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A CERTAIN INTEGRAL-RECURRENCE EQUATION
WITH DISCRETE-CONTINUOUS AUTO-CONVOLUTION

Mircea I. Cîrnu

Abstract. Laplace transform and some of the author’s previous results about
first order differential-recurrence equations with discrete auto-convolution are
used to solve a new type of non-linear quadratic integral equation. This paper
continues the author’s work from other articles in which are considered and
solved new types of algebraic-differential or integral equations.

1. Introduction

In the earlier paper [4], N. M. Flaisher solved by Fourier transform method a
second order differential-recurrence equation.

The present author used in [2] the Laplace transform to derive Newton’s formulas
about the sums of powers of the roots of a polynomial.

In this paper, the Laplace transform will be used to solve an integral-recurrence
equation on semi-axis, with discrete-continuous auto-convolution of its unknowns.
Namely, applying the Laplace transform on considered equation, we obtain for the
transforms of unknowns a first order differential-recurrence equation with discrete
auto-convolution of the type studied in [3] and [1]. Using for this equation the
general theory given in [3], we find the transforms of unknowns in convenient
assumptions, the solutions of the initial equation being obtained by inverse Laplace
transform.

2. Convolution products

Two convolution products have been imposed over the time. The first, in
continuous-variable case, is the bilateral convolution of two integrable functions
u(x) and v(x) on real axis, given by formula

u(x) ? v(x) =
∫ ∞
−∞
u(t)v(x− t) dt ,
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that is reduced to the unilateral convolution on real semi-axis or causal convolution,

u(x) ? v(x) =
∫ x

0
u(t)v(x− t) dt , ∀x ≥ 0

and u(x)?v(x) = 0, ∀x < 0, when the factors are causal functions, i.e. u(x) = v(x) =
0, ∀x < 0. This integral appears, without the notion to be effective considered, in
the second half of eighteenth century in independent work of J. R. d’Alembert and
P. S. Laplace about Taylor expansion and also in probability theory, by last. The
name of convolution was firstly used in the paper [6]. It is also called composition
product after the French and Faltung in German literature.

The second, in discrete-variable case, is the discrete convolution of two numerical
bilateral sequences (an : n ∈ Z) and (bn : n ∈ Z), given by formula

(an) ? (bn) =
( ∞∑
k=−∞

akbn−k

)
,

and the causal discrete convolution or Cauchy product,

(an) ? (bn) =
( n∑
k=0
akbn−k

)
,

when the sequences are unilateral, with indices n = 0, 1, 2, . . . . The last type of sum
was used by A. L. Cauchy in connection with the multiplication of numerical and
power series, in his famous book Cours d’Analyse de l’École Royale Polytechnique
which appeared at Paris in 1821. Closely related to this product is the combinatorial
discrete convolution, defined by formula

(an) ?C (bn) =
( n∑
k=0

(
n

k

)
akbn−k

)
= (n!)

(( 1
n!an

)
?
( 1
n!bn

))
,

where the product between the sequence of factorials and the causal discrete
convolution must be performed terms by terms.

The causal and combinatorial discrete convolutions can be considered when the
terms of the factor sequences belong to a commutative ring. If this ring is composed
by functions with continuous-variable convolution as multiplicative product, we
get a new product called discrete-continuous convolution, given by formula

(un(x)) ? (vn(x)) =
( n∑
k=0

∫ ∞
−∞
uk(t)vn−k(x− t) dt

)
,

for any two sequences with indices n = 0, 1, 2, . . . , of complex-valued integrable
functions on real axis. If these functions are causal, then the product take the form

(un(x)) ? (vn(x)) =
( n∑
k=0

∫ x
0
uk(t)vn−k(x− t) dt

)
.

In appropriate circumstances, applying Fourier, respective Laplace transform,
these convolutions are reduced to discrete convolution

∑n
k=0 ûkv̂n−k between the

sequences of transforms.
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We also name combinatorial discrete-continuous convolution of sequences of
causal functions (un(x)) and (vn(x)), the sequence of functions

(un(x)) ?C (vn(x)) =
( n∑
k=0

(
n

k

)∫ x
0
uk(t)vn−k(x− t) dt

)
.

