,Z)X + c(Y,∇ZX) + c(∇YX,Z) ,
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and this, together with the symmetry (18) of ∇c, can be used to write the term in
the bracket of (26) as

−∇Y ◦ZX +∇X◦ZY + [Y,X] ◦ Z .

Multiplying the above identity by Z, and using property (22) for the vector fields
X and Y , we obtain

− (∇Y ◦ZX) ◦ Z + (∇X◦ZY ) ◦ Z + [Y,X] ◦ Z2

=− (∇ZX) ◦ (Y ◦ Z) + (∇ZY ) ◦ (X ◦ Z) + [Y,X] ◦ Z2

=− (∇YX) ◦ Z2 + (∇XY ) ◦ Z2 + [Y,X] ◦ Z2 = 0 .

The proposition is proved. �

Remark 15. From (17) and (22) it follows that the (1,1)-tensor field

(VX)ij = cijkX
k

satisfies the condition
∇k(VX)ij = ∇j(VX)ik ,

which is well-known in the Hamiltonian theory of systems of hydrodynamic type
[6].

In the flat case, we have seen that system (23) admits a set of solutions, given
by the vector fields of the principal hierarchy. However, if ∇ is non-flat, existence
of solutions for system (23) is not guaranteed; additional constraints have to be
imposed on the curvature R of the connection ∇.

Proposition 16. If X is a solution of (22), then the identity

(27) Z ◦R(W,Y )(X) +W ◦R(Y, Z)(X) + Y ◦R(Z,W )(X) = 0 ,

holds for any choice of the vector fields (Y,W,Z).

Proof. Condition (22) implies

∇W (Z◦∇YX−Y◦∇ZX)+∇Y (W◦∇ZX−Z◦∇WX)+∇Z(Y◦∇WX−W◦∇YX) = 0 .

Using the symmetry condition (17) written in the form

∇Y (X ◦ Z)−∇X(Y ◦ Z) + Y ◦ ∇XZ −X ◦ ∇Y Z − [Y,X] ◦ Z = 0

we obtain identity (27). �

Condition (27) must be satisfied for any solution X of the system (23). Since
we are looking for a family of vector fields satisfying (23), it is natural to require
that (27) holds true for an arbitrary vector field X.
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Definition 17. An F -manifold with compatible connection is a manifold endowed
with an associative commutative multiplicative structure given by a (1, 2)-tensor
field c and a torsionless connection ∇ satisfying condition (18) and condition
(28) Z ◦R(W,Y )(X) +W ◦R(Y, Z)(X) + Y ◦R(Z,W )(X) = 0 ,
for any choice of the vector fields (X,Y,W,Z). In local coordinates this means that
(29) Rklmic

n
pk +Rklipc

n
mk +Rklpmc

n
ik = 0 .

Remark 18. An equivalent form of condition (28) can be easily obtained using
the (second) Bianchi identity for the deformed connection

∇̃XY = ∇XY + zX ◦ Y , z ∈ C,
where X and Y are arbitrary vector fields. Indeed, by associativity and symmetry
condition (17), the Riemann tensor of this connection does not depend on z [25].
Using this fact it is easy to see that the Bianchi identity reduces to

0 = ∇̃XR(Y,Z)(W ) + ∇̃ZR(X,Y )(W ) + ∇̃YR(Z,X)(W )
= X ◦R(Y,Z)(W ) + Z ◦R(X,Y )(W ) + Y ◦R(Z,X)(W )
−R(Y,Z)(X ◦W )−R(X,Y )(Z ◦W )−R(Z,X)(Y ◦W )

for any choice of the vector fields (X,Y,W,Z). Hence, condition (28) is equivalent
to

R(Y,Z)(X ◦W ) +R(X,Y )(Z ◦W ) +R(Z,X)(Y ◦W ) = 0 ,
for every (X,Y,W,Z).

From now on we will assume the existence of canonical coordinates (r1, . . . , rn),
discussing the meaning of condition (29) under this additional assumption.

Proposition 19. In canonical coordinates, system (23) reduces to
(30) ∂kv

i = Γiki(vk − vi) , i 6= k ,

where vi are the components of X in such coordinates.

Proof. Writing (23) in canonical coordinates, we get
δij(∂kvi + Γiklvl) = δik(∂jvi + Γijlvl) .

In the case i = j 6= k, using the identities
(31) Γikk = −Γiki
and
(32) Γikl = 0 , i 6= k 6= l 6= i ,

which follow from (17), we obtain system (30). The remaining conditions give no
further constraints. �
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Remark 20. We recall that, in canonical coordinates, the components of the
vector field X coincide with the characteristic velocities of the associated system of
hydrodynamic type:

rit = cijkv
krjx = virix , i = 1, . . . , n .

