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PARTIAL DCPO’S AND SOME APPLICATIONS

Zhao Dongsheng

Abstract. We introduce partial dcpo’s and show their some applications.
A partial dcpo is a poset associated with a designated collection of directed
subsets. We prove that (i) the dcpo-completion of every partial dcpo exists;
(ii) for certain spaces X, the corresponding partial dcpo’s of continuous real
valued functions on X are continuous partial dcpos; (iii) if a space X is
Hausdorff compact, the lattice of all S-lower semicontinuous functions on X is
the dcpo-completion of that of continuous real valued functions on the space;
(iv) a topological space has an injective hull iff it is homeomorphic to the
pre-Scott space of a continuous partial dcpo whose way-below relation satisfies
the interpolation property.

1. Introduction

Domain theory is a branch of mathematics about a special class of partially
ordered sets. It has essential applications in theoretical computer science as well
as other areas of mathematics. In general topology, one type of application is to
represent some topological spaces in terms of intrinsic order topologies on posets.
For instance, the injective T0 spaces are represented as the continuous lattices with
their Scott topologies [23], sober spaces that have an injective hull are represented
as the continuous dcpo’s with their Scott topologies (see [17] and [11]), and complete
metric spaces are represented as the maximal point spaces of certain continuous
dcpo’s [3] (see also [18]). More generally, every T1 space is homeomorphic to the
maximal point space of some algebraic poset (see [27] and [7]). For other works on
maximal point spaces, see [15], [20], [22] and [19].

In the present paper we examine two other links of domain theory with topology.
Given a topological space X, let C(X, R) be the set of all continuous real valued
functions (with respect to the usual topology on R) on X. Then C(X, R) is a
lattice under the pointwise order of functions. However, C(X,R) is not a directed
complete poset (a directed subset need not have a supremum). In [28] (also in [14]
and [16]), a directed complete poset E(P ), called the dcpo-completion of P , is
constructed for every poset P , which in certain sense, is the smallest extension of P
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to a directed complete poset. It is thus natural to wonder what the dcpo-completion
of C(X,R) could be. It seems hard to represent the dcpo-completion of C(X,R)
as a class of naturally defined real valued functions on X. In addition, the poset
C(X,R) need not be a continuous poset (in the sense of [10]) even for the Euclidean
space X = [0, 1]. In the following, we introduce partially directed complete posets
(partial dcpos, for short), of which all posets are special cases. We show that
if X is a compact Hausdorff space, then C(X,R) is a continuous partial dcpo.
Furthermore, the dcpo-completion of every partial dcpo exists and for certain
spaces X, the dcpo-completion of C(X,R), when it is taken as a special partial
dcpo, is the poset SLSC(X,RT ) of certain lower semicontinuous functions from X
to RT = R ∪ {+∞} with the usual topology.

A topology (pre-Scott topology), generalizing the Scott topology on a poset,
is defined for each partial dcpo and it is proved that the lattice of all closed
subsets of a partial dcpo P is isomorphic to the lattice of Scott closed sets of its
dcpo-completion. We also prove that a topological spaces has an injective hull iff it
is homeomorphic to a continuous partial dcpo with the pre-Scott topology and the
way-below relation satisfies the interpolation property. Spaces having an injective
hull were first systematically studied by Banaschewski [1], and later by Hoffmann
[11], Lawson, Erné and others. Recently, Erné showed that if X is a weak monotone
convergence space and has an injective hull, then X is homeomorphic to the Scott
space of a continuous poset [6].

2. Partially directed-complete posets

If A is a subset of a poset P , we denote ↓A = {x ∈ P : ∃y ∈ A, x ≤ y} and
↑A = {x ∈ P : ∃y ∈ A, y ≤ x}. For any x ∈ P , we take ↓x =↓{x} and ↑x =↑{x}. A
subset A of P is an upper (lower) set if A =↑A (resp. A =↓A). A non-empty subset
D of a poset is called a directed set if any two elements in D have an upper bound
in D.

A subset U of a poset P is Scott open if it is an upper set and for any directed
subset D ⊆ P , supD ∈ U implies D ∩ U 6= ∅ whenever supD exists. The Scott
open sets form a topology, called the Scott topology on P and denoted by σ(P ).
The symbol ΣP is used for the space (P, σ(P )). Every ΣP is a T0 space and it is
T1 only if P has the discrete order.

The Scott topology on the poset of real numbers (with the usual order of
numbers) coincides with the upper topology generated by {(r,∞) : r ∈ R}.

A mapping f : P → Q between two posets is Scott continuous if for each directed
set D of P , f(supD) = sup f(D) whenever supD exists. It’s well known that a
mapping f : P → Q is Scott continuous iff it is continuous with respect to the Scott
topology (see Lemma 1 below for a more general result).

A poset P is a directed complete poset (or dcpo for short) if the supremum
supD exists for every directed subset D ⊆ P .

For more about dcpo’s, continuous posets and Scott topology see the excellent
monograph [10].
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Definition 1. A partial dcpo is a pair (P,Ψ), where P is a poset and Ψ is a
collection of directed subsets of P , such that

(1) supD exists for each D ∈ Ψ;
(2) for any directed subset E of P , E ∈ Ψ if and only if ↓E ∈ Ψ;
(3) {x} ∈ Ψ for any x ∈ P .

Example 1. (1) For every poset P , let DP be the set of all directed subsets D
of P such that supD exists in P . Then (P,DP ) is a partial dcpo. We shall call
DP the standard family of directed sets. Obviously, for any partial dcpo (P,Ψ),
Ψ ⊆ DP .

In the following, if a poset P is taken as a partial dcpo without specifying Ψ we
shall mean that Ψ = DP . In particular, if P is a dcpo, then the family Ψ denotes
the set of all directed subsets of P .

(2) Let Q be a subposet of a poset P and Ψ be the set of all directed subsets D
of Q such that supP D exists and supP D ∈ Q. Then (Q,Ψ) is a partial dcpo.

(3) Let X be a topological space and C(X,R) be the set of all continuous real
valued functions defined on X. With the pointwise order, C(X,R) is a poset. Let
Ψ be the set of all directed subset D of C(X,R) such that the function f defined
by f(x) = sup{g(x) : g ∈ D}(x ∈ X) exists and is continuous. Then (C(X, R),Ψ)
is a partial dcpo.

(4) Let X be a topological space and F (X) be the set of all non-empty closed
sets of X. Let Ψ = {F ⊆ F (X) : F is a filter base and

⋂
F 6= ∅}. Then with the

inverse inclusion order, (F (X),Ψ) is a partial dcpo.
(5) Let P be a poset. Define M(P ) = {A ⊆ P : A has a largest element}. Then

for any x ∈ P, {x} ∈ M(P ) and ↓x ∈M(P ). In general, A ∈M(P ) if and only if
there is x ∈ P such that A = {x} ∪E with E a subset of ↓x. Then (P,M(P )) is a
partial dcpo. Obviously, if (P,Ψ) is a partial dcpo, then M(P ) ⊆ Ψ.