The integral equations considered in this paper will contain these new types of
convolution products.

3. First order differential-recurrence equations

In [3] (see also [1] for some particular cases) we considered first order differential-
-recurrence equations with discrete auto-convolution of the form

(1) w′n(s) = a(s)
n∑
k=0
wk(s)wn−k(s) , n = 0, 1, 2, . . . ,

where a(s) is a given integrable function and wn(s), n = 0, 1, 2, . . . , is the sequence
of unknown differentiable functions of the real variable s. If the initial values
wn(s0) 6= 0, n = 0, 1, 2, . . ., in a given real number s0, are in geometric progression,
was proved in [3] that the equation (1) has the solutions

(2) wn(s) = wn(s0)
Bn+1(s) , n = 0, 1, 2, . . . ,

where B(s) = 1 + w0(s0)A(s0)− w0(s0)A(s) and A(s) =
∫
a(s) ds.

We also considered in [3] a second initial-value problem, where the initial values
wn(s0) 6= 0, n = 1, 2, . . . , are in geometric progression, while w0(s0) is given by
formula

(3) w0(s0) = w
2
1(s0)
w2(s0) −

1
A(s0) 6= 0 ,

for A(s0) 6= 0. In this case, the equation (1) has the solutions

(4) w0(s) = w0(s0)
B(s) ,

and

(5) wn(s) = wn(s0)An−1(s)
An−1(s0)Bn+1(s) , n = 1, 2, . . . .

By analytic extension, follow that these results are true for analytic functions in
the case when s is a complex variable.

4. Integral-recurrence equation with discrete-continuous
auto-convolution

Theorem 1. Let a, b 6= 0 and s0 be given complex numbers. The Laplace trans-
formable solutions of the integral-recurrence equation with discrete-continuous
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auto-convolution

(6) xun(x) +
n∑
k=0

∫ x
0
uk(t)un−k(x− t) dt = 0 , ∀x ≥ 0 , n = 0, 1, 2, . . . ,

satisfying, for n = 0, 1, 2, . . . , one of the conditions:

(i)

(7)
∞∫

0

e−s0xun(x) dx = abn ,

for Re(a) < 0, respectively
(ii)

(8)
∞∫

0

e−s0xu0(x) dx = a− 1
s0
,

∞∫
0

e−s0xun(x) dx = abn , ∀n ≥ 1 ,

for s0 6= 0 and Re(a) < Re
( 1
s0

)
, are given by the formulas:

(i)

(9) un(x) = (−1)n+1

n!

( b
a

)n
xne

(as0+1)x
a , ∀x ≥ 0 , n = 0, 1, 2, . . . ,

respectively
(ii)

(10) u0(x) = −e
as2

0x
as0−1 , ∀x ≥ 0 ,

and
(11)

un(x) = (−1)n+1(ab)ns2n0
(as0 − 1)2n

n−1∑
k=0

(
n− 1
k

)
(as0 − 1)kxn−k

(n− k)!aks2k0
e
as2

0x
as0−1 , ∀x ≥ 0 , n ≥ 1 .

Proof. Applying Laplace transform L(u(x)) = û(s) =
∫∞

0 e
−sxu(x) dx on the

equation (6) and taking into account the formulas that give Laplace transforms of
the first order derivative and causal convolution product (see [5]), the equation (6)
gets the form

(12) û′n(s) =
n∑
k=0
ûk(s)ûn−k(s) ,

for every complex number s with Re(s) > r, where r is a given real number. The
equation (12) is of form (1), with a(s) = 1, hence A(s) =

∫
a(s) ds = s.