Compatibility conditions of system (30) are well-known in the literature [26],
and are given by the following condition:

(33) ∂iΓkkm − ΓkkmΓmim + ΓkikΓkkm − ΓkikΓiim = 0 ,

for pairwise distinct indices k, i, m. Notice that (33) implies

(34) ∂iΓkmk − ∂mΓkik = 0 ,

for pairwise distinct indices k, i, m.

Proposition 21. Condition (29) is equivalent to condition (33).

Proof. In canonical coordinates, condition (29) reads

Rklmic
n
pk +Rklipc

n
mk +Rklpmc

n
ik =

Rklmiδ
n
p δ

n
k +Rklipδ

n
mδ

n
k +Rklpmδ

n
i δ

n
k =

Rnlmiδ
n
p +Rnlipδ

n
m +Rnlpmδ

n
i = 0 .

If all the indices m, i, p, n are distinct the above condition is trivially satisfied. Let
us consider the case n = p (the case n 6= p can be treated in the same way and
does not add further condition). If n = i, we obtain

Rnlmn +Rnlnm + δnmR
n
lnn = 0 ,

that is satisfied due to the skew-symmetry of the Riemann tensor with respect to
the second and third lower indices. The same if n = m. For n 6= i,m, we obtain

(35) Rnnmi = 0,

if l = n and

(36) Rnlmi = 0,

if l 6= n. Since, due to (31), the components of the Riemann tensor vanish if all the
indices are distinct, condition (36) reduces to

(37) Rnmmi = 0, n 6= m 6= i 6= n.

Finally, using (31) and (32), it is easy to check that conditions (35) and (37) are
equivalent to conditions (34) and (33) respectively. This proves the proposition. �
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Remark 22. If the compatibility conditions (34) and (33) are satisfied, the general
solution of the system (30) depends on n arbitrary functions of a single variable.
Moreover, due to (34), any solution (v1, . . . , vn) of (30) satisfies the condition

(38) ∂k

(
∂jv

i

vj − vi

)
− ∂j

(
∂kv

i

vk − vi

)
= 0 , i 6= j 6= k 6= i ,

known in literature as semi-Hamiltonian property [26]. An invariant and highly
non trivial formulation of such a property was found in [23].

Due to the above remark, under the assumption of existence of canonical
coordinates we have a set of solutions of (30) leading to a family of commuting
systems of hydrodynamic type, depending on n arbitrary functions. This result
shows the deep relation between F -manifold with compatible connection (Definition
17) and integrable systems of PDEs.

Remark 23. A generalization of Dubrovin’s principal hierarchy of Section 4 has
been given by Mokhov [19, 20] in the case of flat submanifolds with flat normal
bundle in pseudo-Euclidean spaces. It would be interesting to extend Mokhov’s
approach also to the non-flat case, and to relate it with the construction considered
above.

6. Riemannian F -manifolds and Egorov metrics

In this section we consider the special case where the connection ∇ is a metric
connection. This assumption plays an important role in the Hamiltonian theory of
systems of hydrodynamic type (see for instance [7, 22, 24] and references therein),
as well as in the theory of Frobenius manifolds [3, 4].

Definition 24. A Riemannian F -manifold is an F -manifold with a compatible
connection ∇ satisfying the following additional conditions:
1. The connection is metric:

∇g = 0 .
2. The inner product 〈·, ·〉 defined by the metric g is invariant with respect to the
product ◦:
(39) 〈X ◦ Y,Z〉 = 〈X,Y ◦ Z〉 .

In local coordinates, condition (39) reads
(40) giqc

q
lp = glqc

q
ip, or giqclqp = glqciqp ,

where gij and gij are respectively the covariant and the contravariant components
of the metric g.

If there exist canonical coordinates, the metric g entering the definition of
Riemannian F -manifold is an Egorov metric. Let us recall the definition of this
special class of metrics.
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Definition 25. A metric is called Egorov if there exist coordinates (r1, . . . , rn)
such that it is diagonal and potential:

gij = δij gii(r1, . . . , rn) = δij ∂iF ,

for a certain function F .

It is clear by this definition that a flat metric is trivially of Egorov type. The
converse statement is, of course, false.

