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SECOND VARIATIONAL DERIVATIVE OF LOCAL
VARIATIONAL PROBLEMS AND CONSERVATION LAWS

Marcella Palese, Ekkehart Winterroth, and E. Garrone

Abstract. We consider cohomology defined by a system of local Lagran-
gian and investigate under which conditions the variational Lie derivative of
associated local currents is a system of conserved currents. The answer to
such a question involves Jacobi equations for the local system. Furthermore,
we recall that it was shown by Krupka et al. that the invariance of a closed
Helmholtz form of a dynamical form is equivalent with local variationality of
the Lie derivative of the dynamical form; we remark that the corresponding
local system of Euler–Lagrange forms is variationally equivalent to a global
one.

1. Introduction

Geometric definitions of conserved quantities in field theories have been pro-
posed within formulations based on symmetries of field equations rather than of
the Lagrangian (see e.g. [18]). In particular, a definition of variation of conserved
currents for gauge-natural theories [6] has been proposed in [7] where the field
equations content and the symmetry information have been used, in particular,
relatively to the existence of preferred lifts of infinitesimal principal automor-
phisms. Considering the first variation of a ‘variational’ Lagrangian (depending
on gauge-natural lifts and Euler-Lagrange equations); then performing repeated
integrations by parts with respect to covariant derivatives (with respect to fixed
connections) of the components of the infinitesimal symmetry — due to the par-
ticular structure of gauge-natural lifts — a potential was obtained by which to
define a concept of variations of conserved quantities. Independently, and without
the fixing of a connection a priori, the gauge-natural second variational derivative
of gauge-natural invariant Lagrangian has been exploited in order to construct
Noether covariant conserved current [16, 15], by showing the relationship of the
Bergmann–Bianchi morphism with the variational derivative of what we called
the deformed Lagrangian (coinciding with the concept of ‘variational’ Lagrangian
mentioned above). In all the mentioned approaches generalized symmetries (i.e.
symmetries of field equations) - and in many of them some version of Noether
Theorem (II) - play a fundamental role. In this view that we shall now investigate
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how much can we say about existence and globality of conserved quantities without
resorting to the structure of a gauge-natural lift. The important fact is that we
consider symmetries of equations of motions supposed to be Euler–Lagrangian
equations of some (local) Lagrangian; thus we will be faced with inverse problems
(in general, at any degree of variational forms) in the calculus of variations.

In fact, we recall that the geometrical formulations of the calculus of variations
on fibered manifolds include a large class of theories for which the Euler–Lagrange
operator is a morphism of an exact sequence [2, 13, 19, 20, 21]. The module
in degree (n + 1), contains dynamical forms; a given equation is globally an
Euler-Lagrange equation if its dynamical form is the differential of a Lagrangian
and this is equivalent to the dynamical form being closed in the complex, i.e.
Helmholtz conditions hold true, and its cohomolgy class being trivial. Dynamical
forms which are only locally variational, i.e. which are closed in the complex and
define a non trivial cohomology class, admit a system of local Lagrangians, one for
each open set in a suitable covering, which satisfy certain relations among them.
We shall consider global projectable vector field on a jet fiber manifold which are
symmetries of dynamical forms, in particular of locally variational dynamical forms
and corresponding formulations of Noether theorem (II) in order to determine
obstruction to globality of associated conserved quantities. In this perspective it is
clear the relevant role played by the variational Lie derivative, a differential operator
acting on equivalence classes of variational forms in the variational sequence defined
in [10], by which Noether Theorems can be formulated.

It is of great interest for the implications in the calculus of variations to investigate
the role of the variational Lie derivative operator for the cohomology. We relate the
cohomology class defined by a system of local Lagrangian with the cohomology class
defined by the local variational problem given by the system of their local variational
Lie derivative. We see that variational forms defining nontrivial cohomology class are
transformed in variational forms with trivial cohomology class. This is of relevance
since iterated variational derivatives define higher order variations [9, 11]. Thus
variations of currents can be recognized in this approach. We consider cohomology
defined by a system of local Lagrangian and investigate under which conditions
the variational Lie derivative of associated local currents is a system of conserved
currents. The answer to such a question involves Jacobi equations for the local
system.