(6) An ω-chain C in a poset P is a countable subset of P which is a chain.
For any poset P , let Dω(P ) = {E ⊆ P : ↓E =↓C for some ω − chain C}. Then
(P,Dω(P )) is a partial dcpo.
Example 2. Given a T0 space (X, τ), the specialization order ≤τ (or just denoted
by ≤) is the partial order on X defined by x ≤τ y if and only if x ∈ cl({y}) (the
closure of {y}) for x, y ∈ X. Every open set U ∈ τ is an upper set with respect
to the specialization order. A directed subset D of (X,≤τ ) is called τ -defined if
(i) supD exists and (ii) for any U ∈ τ , D ∩ U 6= ∅ whenever supD ∈ U . Let Φτ

be the collection of all τ -defined directed subsets of X. Then conditions (1) and
(3) of Definition 1 are clearly satisfied by Φτ . As every U ∈ τ is an upper subset
of (X,≤τ ), it is also straightforward to show that condition (2) is satisfied by Ψτ .
Thus we have a partial dcpo (X,Ψτ ) for any T0 space X, which will be called the
induced partial dcpo of space X. One can easily verify that a directed subset of X
(with respect to the specialization order) is τ -defined iff supD exists and the net
S = {s(d) : d ∈ D} converges to supD, where s(d) = d for each d ∈ D.

We will use (X,≤τ )′s to construct a right adjoint functor from the category of
T0 space to the category of partial dcpo’s in the last section.

The lemma below can be verified easily.
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Lemma 1. Given a T0 space (X, τ), a directed subset D ⊆ X is τ -defined iff
cl(D) = c({x}) for some x ∈ X.

Note that for a given poset P , there could be two different collections Ψ1 and
Ψ2 such that both (P,Ψ1) and (P,Ψ2) are partial dcpos.

A homomorphism f : (P,Ψ) → (Q,Φ) between two partial dcpo’s is a map
f : P → Q such that for each D ∈ Ψ, f(D) ∈ Φ and f(supD) = sup f(D).

If f : (P,Ψ) → (Q,Φ) is a homomorphism and x, y ∈ P with x ≤ y, then
↓ y ∈ Ψ, so f(y) = f(sup ↓y) = sup f(↓y) ≥ f(x). Thus every homomorphism
between partial dcpo’s is monotone.

Let PDCPO be the category of partial dcpo’s and homomorphisms between
them. The category DCPO of all dcpo’s and Scott continuous functions is a full
subcategory of PDCPO.

Definition 2. A dcpo-completion of a partial dcpo (P,Ψ) is a pair (M,η), where
M is a dcpo (with the standard family of directed subsets) and η : (P,Ψ)→M is a
homomorphism in PDCPO (called the universal homomorphism) such that for any
homomorphism f : (P,Ψ)→ Q into a dcpo Q, there is a unique Scott continuous
map f̂ : M → Q such that f = f̂ ◦ η.

Our main concern in this section is : does the dcpo-completion exist for every
partial dcpo? Equivalently, is the category DCPO reflective in PDCPO ? In [28]
(also in [16] and [14]), it is proved that every poset has a dcpo-completion (in terms
of the current definition, it means that for each poset P , the partial dcpo (P,DP )
has a dcpo-completion).

In order to answer the above question, we first introduce a topology on each
partial dcpo, which is similar to the Scott topology on posets.

A subset U of a partial dcpo (P,Ψ) is called pre-Scott open if it is an upper set
and for any D ∈ Ψ, supD ∈ U implies D ∩ U 6= ∅. The complements of pre-Scott
open sets are called pre-Scott closed sets.

The pre-Scott open sets of a partial dcpo P form a topology on P , denoted by
σΨ(P ) and called the pre-Scott topology on P . We will denote the space (P, σΨ(P ))
by Σ(P,Ψ). The set of all pre-Scott closed sets is denoted by ΓΨ(P ). As for any
topological space, σΨ(P ) and ΓΨ(P ) are complete lattices under the inclusion order.
A subset A of a partial dcpo (P,Ψ) is pre-Scott closed iff it is a lower set and for
any D ∈ Ψ, D ⊆ A implies supD ∈ A.

Let (P,Ψ) be a partial dcpo. A subset A of P is called D-closed if supE ∈ A
whenever E ∈ Ψ and E ⊆ A. Obviously, the intersection of any collection of
D-closed sets is D-closed. Now assume that A and B are D-closed sets of P , and
E ∈ Ψ such that E ⊆ A ∪B. Then there must be a directed set F ⊆ E such that
↓F ⊇ E and either F ⊆ A or F ⊆ B. Then as ↓F =↓E, so F ∈ Ψ and supF ∈ A or
supF ∈ B. But supF = supE, thus we have supE ∈ A∪B. So A∪B is D-closed.

Therefore, the set of all D-closed sets of P forms the set of closed sets of a
topology on P , called the D-topology. Complements of D-closed sets are called
D-open sets.

Remark 1. (1) Every Scott open set is D-open.
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(2) Every lower set is D-open.
(3) A subset is pre-Scott open iff it is a D-open upper set.

The D-closure (the closure with respect to the D-topology) of A ⊆ P will be
denoted by clΨd (A) (or just cld(A) where no confusion may occur).

The following lemma can be proved by a routine checking. For the sick of
convenience to readers, we give a brief proof.

Lemma 2. Let f : (P,Ψ)→ (Q,Φ) be a mapping between two partial dcpo’s such
that f(D) ∈ Φ for each D ∈ Ψ. Then the following statements are equivalent:

(1) f is a homomorphism.
(2) f is continuous with respect to the pre-Scott topologies.
(3) f is monotone and is continuous with respect to the D-topologies.

Proof. (1) implies (2). Let f be a homomorphism. Then f can be shown to be
monotone by Definition 1(3). For each pre-Scott open set U of Q, f−1(U) is an upper
set because f is monotone. If D ∈ Ψ and supD ∈ f−1(U), then sup f(D) ∈ U ,
implying f(D) ∩ U 6= ∅. Thus D ∩ f−1(U) 6= ∅. Hence f−1(U) is pre-Scott open in
P , and thus f is continuous.

(2) implies (1). Assume that f is continuous. Let D ∈ Ψ and f(supD) 6≤
sup f(D). Put a = sup f(D). The set Q−↓a is D-open and supD ∈ f−1(Q−↓a).
Thus D∩f−1(Q−↓a) 6= ∅, this then implies f(D)∩(Q−↓a) 6= ∅, which is impossible
because f(D) ⊆↓a =↓sup f(D). So for any D ∈ Ψ, f(supD) ≤ sup f(D) and thus
f(supD) = sup f(D), showing that f is a homomorphism.