Now, if we assume the existence of canonical coordinates, condition (40) tells us
that the metric g is diagonal in such coordinates, while condition (31) — which
follows from (17) — implies that the metric is potential. Therefore, g is an Egorov
metric. Conversely, given an Egorov metric g whose curvature tensor satisfies
condition (37), we can locally construct a Riemannian F -manifold. More precisely,
let
(
r1, . . . , rn

)
be the coordinates where g is diagonal and potential. Then, the

metric g and the structure constants

cijk(r) = δijδ
i
k

endow the open set where the coordinates
(
r1, . . . , rn

)
are defined with the structure

of a Riemannian F -manifold.
We point out that condition (29) is far from being trivial. Indeed, using the

above remark, it is easy to construct examples of metrics satisfying properties (39)
and (17). Much more difficult is the problem of finding Egorov metrics which satisfy
also condition (29), since the potential has to fulfill (37). However, there exists
an important class of metrics, appearing in the Hamiltonian theory of integrable
hierarchies of hydrodynamic type (not necessarily of Egorov type) whose curvature
satisfies (29). These are the metrics whose Riemann tensor admits “a quadratic
expansion” in terms of the flows of the hierarchy [8, 21]:

uitα = cijkX
k
(α)u

j
x , i = 1, . . . , n .

This means that

(41) Rskmi =
(
csmlc

k
iq − csilckmq

)∑
α

εαX
l
(α)X

q
(α), εα = ±1,

where the index α can take value on a finite or infinite — even continuous — set.

Proposition 26. Suppose that ∇ is the Levi-Civita connection of a metric g,
and that its curvature satisfies condition (41). In this case, condition (29) is
automatically satisfied.
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Proof. We have that
Rskmic

n
pk +Rskip c

n
mk +Rskpmc

n
ik =

∑
α

εα[(csmrckiq − csirckmq)cnpk

+ (csirckpq − csprckiq)cnmk + (csprckmq − csmrckpq)cnik]Xr
(α)X

q
(α) =

=
∑
α

εα[(ckiqcnpk − ckpqcnik)csmr + (ckpqcnmk − ckmqcnpk)csir

+ (ckmqcnik − ckiqcnmk)cspr]Xr
(α)X

q
(α) ,

which vanishes due to associativity. �

Remark 27. If the functions
glq :=

∑
α

εαX
l
(α)X

q
(α)

define the contravariant components of a metric satisfying condition (40), then the
operator ∑

α

εα (wα)ik u
k
x

(
d

dx

)−1
(wα)jh u

h
x, (wα)ij := cijkX

k
(α)

is a purely nonlocal Poisson operator (see [10] for details).

7. Conclusions and open problems

In this paper, extending a construction of Manin, we have introduced a spe-
cial class of F -manifolds, called F -manifolds with compatible connection. On the
loop-space of such manifolds, we have defined a class of integrable systems of
hydrodynamic type that, in the flat case, reduces to the Dubrovin principal hierar-
chy (see Section 5). Alternatively, one can follow the opposite path, moving from
integrable systems of hydrodynamic type to F -manifolds. The point is that there
are many possible “factorizations” V ij = cijkX

k of the (1,1)-type tensor fields that
define the flows (1), leading to F -manifolds of our class. For instance, in the case
of semi-Hamiltonian systems

rit = vi(r) rix , i = 1, . . . , n ,
one can define the structure constants in the coordinates given by the Riemann
invariants (r1, . . . , rn) as

cijk = δijδ
i
k ,

and the Christoffel symbols of the torsion-free connection ∇ as
Γijk = 0 for i 6= j 6= k 6= i ,(42)

Γijj = −Γiji for i 6= j ,(43)

Γiij = Γiji = ∂jv
i

vj − vi
for i 6= j ,(44)
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leaving Γiii arbitrary. Conditions (42–43) are equivalent to the symmetry of ∇c, and
therefore from the proof of Proposition 21 it is clear that — on the open set where
the coordinates (r1, . . . , rn) are defined — the pair (c,∇) satisfies all conditions of
Definition 17. Moreover, relation (44) says that the integrable PDEs associated with
this F -manifold are the semi-Hamiltonian systems we have started with. Notice
that, in general, the connection ∇ does not coincide with the Levi-Civita connection
of the diagonal metrics solutions of the system

(45) ∂j ln√gii = ∂jv
i

vj − vi
, i 6= j .

They coincide, for a suitable choice of the Γiii, if the solution of (45) we are
considering is potential in the coordinates (r1, . . . , rn). In this case, the procedure
we just described coincides with the procedure mentioned in Section 6, and leads
to a (locally defined) structure of Riemannian F -manifold. Otherwise, we are in
the more general case of non metric connections treated in Section 5.

It is an interesting open problem to understand the consequences of the freedom
in the choice of the Γiii. This freedom might be exploited to obtain useful information
on the integrable systems of hydrodynamic type.
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