Symmetries of the Helmholtz form are also taken into account and as a conse-
quence of the above mentioned property of the variational Lie derivative with
respect to cohomology we show that not only the invariance of a closed Helmholtz
form ζηi , i.e. LΞζηi = 0 is equivalent with local variationality of the Lie deriv-
ative LΞηi, i.e. ζLΞηi = 0 meaning that the dynamical form LΞηi is locally the
Euler-Lagrange form of a Lagrangian, as shown in [14], but also that the local
system of Euler-Lagrange forms LΞηi is variationally equivalent to a well defined
global Euler-Lagrange form (in order to simplify notation, here we denote by Ξ a
suitable jet prolongation of a projectable vector field).



VARIATIONAL DERIVATIVES OF LOCAL VARIATIONAL PROBLEMS 397

2. Local variational problems and cohomology

We shall consider the variational sequence [13] defined on a fibered manifold
π : Y → X, with dimX = n and dimY = n + m. For r ≥ 0 we have the r–jet
space JrY of jet prolongations of sections of the fibered manifold π. We have also
the natural fiberings πrs : JrY → JsY , r ≥ s, and πr : JrY →X; among these the
fiberings πrr−1 are affine bundles which induce the natural fibered splitting

JrY ×Jr−1Y T ∗Jr−1Y ' JrY ×Jr−1Y (T ∗X ⊕ V ∗Jr−1Y ) ,

which, in turn, induces also a decomposition of the exterior differential on Y in the
horizontal and vertical differential, (πr+1

r )∗◦ d = dH + dV . By (jrΞ, ξ) we denote
the jet prolongation of a projectable vector field (Ξ, ξ) on Y , and by jrΞH and
jrΞV the horizontal and the vertical part of jrΞ, respectively.

We have the sheaf splitting Hp(s+1,s) =
⊕p

t=0 C
p−t
(s+1,s) ∧H

t
s+1 where if Λps is the

standard sheaf of p–forms on JsY , the sheaves of horizontal forms Hp(s,q) and Hps
(q ≤ s) the sections of which are local fibered morphisms over πsq and πs of the
type α : JsY →

p
∧T ∗JqY and β : JsY →

p
∧T ∗X, respectively and the subsheaves

Cp(s,q) ⊂ H
p
(s,q) of contact forms the sections of which are local morphisms α ∈ Hp(s,q)

with values into
p
∧(JqY ×Jq−1Y V

∗Jq−1Y ), i.e. forms which do not have a variational
role. In fact, let us denote by d kerh the sheaf generated by the corresponding
presheaf and set then Θ∗r ≡ kerh + d kerh. The quotient sequence

0 // IRY
// · · · //

En−1Λnr /Θn
r

//
EnΛn+1

r /Θn+1
r

//
En+1Λn+2

r /Θn+2
r

//
En+2· · · //d 0

defines the r-th order variational sequence associated with the fibered manifold
Y →X. It turns out that it is an exact resolution of the constant sheaf IRY over
Y .

The quotient sheaves (the sections of which are classes of forms modulo contact
forms) in the variational sequence can be represented as sheaves Vkr of k-forms
on jet spaces of higher order. In particular, currents are classes ν ∈ (Vn−1

r )Y ;
Lagrangians are classes λ ∈ (Vnr )Y , while En(λ) is called a Euler–Lagrange form
(being En the Euler-Lagrange morphism); dynamical forms are classes η ∈ (Vn+1

r )Y

and En+1(η) := H̃dη is a Helmohltz form (being En+1 the corresponding Helmholtz
morphism).

The cohomology groups of the corresponding complex of global sections

0 // IRY
// · · · //
En−1(Λnr /Θn

r )Y
//

En (Λn+1
r /Θn+1

r )Y
//

En+1(Λn+2
r /Θn+2

r )Y
//

En+2· · · //d 0

will be denoted by H∗VS(Y ).
Since the variational sequence is a soft resolution of the constant sheaf IRY over

Y , the cohomology of the complex of global sections is naturally isomorphic to
both the Čech cohomology of Y with coefficients in the constant sheaf IR and the
de Rham cohomology Hk

dRY [13].
Let Kp

r := Ker Ep. We have the short exact sequence of sheaves

0 //Kp
r

//i Vpr //
Ep Ep(Vpr ) // 0 .
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In particular En(Vnr ) is the sheave of Euler–Lagrange morphisms: for a global
section η ∈ (Vn+1

r )Y we have η ∈ (En(Vnr ))Y if and only if En+1(η) = 0, which are
the Helmholtz conditions of local variationality. A global inverse problem is to find
necessary and sufficient conditions for such a locally variational η to be globally
variational.