(1) implies (3). This is trivial.
(3) implies (2). Let f be monotone and continuous with respect to the D-topology.

For any pre-Scott open set U of Q, f−1(U) is an upper set as well as a D-open set,
and hence it is pre-Scott open. �

The corollary below follows from a general fact on continuous mappings and
closure operators.

Corollary 1. If f : P → Q is a homomorphism between partial dcpo’s, then for
any A ⊆ P, f(cld(A)) ⊆ cld(f(A)).

Lemma 3. If f and g are Scott continuous mappings from dcpo P to dcpo Q, and
A ⊆ P with f |A = g|A, then f(x) = g(x) for every x ∈ cld(A).

Proof. Let B = {x ∈ P : f(x) = g(x)}. It is clear that B is a D-closed set and
contains A, thus cld(A) ⊆ B, implying f(x) = g(x) for all x ∈ cld(A). �

Note that if L is a complete lattice (regarded as the partial dcpo (L,DL)), then
for any subset A of L, the D-closure cld(A) of A is a sub dcpo of L (it is actually
the smallest sub dcpo containing A), that is, it is closed under taking supremum of
directed sets. In particular, cld(A) is a dcpo under the inherited order from L.

Theorem 1. For any partial dcpo (P,Ψ), (E(P ), ηP ) is a dcpo-completion of
(P,Ψ), where E(P ) is the D-closure of κ(P ) = {↓x : x ∈ P} in the complete lattice
ΓΨ(P ) and the universal mapping ηP : P → E(P ) sends each x ∈ P to ↓x.
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Proof. First, by the above remarks, E(P ) is a dcpo with respect to the inclusion
order, where for any directed B ⊆ E(P ), supB in E(P ) equals its supremum in
ΓΨ(P ) which equals cld(

⋃
B).

For any B ∈ Ψ, a = supB exists in P , and a ∈ cld(
⋃
{↓x : x ∈ B}) = sup{ηP (x) :

x ∈ B} = sup ηP (B) (here the supremum is taken in E(P )). As cld(
⋃
{↓x : x ∈ B})

is a lower set of P , ↓a ⊆ sup ηP (B). But it is trivial that ↓a ⊇ sup ηP (B), hence
ηP (supB) = sup ηP (B) holds for every B ∈ Ψ, therefore ηP is a homomorphism in
PDCPO.

Now let f : P → Q be any homomorphism in PDCPO from (P,Ψ) to a dcpo Q.
Then, by Lemma 1, f is continuous with respect to the pre-Scott topology on P
and the Scott topology on Q. Thus the mapping f−1 : Γ(Q)→ ΓΨ(P ), sending each
A ∈ Γ(Q) to its inverse image under f , is a mapping preserving arbitrary meets
and finite unions. Let f∗ : ΓΨ(P )→ Γ(B) be the mapping that sends X ∈ ΓΨ(P )
to cl(f(X)) (the closure of f(X) in (Q, σ(Q)) ). Then f∗ is the lower adjoint of
f−1. Thus f∗ preserves arbitrary joins, and so it is Scott continuous between the
two complete lattices ΓΨ(P ) and Γ(Q).

By Corollary 1, f∗(cld(κ(P ))) ⊆ cld(f∗(κ(P ))). For each x ∈ P, f∗(↓x) = cl(f(↓
x)). Since f is monotone, f(↓x) ⊆↓f(x) ⊆↓f(↓x), implying cl(f(↓x)) =↓f(x).
Now f∗(↓x) = cl(f(↓x)) =↓ f(x) ∈ κ(Q) = {↓ y : y ∈ Q}. This shows that
f∗(κ(P )) ⊆ κ(Q). Since Q is a dcpo, one easily verify that the D-closure of
κ(Q) in Γ(Q) equals itself, that is cld(κ(Q)) = κ(Q). Now we deduced that
f∗(cld(κ(P ))) ⊆ cld(f∗(κ(P ))) ⊆ cld(κ(Q)) = κ(Q).

Let fo : cld(κ(P ))→ κ(Q) be the restriction of f∗ to the domain cld(κ(P )) and
the codomain κ(Q). The mapping ξ : κ(Q)→ Q defined by ξ(↓y) = y is obviously
an isomorphism.

Now let f̂ = ξ ◦ fo. Then f̂ : cld(κ(P )) → Q is a Scott continuous mapping
satisfying f = f̂ ◦ ηP .

If h : cld(κ(P ))→ Q is any Scott continuous mapping satisfying f = h◦ηP , then
for each x ∈ P , h(↓x) = h◦ηP (x) = f(x) = f̂ ◦ηP (x)) = f̂(↓x), that is, h(C) = f̂(C)
holds for all C ∈ κ(P ). By Lemma 3, h = f̂ . The proof is completed. �

In [16], Keimel and Lawson took another approach to obtain the dcpo-completion
of a poset P . First consider the standard soberification εP : P → P s of the Scott
space ΣP = (P, σ), where P s consists of all the irreducible Scott closed sets. Note
that the specialization order on P s equals the inclusion order. Let P d be the
D-closure of the image of P in P s (here the D-topology on a T0 space X is the
D-topology on X with the specialization order and the standard family of directed
sets). Since the union of a directed family of irreducible closed sets is an irreducible
set, so P s is a D-closed set of Γ(P ). Also κ(P ) = {↓x : x ∈ P} is a subset of P s,
so the D-closure of κ(P ) in Γ(P ) equals its D-closure in P s. It thus follow that P d
equipped with the relative specialization order of P s is the dcpo-completion of the
poset P .

Now given a partial dcpo (P,Ψ), the soberification P sΨ of (P, σΨ(P )) consists of
all the irreducible pre-Scott closed sets. Again, P sΨ is a D-closed subset of ΓΨ(P ),
so the D-closure of κ(P ) in P sΨ equals its D-closure in ΓΨ(P ).
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By the proof of Theorem 1 and the above remarks, we have the following result:

Proposition 1. For a partial dcpo (P,Ψ), let η : P → X be a soberification of
(P, σΨ(P ). Then the D-closure of η(P ) in X equipped with the relative specialization
order on X is the dcpo-completion of (P,Ψ).

Definition 3. A subset B of a dcpo P is called a basis of P if there is a function
φ : P → P(B) from P to the power set of B such that the following conditions are
satisfied:

(B1) for each a ∈ P , φ(a) is a directed set and supφ(a) = a;
(B2) for any directed set D ⊆ P, φ(supD) =

⋃
{φ(a) : a ∈ D}.

Theorem 2. Let B be a basis of a dcpo P . Then (P, ηB) is a dcpo-completion of
the partial dcpo (B,Ψ), where Ψ = {C ⊆ B : C is directed and supPC ∈ B} and
ηB : B → P is the embedding map.