(i) From Re(a) < 0, it results Re
(
as0+1
a

)
< Re(s0), hence we can take

r ∈
(

Re
(
as0+1
a

)
,Re(s0)

)
. Because Re(s0) > r, from (7) results ûn(s0) =∫∞

0 e
−s0xun(x) dx = abn, n = 0, 1, 2, . . ., so the initial values are in geometric pro-

gression. Also û0(s0) = a, hence B(s) = 1+û0(s0)A(s0)−û0(s0)A(s) = 1+as0−as.
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Using formula (2) it results that the equation (12) has for every complex number

s, with Re(s) > r > Re
(
as0 + 1
a

)
, the solutions

(13) ûn(s) = ûn(s0)
Bn+1(s) = abn

(1 + as0 − as)n+1 = (−1)n+1
( b
a

)n 1(
s− as0+1

a

)n+1 ,

for n = 0, 1, 2, . . . . Using inverse Laplace transform, from (13) results (9).
(ii) From Re(a) < Re

( 1
s0

)
, it results Re

( as2
0

as0−1
)
< Re(s0), hence we can

take r ∈
(

Re
( as2

0
as0−1

)
,Re(s0)

)
. Because Re(s0) > r, from (8) results ûn(s0) =∫∞

0 e
−s0xun(x)dx = abn, n = 1, 2, . . . , so these initial values are in geometric

progression, and û0(s0) =
∫∞

0 e
−s0xu0(x) dx = a− 1

s0
= û2

1(s0)
û2(s0) −

1
A(s0) 6= 0. Now,

B(s) = 1 +
(
a− 1

s0

)
(s0 − s) = as2

0−(as0−1)s
s0

.
In conformity with formulas (4) and (5), the equation (12) has for every complex

number s, with Re(s) > r > Re
( as2

0
as0−1

)
, the solutions

(14) û0(s) = û0(s0)
B(s) = as0 − 1

as20 − (as0 − 1)s = − 1
s− as2

0
as0−1

,

and

ûn(s) = ûn(s0)An−1(s)
An−1(s0)Bn+1(s) = abns20s

n−1

[as20 − (as0 − 1)s]n+1

= (−1)n+1abns20
(as0 − 1)n+1

sn−1

(s− as2
0

as0−1 )n+1
, ∀n ≥ 1 .(15)

For n ≥ 1 arbitrary fixed, if z is a complex number, we have following partial
fraction expansion

(16) sn−1

(s− z)n+1 =
n∑
k=0

Ak
(s− z)n−k+1 ,

where Ak are complex numbers that will be determined from the identity

(17) sn−1 =
n∑
k=0
Ak(s− z)k .

From (17), first results An = 0 and A0 = zn−1. For n = 1 the equality (16) is
obviously. For n ≥ 2, derivating (17) of j = 1, 2, . . . , n− 1 times, is obtained the
identity

(18) (n− 1)(n− 2) . . . (n− j)sn−j−1 =
n−1∑
k=j
k(k − 1) . . . (k − j + 1)Ak(s− z)k−j .

For s = z, from (18) results

Aj = (n− 1)(n− 2) . . . (n− j)
j! zn−j−1 =

(
n− 1
j

)
zn−j−1 , j = 1, 2, . . . , n− 1 .
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Therefore, the identity (16) takes the form

(19) sn−1

(s− z)n+1 =
n−1∑
k=0

(
n− 1
k

)
zn−k−1

(s− z)n−k+1 , n ≥ 1 .

From (15) and (19), in which z = as2
0

as0−1 , it results for n ≥ 1, that

(20) ûn(s) = (−1)n+1(ab)ns2n0
(as0 − 1)2n

n−1∑
k=0

(
n− 1
k

)
(as0 − 1)k

aks2k0 (s− as2
0

as0−1 )n−k+1
.

Using inverse Laplace transform, from (14) and (20) results (10) and (11). �

Remark 1. The integral-recurrence equation with combinatorial discrete-continuous
auto-convolution

xvn(x) +
n∑
k=0

(
n

k

)∫ x
0
vk(t)vn−k(x− t) dt = 0 , n = 0, 1, 2, . . . ,

is reduced to equation (6) by change of unknown vn(x) = n!un(x), n = 0, 1, 2, . . . .

Remark 2. Using Fourier transform instead of Laplace transform, the correspon-
ding bilateral integral-recurrence equations on entire real axis can be solved in the
same manner.
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