The above exact sequence gives rise to the long exact sequence in Čech cohomo-
logy

0 // (Kp
r)Y

// (Vpr )Y
// (Ep(Vpr ))Y

//
δp
H1(Y ,Kp

r) // 0 .

Hence, every η ∈ (En(Vnr ))Y (i.e. locally variational) defines a cohomology class
δ(η) ≡ δn(η) ∈ H1(Y ,Kn

r ) ' Hn+1
V S (Y ) ' Hn+1

dR (Y ) ' Hn+1(Y , IR). Furthermore,
every µ ∈ (dH(Vn−1

r ))Y (i.e. variationally trivial) defines a cohomology class
δ′(µ) ≡ δn−1(µ) ∈ H1(Y ,Kn−1

r ) ' Hn
V S(Y ) ' Hn

dR(Y ) ' Hn(Y , IR).
The above gives rise to a well known diagram of cochain complexes:

0
?

0
?

0
?

0 - C0(Y,Kp
r ) -i C0(Y,Vpr ) -Ep C0(Y, Ep(Vpr )) - 0

?
d

?
d

?
d

0 - C1(Y,Kp
r ) -i C1(Y,Vpr ) -Ep C1(Y, Ep(Vpr )) - 0

?...
?...

?...

whereby we recognize the connecting homomorphism δp = i−1◦d◦E−1
p as a mapping

of cohomologies (as usual for any countable open covering U = {Ui}i∈I , I ⊂ Z,
Cq(U,S) is the set of q–cochains with coefficients in a sheaf S and d : Cq(U,S)→
Cq+1(U,S) is the coboundary operator).

Note that η is globally variational if and only if δ(η) = 0; if instead δ(η) 6= 0
then η = En(λ) can be solved only locally, i.e. for any countable good covering of Y
there exists a local Lagrangian λi over each subset U i ⊂ Y such that ηi = En(λi).
A system of local sections λi of (Vnr )Ui such that En((λi − λj)|Ui∩Uj ) = 0, is what
we call a local variational problem; two local variational problems are equivalent
if and only if they give rise to the same Euler–Lagrange form: ({U i}i∈Z, λi) is
a presentation of the local variational problem [8]; every cohomology class in
Hn+1
dR (Y ) ' Hn+1(Y , IR) gives rise to local variational problems. In general,

infinitesimal symmetries of different presentations can be different.
For any countable open covering of Y , λ = {λi}i∈I is then a 0-cochain of

Lagrangians in Čech cohomology with values in the sheaf Vnr , i.e. λ ∈ C0(U,Vnr ).
By an abuse of notation we shall denote by ηλ the 0–cochain formed by the
restrictions ηi = En(λi) (and so will do at any degree of forms). Of course, dλ ≡
{λij} ≡ (λi − λj)|Ui∩Uj = 0 if and only if λ is globally defined on Y ; analogously,
if η ∈ C0(U,Vn+1

r ), then dη = 0 if and only if η is global. Note that dλ = 0 implies
dηλ = 0, while by IR–linearity we only have dηλ = ηdλ = 0 i.e. dλ ∈ C1(U,Kn

r ) [3].
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2.1. Local variational problems equivalent to global ones. As well known
Noether Theorems relate symmetries of a variational problem to conserved quanti-
ties; in order to make those theorems effective in the case of local systems, in [8]
we tackled the question what the most natural choice for symmetries of the local
variational problem might be. We use the concept of a variational Lie derivative
operator LjrΞ, defined for any projectable vector field (Ξ, ξ), which was inspired
by the fact that the standard Lie derivative of forms with respect to a projectable
vector field preserves the contact structure induced by the affine bundles πrr−1
(with r ≥ 1) [12]. The variational Lie derivative is a local differential operator by
which symmetries of Lagrangian and dynamical forms (as well as higher degree
classes of forms in the variational sequence) and corresponding Noether theorems,
can be characterized [10]. We notice that the variational Lie derivative sends a
diagram of cochain complexes into a diagram of cochain complexes and thus defines
an operator which acts on cohomology classes.