Proof. By the definition of Ψ, ηB is a homomorphism from (B,Ψ) to P . Now
assume that f : (B,Ψ)→ Q is a partial dcpo homomorphism from B to a dcpo Q.
Define f̂ : P → Q by f̂(a) = sup f(φ(a)) for each a ∈ P . Then f̂ ◦ ηB = f .

For any directed set D ⊆ P , f̂(supD) = sup f(φ(supD)) = sup f(
⋃
{φ(x) : x ∈

D}) = sup
⋃
{f(φ(x)) : x ∈ D} = sup{sup f(φ(x)) : x ∈ D} = sup{f̂(x) : x ∈ D}.

Thus f̂ is a Scott continuous mapping between P and Q. Let h : P → Q be any
Scott continuous mapping satisfying h ◦ ηB = f . Then for any a ∈ P , a = supφ(a),
so h(a) = suph(φ(a)) = sup f(φ(a)), the last equation holds because φ(a) ⊆ B and
for any x ∈ B, h(x) = h ◦ ηB(x) = f(x). Hence h(a) = f̂(a) for all a ∈ P . Therefore
(P, ηB) is a dcpo-completion of (B,Ψ). �

Example 3. (1) Let Q be the poset of all rational numbers with the usual
order of numbers. Then Q is a subset of RT = R ∪ {∞}. Define φ : RT → Q by
φ(x) = {y ∈ Q : y < x}. Then φ satisfies the conditions of Definition 3, so Q is a
basis of RT . By Theorem 2, RT is a dcpo-completion of (Q,Ψ), where Ψ is the set
of all non-empty D ⊆ Q with supD ∈ Q.

Clearly, if B is a basis of P and B ⊆ A ⊆ P , then A is also a basis of P , thus P
is also a dcpo-completion of (A,Ψ). It follows that the dcpo-completion of R, the
poset of all real numbers, is also RT .

(2) Let X be a non-empty set and (P(X),⊆) be the complete lattice of all
subsets of X. The set B of all finite subsets of X is a basis of P(X) (define
φ(A) = {D ∈ B : D ⊆ A}). Hence P(X) is a dcpo-completion of (B,Ψ).

The major application of Theorem 2 is in the proof of Theorem 5.
The concept of bases of a domain (i.e. continuous dcpo) L was defined in [10]:

B ⊆ L is a basis of L if for each x ∈ L, (i){y ∈ L : y � x} ∩ B is a directed set
and (ii) x = sup({y ∈ L : y � x} ∩ B) ([10, Definition III-4.1]). A basis B of a
domain L in this sense is clearly a basis as defined in Definition 3, here we just let
φ(x) = {y ∈ L : y � x} ∩B for each x ∈ L.

The reader may wonder whether a dcpo that has a basis in the sense of Definition
3 must be a domain. The following example gives a negative answer.
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Example 4. Let L = {0, 1, a} ∪ {bn : n = 1, 2, 3, ...} and define 0 < a < 1,
0 < bn < bn+1 < 1 for all n. It is well-known that (L,≤) is not a meet-continuous
lattice (let alone a domain). Let B = {0, a} ∪ {bn : n = 1, 2, 3, . . .} and assign
φ(x) = {x} if x 6= 1, and φ(1) = {bn : n = 1, 2, 3, . . .}. Then B is a basis of L. It is
easily verified that this B is the smallest basis (i.e. if C is another basis of L, then
B ⊆ C).

Definition 4. Let P be a dcpo. For any x, y ∈ P , define x a y if for any directed
subset D of P , supD = y implies x ≤ d for some d ∈ D.

A dcpo P is called below-continuous if for each a ∈ P , Ta = {x ∈ P : x a a} is
a directed set and a = supTa.

Remark 2. (1) If x a y then x ≤ y (consider the directed set D = {y}), so Ta is
a lower set for each a ∈ P .

(2) x ≤ y a z implies x a z. Unlike the way-below relation �, in general
x a y ≤ z do not imply x a z.

(3) If P is below-continuous, then the relation a satisfies the interpolation
property: if x a y then there is z ∈ P such that x a z a y. The proof is similar to
that for the way-below relation of continuous posets (see [10, Theorem I-1.9]).

(4) Let L be a complete lattice which is meet-continuous (i.e. x ∧ supD =
sup{x ∧ d : d ∈ D} holds for any element x and directed subset D). Then x a y
holds in L iff x� y. Thus L is below-continuous iff it is continuous. For example, for
any topological space X, the lattice O(X) of all open sets of X is below-continuous
iff it is continuous.

Theorem 3. A dcpo is below-continuous iff it has a basis.

Proof. Assume that dcpo P is below-continuous. Let B = P and define φ(x) =
{y ∈ P : y a x}. Then B is a basis of P . To see this, we only need to verify
condition (B2) of Definition 3, but this follows directly from Remark 2.

Now let P have a basis B determined by the function φ : P → P(B). Then
for each x ∈ P , one can easily verify that ↓φ(x) = {y ∈ P : y a x}, which is a
directed set because φ(x) is directed. Also sup ↓φ(x) = supφ(x) = x. Thus P is
below-continuous. �

Example 4 gives a complete lattice that is below-continuous but not continuous.
For any poset P , let Idl(P ) be the poset of all ideals of P (directed and lower

subsets of P ). Recall that a dcpo P is continuous iff the mapping sup: Idl(P )→ P
has a lower adjoint (see [10, Theorem I-1.10]).

The more differences and similarities between continuous dcpo’s and below-continuous
dcpo’s can be seen in the following proposition.

Proposition 2. Let P be a dcpo. Then the following statements are equivalent:
(1) P is below-continuous;
(2) the mapping sup: Idl(P )→ P has a Scott continuous right inverse, i.e there

is a Scott continuous mapping g : P → Idl(P ) such that sup ◦g = idP ;
(3) there is a non-empty subset B of P such that the mapping sup: Idl(B)→ P

has a Scott continuous right inverse.
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Example 5. Let M = {an : n ∈ N} ∪ {bn : n ∈ N} ∪ {0, 1} with the order given
by 0 < an < an+1 < 1, 0 < bn < bn+1 < 1 for all n. Then M is a complete lattice.
There is no non-zero element x satisfying x a 1.

Remark 3. If P and Q are below-continuous, then their Cartesian product is
below-continuous. If P is below-continuous and D is a retraction of P (i.e. there are
Scott continuous functions f , g such that g ◦ f = idQ), then Q is below-continuous.

It is well-known that if P is a continuous dcpo, then the Scott space ΣP is sober.
The reader may also wonder whether the Scott space of each below-continuous
dcpo is sober. The answer is negative: the dcpo N × (N ∪ {∝}) constructed by
Johnstone [12] is below-continuous and its Scott space is not sober.

3. The lattice of Scott closed sets of dcpo-completion

Recall that a subset U of a partial dcpo (P,Ψ) is pre-Scott open if it is an upper
set and supD ∈ U implies D ∩U 6= ∅ for any D ∈ Ψ. The set of all pre-Scott open
(closed) sets of P is denoted by σΨ(P ) (ΓΨ(P ), respectively). In this section, we
show that for any partial dcpo (P,Ψ), the complete lattice ΓΨ(P ) is isomorphic to
the lattice Γ(E(P )) of Scott closed sets of the dcpo-completion E(P ) of P .

Note that for a partial dcpo (P,Ψ) and each A ⊆ P , cl(A) denotes the closure
of A with respect to the Scott topology and cld(A) denotes the D-closure of A. For
any A ⊆ P , cld(A) ⊆ cl(A) because cl(A) is D-closed.

Recall that for each poset P , DP denotes the family of all directed subsets of P
whose supremum exist.

Lemma 4. Suppose that A is a subset of a poset P such that P = cld(A), where
the family of directed subsets on P is taken to be DP . Then for any F ∈ Γ(P ),
F = cl(F ∩A).

Proof. Since F is a lower set, by Remark 1, it is D-open. As A is dense in P with
respect to the D-topology, A is dense in every D-open set, thus cld(F ∩ A) ⊇ F .
But cld(F ∩A) ⊆ cl(F ∩A) ⊆ cl(F ) = F , thus F = cl(F ∩A). �

A pair (g, f) of monotone mappings f : P → Q, g : Q → P between posets is
a Galois connection or an adjunction between P and Q if for any x ∈ P , y ∈ Q,
x ≤ g(y) iff f(x) ≤ y. In the adjunction (g, f), g is called the upper adjoint and
f the lower adjoint. If h : L → M is a mapping between complete lattices and
preserves the sups (infs) of arbitrary subsets, then h has an upper (lower, resp.)
adjoint. A left adjoint f is surjective (injective, resp.) iff it’s right adjoint is injective
(surjective, resp.). See Proposition O-3.7 of [10].

Theorem 4. If E(P ) is a dcpo-completion of a partial dcpo (P,Ψ), then ΓΨ(P )
is isomorphic to Γ(E(P )).

Proof. Let η : P → E(P ) be the universal homomorphism of P into the dcpo-com-
pletion. Then η is a continuous mapping with respect to the pre-Scott topology on
P and the Scott topology on E(P ), so the mapping η∗ : ΓΨ(P )→ Γ(E(P )), which
sends X to cl(η(X)), is a left adjoint to the mapping η−1 : Γ(E(P ))→ ΓΨ(P ). We
show that η∗ is an isomorphism. By the proof of Theorem 1, cld(η(P )) = E(P ).
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Thus by Lemma 4, for each F ∈ Γ(E(P )), F = cl(F ∩ η(P )). Let G = η−1(F ).
Then, as η is continuous, G ∈ ΓΨ(P ) and η∗(G) = cl(η(G)). Note that η(G) =
η(η−1(F )) = F ∩ η(P ), so cl(η(G)) = cl(F ∩ η(P )) = F . Thus η∗ is surjective. For
each A ∈ ΓΨ(P ), the function j : P → 2 with j−1({0}) = A, is a homomorphism in
PDCPO. As E(P ) is a dcpo-completion of P , there is a Scott continuous function
h : E(P ) → 2 such that h ◦ η = j. Then A = j−1({0}) = η−1(h−1({0})), where
h−1({0}) ∈ Γ(E(P )). Thus η−1 : Γ(E(P )) → ΓΨ(P ) is surjective. Therefore, by
Proposition O-3.7 of [10], the left adjoint η∗ of η−1 is injective. It follows that
the mapping η∗ is an isomorphism between Γ(P ) and Γ(E(P )). The proof is
completed. �

Remark 4. (1) From Theorem 4, it follows that for any partial dcpo (P,Ψ), the
lattice σΨ(P ) of all pre-Scott open sets of P is isomorphic to the Scott open set
lattice σ(E(P )) of the dcpo E(P ).

(2) Given a poset P and any collection F of directed subsets of P whose
supremum exist, then F defines a topology OF (P ) on P : U ∈ OF (P ) if U is an
upper set and for any D ∈ F , supD ∈ U implies D∩U 6= ∅. One may wonder what
type the complete lattice OF (P ) would be. Let Ψ = {E ⊆ P : E is directed and ↓
E =↓D for some D ∈ F or ↓E =↓ x for some x ∈ P}. Then (P,Ψ) is a partial
dcpo and U ∈ OF (P ) if and only if U is pre-Scott open. Hence OF (P ) = σΨ(P ).
Then by Theorem 4, the lattice OF (P ) is isomorphic to the Scott open set σ(Q) of
some dcpo Q.

For example, an ω-open set U of a poset P is an upper set such that for each
increasing sequence D = {an : n ∈ N}, supD ∈ U implies D ∩ U 6= ∅. The lattice
of all ω-open sets of P is now isomorphic to the lattice of Scott open sets of a dcpo.

There is, however, still no a characterization of Scott open set (closed set) lattices
of dcpo’s.

Given a partial dcpo (P,Ψ), we define the binary relation �Ψ on P by x�Ψ y
iff for any D ∈ Ψ, supD ≥ y implies x ≤ d for some d ∈ D. For each a ∈ P , let
WΨ(a) = {x ∈ P : x�Ψ a}. Clearly, x ≤ y implies WΨ(x) ⊆WΨ(y).

A partial dcpo (P,Ψ) is called continuous if for each x ∈ P , WΨ(x) ∈ Ψ and
supWΨ(x) = x.

We write � for �Ψ if Ψ = DP , the set of all directed subsets of P which have
a supremum. If P is a poset such that (P,DP ) is continuous, then P is just called
a continuous poset (see [10, Definition I-1.6]).

Lemma 5. Let (P,Ψ) be a partial dcpo and Ψ be closed under taking directed
unions. If (P,Ψ) is continuous then the relation �Ψ satisfies the interpolation
property, that is, for any x�Ψ y, there exits z ∈ P such that x�Ψ z �Ψ y.

The proof is similar to that for continuous posets (see [10, Theorem I-1.9]).
If (P,Ψ) is a continuous partial dcpo and the relation �Ψ satisfies the interpo-

lation property, then for each x ∈ P, {y ∈ P : x�Ψ y} is pre-Scott open.
The following result can be proved in a similar way as for dcpo’s (see [10,

Theorem II-1.14]).
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Lemma 6. Let (P,Ψ) be a partial dcpo such that Ψ is closed under taking directed
unions. Then (P,Ψ) is continuous iff (ΓΨ(P ),⊆) is a completely distributive lattice.

4. The partial dcpo of continuous functions

For any topological space X, let C(X, R) denote the set of continuous real
valued functions f : X → R. With respect to the pointwise order, C(X,R) is a
lattice.