Let ηλ be the Euler–Lagrange morphism of a local variational problem. The
first Noether theorem implies that 0 = ΞV ηλ + dH(εi(λi,Ξ)− β(λi,Ξ)), where
εi := εi(λi,Ξ) = jrΞV pdV λi + ξ λi is the usual canonical Noether current; the
current ε(λi,Ξ)−β(λi,Ξ) is a local object and it is conserved along the solutions of
Euler-Lagrange equations (local conservation law). Local conserved currents can be
derived by using Lepagian equivalent of local systems of Lagrangians [4]. Note that
the Noether current ε(λi,Ξ) is conserved if and only if Ξ is also a symmetry of λi.

Since a local variational problem has a global Euler–Lagrange morphism defining
a topological invariant, there is a precise relation between local conservation laws
[8]. In fact, let ηλ be the Euler–Lagrange morphism of a local variational problem
and λi the system of local Lagrangians of an arbitrary given presentation. The local
currents satisfy dH(ε(λi,Ξ)− β(λi,Ξ)− ε(λj ,Ξ) + β(λj ,Ξ)) = 0. Note that, since
0 = LjrΞη = En(ΞV ηλ), the horizontal n-form ΞV ηλ defines a cohomology
class and we have that the local currents are the restrictions of a global conserved
current if and only if the cohomlogy class δ′(ΞV ηλ) ∈ Hn

dR(Y ) vanishes. It is
noteworthy that even the cohomology class δ′(ΞV En(λ)) may be non trivial (see
e.g. [8]).

In order to study the obstruction to the existence of a variationally global
equivalent to a local variational problem it is of fundamental importance to study
how the variational Lie derivative affects cohomology classes. It is notewhorty that,
independently from the fact that Ξ be a dynamical form symmetry or not, the
variational Lie derivative trivializes cohomology classes [17]. In fact, by linearity
and resorting to the naturality of the variational Lie derivative we have

ηLΞλi = En(ΞV ηλ) + En(dHεi) = En(ΞV ηλ) = LΞηλ .

The result that LΞηλ = En(ΞV ηλ) is very important for the cohomology since
it implies that δ(LΞηλ) = δ(ηLΞλi) = 0 although δ(ηλ) 6= 0. From this we see
that the variational Lie derivative enables us to transform non trivial cohomology
classes to trivial cohomology classes associated with the variational Lie derivative
of local presentations. On the other hand, since ηLΞλi = En(ΞV ηλ) we see
that Euler-Lagrange equations of the local problem defined by LΞλi are equal to
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Euler-Lagrange equations of the global problem defined by ΞV ηλ. Thus we have
the following.
Proposition 1. The local problem defined by the local presentation LΞλi is varia-
tionally equivalent to a global one.

It is noteworthy for the sequel that this result holds true at any degree k in
the variational sequence; specifically for local potentials of variationally trivial
Lagrangians. Let µ be a variationally trivial Lagrangian, i.e. such that En(µ) = 0,
this means that we have a 0-cocycle of currents νi such that µ = dHνi and dµν = 0
but we suppose δ′(µν) 6= 0. We can consider the Lie derivative LΞνi and the
corresponding µLΞνi . By using the expression for the Lie derivative of an (n− 1)
form according to [10] and, again, resorting to the naturality of the variational Lie
derivative, we have
µLΞνi = dH(ΞH dH(νi) + ΞV dV νi) = LΞµν = dH(ΞH µν + ΞV pdV µν ) ,

so that δ′(LΞµν) = δ′(µLΞνi) = 0, although δ′(µν) 6= 0.
In particular, from the above equation we deduce the following.

Corollary 1. The local problem defined by LΞνi is variationally equivalent to the
global problem defined by ΞH µν + ΞV pdV µν .

We recall that µν = dHνi is assumed to satisfy dµν = 0, i.e. it is a global object.
We also notice that ΞV dV νi = ΞV pdV µν + dHφi, with φi an (n − 2) cocycle
and it is noteworthy that ΞV dV νi − dHφi is a global object.
Example 1. Let us assume Ξ be a symmetry of dynamical forms: we have LΞηλ = 0
then, in particular, δ(LΞηλ) ≡ 0; furthermore, under the same assumption, we
have En(ΞV ηλ) = 0 then there exists a 0-cocycle νi as above, defined by µν =
ΞV ηλ := dH(νi). In this case, divergence expressions of the local problem defined
by LΞνi coincide with divergence expressions for the global current ΞH ΞV ηλ +
ΞV pdV (Ξv ηλ).

As a consequence of the above, we can associate a system of global currents with
a system local currents by taking the Lie derivatives of the local system, for which
δ′(LΞµν) = δ′(LΞ(ΞV ηλ)) = δ′(LΞ(dH(νi)) = δ′(dH(LΞ(νi)) = 0 holds true.