The following example shows that under the pointwise order, C([0, 1],R) is not
a continuous poset.
Example 6. Let f(x) ≡ 1 (x ∈ [0, 1]) be the function with the constant value 1.
Given any element g in C(X,R), let a = g(0). For each natural number n, define
fn ∈ C([0, 1],R) by

fn(x) =
{

1 1
n ≤ x ≤ 1 ,

n(2− a)x+ (a− 1) 0 ≤ x ≤ 1
n .

Then {fn} is a directed subset of C(X,R), and the supremum of {fn} in C(X,R)
equals f . However, g 6≤ fn for any n. Thus g 6� f . Hence there is no g ∈ C(X,R)
satisfying g � f , so C(X,R) is not a continuous poset.

Let X be a topological space and (C(X,R),Ψ) be the partial dcpo defined
in Example 1(3). The next questions we are to consider are: (1) for what X,
is (C(X,R),Ψ) a continuous partial dcpo? (2) what is the dcpo-completion of
(C(X,R),Ψ)?

In the following, for simplicity, we use� to denote the relation�Ψ in (C(X,R),Ψ).
The following lemma is folklore of analysis. The key part of it’s proof is similar

to the proof of Dini’s Theorem.
Lemma 7. Let X be a compact space. Then for any f , g ∈ C(X, R), f � g iff
f(x) < g(x) holds for every x ∈ X.

A space X is called F-compact if for any f , g ∈ C(X,R) with f(x) < g(x) for
all x ∈ X, f � g holds in (C(X,R),Ψ).
Proposition 3. A completely regular space is F-compact iff it is compact.
Proof. By Lemma 7 we only need to verify the necessity. Let X be F-compact.
Assume, by contrapositive, that X is not compact. Then there is an open co-
ver U of X that has no finite subcover. This is equivalent to that there is an
open neighbourhood assignment x 7→ U(x) such that for any finite set G ⊆
X,
⋃
{U(x) : x ∈ G} 6= X. For each x ∈ X, there is a continuous function

fx : X → [0, 1] such that fx(x) = 1, and fx(X − U(x)) = {0}. Consider the
family F = {supx∈G fx : G ⊆ X is non-empty and finite}. Then F is a directed
subset of C(X,R) and the pointwise supremum of F has the constant value 1.
Thus supF = C1. The constant function C 1

2
satisfies C 1

2
< C1, but there is no

finite G ⊆ X such that C 1
2
≤ supx∈G fx because the value of supx∈G fx at each

y ∈ X −
⋃
{U(x) : x ∈ G} equals 0. This contradicts the assumption. Hence X

must be compact. �
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Now if X is F-compact, then for any f ∈ C(X,R), the set {g ∈ C(X,R) : g �
f} = {g ∈ C(X,R) : g(x) < f(x) for all x ∈ X} is a directed set and its supremum
is f . Thus we have

Corollary 2. For any F-compact space X, (C(X, R),Ψ) is a continuous partial
dcpo.

Let RT = R∪{+∞}. A function f : X → RT is called lower semicontinuous if for
any r ∈ RT , {x ∈ X : f(x) > r} is open in X. The set of all lower semicontinuous
functions on X is denoted by LSC(X,RT ). Under the pointwise order, LSC(X,RT )
is a lattice and C(X,R) is a sublattice of LSC(X,RT ).

It is well known that the pointwise supremum of any non-empty collection of
lower semicontinuous functions is also lower semicontinuous. Thus every non-empty
subset in LSC(X, RT ) has a supremum.

A function f : X → RT is called an S-lower semicontinuous function if it is
the (pointwise) superemum of some continuous functions in C(X,R)(note, we did
not define continuous function from X to RT ). Let SLSC(X,RT ) be the set of
all S-lower semicontinuous functions on X. Clearly every non-empty subset of
SLSC(X,RT ) has a supremum in SLSC(X,RT ).

In [24], it was proved that a space X is perfectly normal iff every lower semicon-
tinuous function is the supremum of a sequence of continuous functions. Thus for
each perfectly normal space X, LSC(X,RT ) = SLSC(X,RT ).

Lemma 8. Let X be a compact space. If {fi : i ∈ I} is a directed subset of
LSC(X,RT ), f is a continuous function and sup{fi : i ∈ I} > f(i.e. sup{fi(x) :
i ∈ I} > f(x) holds for each x ∈ X), then fi > f for some i ∈ I.

Proof. For each x ∈ X, there is i(x) such that fi(x)(x) > f(x). Let a = f(x)+fi(x)(x)
2 .

Since fi(x) is lower semicontinuous and f is continuous, one can find an open set
Ux containing x such that f(y) < a, fi(x)(y) > a for all y ∈ Ux. Now {Ux : x ∈ X}
forms an open cover of X, so it has a finite subcover, say {Ux1 , Ux2 , . . . , Uxm}.
Choose an fi with fi ≥ fi(xk) for each k = 1, 2, . . . ,m. Then clearly fi(x) > f(x)
holds for each x ∈ X. �

Theorem 5. Let X be a compact space. Then (SLSC(X,RT ), η) is a dcpo-comple-
tion of (C(X,R),Ψ), where η is the embedding map.

Proof. By Theorem 2, it is enough to show that C(X,R) is a basis of SLSC(X,RT ).
For each f ∈ SLSC(X,RT ), let φ(f) = {h ∈ C(X,R) : h < f}. Then φ(f) is
a directed subset of C(X,R) and supφ(f) = f . From Lemma 8 one deduces
that for any directed subset {fi : i ∈ I} of SLSC(X,RT ), φ(sup{fi : i ∈ I}) =⋃
{φ(fi) : i ∈ I} holds. Thus C(X,R) is a basis of SLSC(X,RT ) and the proof is

completed. �

Let X be a compact space and f ∈ SLSC(X,RT ). Then f = sup{g ∈ C(X, R) :
g < f} and {g ∈ C(X,R) : g < f} is directed. Also by Lemma 7, if g ∈ C(X,RT )
with g < f then g � f . So we have the following result.

Corollary 3. For any compact space X, SLSC(X, RT ) is a continuous dcpo.
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Note that for each space X, the poset SLSC(X,RT ) is more than being a
dcpo. In fact, every non-empty subset of SLSC(X,RT ) has a supremum in it. One
can also check that if f, g ∈ SLSC(X,RT ) then f ∧ g ∈ SLSC(X,RT ), where
(f ∧ g)(x) = min{f(x), g(x)}. Thus SLSC(X,RT ) is a lattice.