A natural question is now if there exists a way to find under which conditions
such a variational Lie derivative of local currents is a system of conserved currents.
The answer to such a question involves Jacobi equations for the local system λi. In
fact, let us consider the second variational derivative of a presentation of a local
problem δ̄2 :=LΞLΞλi; since we are supposing Ξ being a symmetry of dynamical
forms, we have
LΞLΞλi = LΞ(ΞV ηλ)+LΞ

(
dH(εi)

)
= LΞ

(
dH(νi)

)
+LΞ

(
dH(εi)

)
= dHLΞ(νi+εi) .

As a consequence we can state the following important result.
Proposition 2. Let Ξ be a symmetry of the Euler-Lagrange form ηλ and dHd(νi +
εi) = 0. If the second variational derivative is vanishing, then we have the conser-
vation law dHLΞ(νi + εi) = 0, where LΞ(νi + εi) is a local representative of a global
conserved current.
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The global current is given by

ΞH µν+ε + ΞV pdV µν+ε ≡ ΞH dH(νi + εi) + ΞV pdV (dH(νi+εi)) .

Notice that the condition LΞLΞλi = 0 means that the symmetry Ξ is required
to be a symmetry of dynamical forms and also a symmetry of the local variational
problem LΞλi. We also stress that since Ξ is only a symmetry of dynamical forms
and not a symmetry of the Lagrangian, the current νi + εi is not a conserved
current and it is such that dH(νi + εi) is locally equal to dHβi.

Example 2. We deduce the existence of a global conserved current associated with
the Chern-Simons Lagrangian λCS . Let νi + εi be a 0-cocycle of ’strong’ Noether
currents for the Chern-Simons Lagrangian. Since given a symmetry Ξ of the
Chern-Simons equations, for the variational Lie derivative of a local Lagrangian, we
have LΞλCSi = dHβi and it is easy to verify that for the Chern-Simons Lagrangian
we have dLΞλCSi = LΞdλCSi = LΞdHγi, we have that ddHβi = LΞdHγi. Thus
ddH(νi + εi) = LΞdHγi. We see that the conditions of the above propositions are
verified when LΞdHγi = 0. The explicit expression of a global conserved current
associated with the Chern-Simons Lagrangian is then given by the direct application
of the above Proposition:

ΞH LΞλCSi + ΞV pdV LΞλCSi
.

and we can see that it is a global conserved current variationally equivalent to the
variational derivative of the ’strong’ Noether currents νi + εi. Generators of such a
current are in the kernel of the second variational derivative and are symmetries of
the variationally trivial Lagrangian dHγi. This expression can be compared with
results given in [1].

Remark 1. As it is well known, one of the results of the variational sequence
theory, related to the inverse problem of the calculus of variations, states that a
dynamical form η is locally variational if and only if its Helmholtz form vanishes.
Invariance properties of classes in the variational sequence suggested to Krupka et
al. the idea that there should exist a close correspondence between the notions of
variationality of a differential form and invariance of its exterior derivative.

Let us take into account symmetries of the Helmholtz form. Since the variational
Lie derivative trivializes cohomology classes, we show that not only the invariance
of a closed Helmholtz form ζηi , i.e. LΞζηi is equivalent with local variationality
of the Lie derivative LΞηi, i.e. ζLΞηi = 0 meaning that the dynamical form LΞηi
is locally the Euler–Lagrange form of a Lagrangian, as shown in [14], but also
that the system of local Euler–Lagrange forms LΞηi is variationally equivalent to a
global Euler-Lagrange form (i.e. they have the same Helmholtz form).

In fact, it appears noteworty the application of our results above to the (n+ 2)
degree closed variational classes in the Krupka’s sequence. Locally variational (n+1)
dynamical forms are dragged by the variational Lie derivative to dynamical forms
always globally variational. Analogously to what seen before, suppose En+2(ζ) = 0
(higher degree Helmholtz conditions) which implies that there exists a local system
of Euler–Lagrange forms ηi.
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Let Ξ be a symmetry of ζηi , i.e. LΞζηi = 0; then we have En+1(LΞ(ηi)) = 0.
Analogously to what stated above for Euler–Lagrange equations and divergence
equations, one can realize that Helmholtz conditions of the local problem LΞηi are
Helmholtz conditions for the global problem defined by ΞV ζηi .
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