5. Continuous partial dcpo’s and spaces with an injective hull in the
category of T0 spaces

A T0 space X is injective if for any topological embedding i : Z ↪→ Y and
continuous mapping f : Z → X there is a continuous f̂ : Y → X such that f = f̂ ◦ i.
One of the most important results in domain theory, proved by Scott, is that a
space X is injective if and only if it is homeomorphic to the space ΣL of some
continuous lattice L (i.e. it is a complete lattice which is continuous as a poset).
Thus one has the following corresponding classes of posets and T0 spaces:

(5.1) { continuous lattices } ⇐⇒ { injective T0 spaces }

A topological embedding i : A ↪→ B is called an essential extension if, whenever
h ◦ i : A → C is an embedding for some continuous h : B → C, then h is an
embedding. Banaschewski [1] has shown that every T0 space X has a unique(up to
equivalence) maximal essential extension X ↪→ λX. If λX is injective, X is said
to have an injective hull. If X is an injective space, then one can easily show that
X is equivalent to λX, thus X has an injective hull.

In [11] and [17], it was proved that a T0 space is sober and has an injective hull
iff it is homeomorphic to the Scott space of a continuous dcpo. Noting that the
Scott space ΣP is sober for any continuous dcpo P , so the correspondence (5.1)
was extended as follows:

{ continuous lattices } ⇐⇒ { injective T0 spaces }
↓ ↓

{ continuous dcpo’s } ⇐⇒ { sober spaces with an injective hull }

For a general T0 space X, the following characterizations have been established
in [11].

Theorem 6. Let X be a T0 space. Then the following conditions are equivalent:
(1) X has an injective hull.
(2) the lattice O(X) of open sets of X is completely distributive.
(3) the lattice Γ(X) of closed sets of X is completely distributive.

In [5], Erné characterized above T0 spaces (called T0 C-spaces) by means of
C-ordered sets. C-ordered sets are the abstraction of continuous posets equipped
with their way-below relations. In [6], Erné also characterized the weak monotone
convergence C-space as the Scott spaces of continuous posets (a T0 space is weak
monotone convergence if for any directed set D ⊆ X, the corresponding net
converges to supD whenever supD exisits).
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In this section, we will use partial dcpo’s to establish a Scott type of represen-
tation for the general spaces that have an injective hull. The main result is the
following:

Theorem 7. A topological space X has an injective hull iff there is a continuous
partial dcpo (P,Ψ) such that �Ψ satisfies the interpolation property and X is
homeomorphic to (P, σΨ(P )).

We first establish an adjunction between the category PDCPOS and the category
Top0 of T0 topological spaces.

First, for any T0 space (X, τ) let G(X) = (X,Ψτ ) which is defined in Example 2.
If f : (X, τ)→ (Y, σ) is a continuous mapping between T0 spaces, then f : X → Y is
monotone with respect to the specialization orders on X and Y . For any D ∈ Ψτ , as
mentioned in Example 2, the net SD = {s(d) : d ∈ D}, where s(d) = d, converges to
supD inX. So f(D) is a directed set of Y and the net {f(s(d)) : d ∈ D} converges to
f(supD). Obviously f(supD) is an upper bound of f(D). Assume that a is an upper
bound of f(D) and f(supD) 6≤ a, then f(supD) belongs to Y−↓a = Y − cl({a})
(note that ↓b = cl({b}) holds for any point b ∈ Y , where ↓b = {y ∈ Y : y ≤ b}). So
supD lies in the open set f−1(Y−↓a), therefore D ∩ f−1(Y−↓a) 6= ∅ because D is
from Ψτ . Choose an element c in D∩f−1(Y−↓a), then f(c) 6≤ a, which contradicts
the assumption on a. It follows that f(supD) = sup f(D). Now if V ⊆ Y is an
open set and sup f(D) ∈ V , then f(supD) ∈ V and so supD ∈ f−1(V ). Again, as
D ∈ Ψτ we have D ∩ f−1(V ) 6= ∅, which then implies f(D) ∩ V 6= ∅. Therefore
f(D) ∈ Ψσ. Hence f is a homomorphism between the two partial dcpo’s (X,Ψτ )
and (Y,Ψσ).

Hence we have a functor G : Top0 → PDCPO, where for any T0 space (X, τ),
G(X) = (X,Ψτ ), and G(f) = f for each continuous mapping f from X to Y .

Conversely, given any partial dcpo (P,Ψ), let F (P ) = Σ(P,Ψ) = (P, σΨ(P )) and
F (f) = f for any partial dcpo homomorphism f : (P,Ψ)→ (Q,Φ) (note that f is
indeed a continuous map from (P, σΨ) to (Q, σΦ)).

Consider an arbitrary T0 space (X, τ). By the definition of Ψτ we see that
the identity mapping idX : X → X is a continuous mapping from FG(X) to
X. If f : F (P ) → (X, τ) is a continuous mapping for some partial dcpo (P,Ψ),
then f : (P,Ψ) → (X,Ψτ ) is a homomorphism in PDCPO, and it is the unique
homomorphism satisfying f = idX ◦ F (f).

Proposition 4. The functors F and G between Top0 and PDCPO defined above
form an adjunction, more specifically, F is left adjoint to G.

Recall that a T0 space is a monotone convergence space (or d-space) if X is a
dcpo under the specialization order and all open sets of X are Scott open (with
respect to the specialization order). Now from the above discussion we see that for
any T0 space X, the topology on (X, τ) is coarser than the pre-Scott topology on
the partial dcpo (X,Ψτ ). It makes sense to consider the spaces X whose topology
coincides with the pre-Scott topology on (X,Ψτ ). In the next part, we shall see a
class of such spaces.
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Theorem 8 ([1]). A T0 space X has an injective hull iff for every open subset V
of X and every u ∈ V there is some open set S of X with u ∈ S subject to the
requirement that there is some t ∈ V such that t ≤ x (i.e. t ∈ cl{x}) for all x ∈ S.

By [5], a topological space X is called a C-space if for any open set U and x ∈ U ,
there is y ∈ U such that x ∈ int(↑y). Here int(−) is the interior operator. The
C-spaces are also called α-spaces by Ershov [8]. By Theorem 8, it is trivial that a
T0 space X has a an injective hull iff it is a C-space.

Lemma 9. If (P,Ψ) is a continuous partial dcpo such that �Ψ satisfies the
interpolation property, then (P, σΨ(P )) is a T0 C-space. In this case,

∫
(↑x) = {y :

x�Ψ y}.

Proof. First, as �Ψ satisfies the interpolation property, each {y : x�Ψ y} is a
pre-Scott open set contained in int(↑x). Now if y ∈ int(↑x), then sup{z ∈ P : z �Ψ
y} = y and y is in the pre-Scott open set int(↑ x), and {z ∈ P : z �Ψ y} ∈ Ψ,
so there is z �Ψ y such that z ∈

∫
(↑ x), which then implies x ≤ z �Ψ y,

so x �Ψ y. Hence
∫

(↑ x) = {y : x �Ψ y}. Now if U is pre-Scott open and
x ∈ U , then again, as P is continuous, there is z �Ψ x with z ∈ U . Then
x ∈ {y : z �Ψ y} = int(↑ z) ⊆ U . Hence the space (P, σΨ(P )) is a T0 C-space. The
proof is completed. �

Now we show that every T0 C-space is homeomorphic to (P, σΨ(P )) for some
continuous partial dcpo P .

Let X be a topological space. Define the binary relation � on X by: x � y iff
y ∈ int(↑x) [11].

In [11], it was claimed that the following result holds for any space X that has
an injective hull. As it is already known that every T0 C-space has an injective
hull, so the following lemma holds. For the convenience of readers, we give a direct
brief proof.

Lemma 10. Let X be a C-space and ≤ be the specialization order on X.
(a) z ≤ x ≺ y ≤ w implies z ≺ w.
(b) For any b ∈ X, the set b̂ = {x : x � b} is a directed set and sup b̂ = b.
(c) The relation � satisfies the interpolation property: if x � y then there exists

z such that x � z � y.

Proof. (a) follows from the definition of ≺ straightforwardly.
(b) If x � b and y � b, then b ∈

∫
(↑x) ∩

∫
(↑ y). Since X is a C-space and∫

(↑x) ∩
∫

(↑y) is an open set, there is z ∈
∫

(↑x) ∩
∫

(↑y) satisfying b ∈
∫

(↑z) ⊆∫
(↑x) ∩

∫
(↑y). It follows then that z � b and x ≤ z, y ≤ z. So b̂ = {x : x � b} is a

directed set. Obviously b is an upper bound of b̂ = {x : x � b}. If u is an upper
bound of b̂ and b 6≤ u, then b ∈ X− ↓u = X − cl({u}). But then there would be
e ∈ X − cl({u}) with b ∈

∫
(↑e), i.e. e � b and e 6≤ u. This contradiction shows that

b is the least upper bound of b̂.
(c) If x � y, y ∈

∫
(↑x). Since X is a C-space, there exists z ∈

∫
(↑x) such that

y ∈
∫

(↑z). Now it’s clear that x � z � y. �
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For a T0 space (X, τ), let �τ denote the relation such that x�τ y iff for any
D ∈ Ψτ , supD ≥ y implies x ≤ d for some d ∈ D.

Lemma 11. Let (X, τ) be a T0 C-space. Then
(a) (X,Ψτ ) is a continuous partial dcpo with �τ satisfying the interpolation

property; and
(b) X = (X,σΨ(X)).

Proof. (a) By Lemma 10, ŷ = {z ∈ X : z � y} is a directed set and sup ŷ = y. For
any open set U containing y, there is x � y and x ∈ U . Thus y ∈ cl(ŷ), implying
cl(ŷ) = cl({y}). Hence, by Lemma 1, ŷ ∈ Ψτ . Now if x �τ y, then as ŷ ∈ Ψτ ,
x ≤ z for some z ∈ ŷ, thus x ∈ ŷ. Conversely, assume that x ∈ ŷ and D ∈ Ψτ

with supD ≥ y. Then, as y ∈
∫

(↑ x) so supD ∈
∫

(↑ x), implying D ∩
∫

(↑ x) 6= ∅.
So there is d ∈ D such that d ≥ x. Therefore x �τ y. Now for any y ∈ X,
{x ∈ X : x�τ y} = ŷ ∈ Ψτ and sup{x ∈ X : x�τ y} = sup ŷ = y. It thus shows
that (X,Ψτ ) is a continuous partial dcpo. The interpolation property of�τ follows
from Lemma 10.

(b) We need to verify that τ equals the set of all pre-Scott open sets of (X,Ψτ ).
First, by the proof of (a) we see that �τ=�. Let U ∈ τ , then for any x ∈ U there
is y ∈ U with x ∈

∫
(↑y), this means, by (a), that x ∈ {z : y �τ z} ⊆ U . But each

{z : y �τ z} is pre-Scott open, so U is pre-Scott open. Conversely, assume that
U ⊆ X is pre-Scott open. For any x ∈ U , since x = sup x̂ ∈ U and x̂ ∈ Ψτ , so
x̂ ∩ U 6= ∅. Hence there is y �τ x such that y ∈ U . Then x ∈ {z : y �τ z} ⊆ U .
But {z : y �τ z} = {z : y � z} =

∫
(↑ y) ∈ τ . Hence U ∈ τ . �

Now from Lemma 9 and Lemma 11 we obtain the Theorem 7.

Remark 5. (1) A T0 space X is called monotone convergence if (X,≤) is a dcpo
and every directed subset converges to its supremum. Thus if (X, τ) is a monotone
convergence space and C-space, then (X,Ψτ ) is a continuous dcpo, hence, as X
is homeomorphic to Σ(X,Ψτ ), so X is a sober space (the Scott space of each
continuous dcpo is sober). Hence a monotone convergence C-space is sober (the
converse conclusion is true for any T0 space).

(2) A T0 space X is called a weak monotone convergence space if for any directed
subset D ⊆ X with supD exists then D converges (as a net) to supD. Thus a
T0 space (X, τ) is a weak monotone convergence space iff Ψτ equals the standard
family of directed sets on (X,≤) (Example 1(1)). It is easily seen that for each
poset P , the Scott space ΣP = (P, σ(P )) is a weak monotone convergence space.
From this it follows that a C-space X is a weak monotone convergence space iff
there is a continuous poset P such that X is homeomorphic to ΣP (see also [6]).

We summarize the results on spaces that have an injective hull by the following
theorem.

Theorem 9. Let X be a T0 space.
(1) X is injective iff X is homeomorphic to ΣL for a continuous lattice L.
(2) X is sober and has an injective hull iff X is homeomorphic to ΣP for a

continuous dcpo P .
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(3) X is a weak monotone convergence space and has an injective hull iff X is
homeomorphic to ΣP for a continuous poset P .

(4) X has an injective hull iff X is homeomorphic to Σ(P,Ψ) for a continuous
partial dcpo P with �Ψ satisfying the interpolation property.

Remark 6. (1) If (X, τ) is homeomorphic to ΣP for a partial dcpo (P,Ψ), then we
can assume P = X and the order on P is the same as the specialization order on X.
It then follows that Ψ ⊆ Ψτ , thus each U ∈ σΨ(P ) is pre-Scott open with respect
to Ψτ . Therefore (X, τ) = Σ(X,Ψτ ). So we have the following conclusion: (X, τ) is
homeomorphic to Σ(P,Ψ) for some partial dcpo (P,Ψ) iff (X, τ) is homeomorphic
to (X,Ψτ ).

(2) For any poset P , let Ψ be the set of all directed subsets D such that
↓ D =↓ x for some x ∈ X (equivalently, if D has a largest element), then σΨ(P ) is
the Alexandrov topology on P – the set of all upper sets of P . For this Ψ, �Ψ=≤.
So (P,Ψ) is continuous and �Ψ satisfies the interpolation property.
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