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ON THE HAMMERSTEIN EQUATION IN THE SPACE
OF FUNCTIONS OF BOUNDED ϕ-VARIATION IN THE PLANE

Luis Azócar, Hugo Leiva, Jesús Matute, and Nelson Merentes

Abstract. In this paper we study existence and uniqueness of solutions for
the Hammerstein equation

u(x) = v(x) + λ

∫
Iba

K(x, y)f
(
y, u(y)

)
dy , x ∈ Iba := [a1, b1]× [a2, b2] ,

in the space BV R
ϕ (Iba) of function of bounded total ϕ−variation in the sense of

Riesz, where λ ∈ R, K : Iba× Iba → R and f : Iba×R→ R are suitable functions.

1. Introduction

One of the most frequently investigated integral equations in nonlinear functional
analysis is the Hammerstein integral equation. It serves as a mathematical model
for many nonlinear physical phenomena such as electromagnetic fluid dynamics.
Furthermore, solutions of some boundary value problems for differential equations
are usually equivalent to solutions of Hammerstein integral equations. In particular,
in [7, p. 46] was observed that the integral equation in the current paper can
be considered as a two independent variable generalization of the Hammerstein
equation studied by many researchers. On the other hand, in [3] and [4] it is pointed
out that spaces of functions endowed with some type of bounded variation norm
appear in a natural way in certain physical phenomena which are described by
Hammerstein equations. This research was motivated by the foregoing comments
and the works [3], [4], [5] and [6], where their authors study existence and uniqueness
of solutions for Hammerstein equation, and another sort of nonlinear integral
equations, in diverse spaces of bounded variation functions on an interval. Another
source of motivation has been paper [9], where linear Volterra integral equation
involving Lebesgue-Stieltjes integral is studied in two independent variables. In the
case of several variables, in [8] we can find a study of integral equations in a space
of real functions defined on Rn, endowed with a kind bounded variation norm.
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The paper is organized as follows: In Section 2, we present some definitions
and preliminaries results concerning with functions of bounded ϕ−variation in
a rectangle Iba in the plane, which were considered in [1] and [2]. In Section 3,
applying the Banach fixed point theorem, we study the existence and uniqueness
of the solutions of the equation

u(x) = v(x) + λ

∫
Iba

K(x, y)f
(
y, u(y)

)
dy ,

in the space of bounded total ϕ-variation functions defined on Iba := [a1, b1]×[a2, b2],
where x, y ∈ Iba, K : Iba × Iba → R, f : Iba × R→ R and λ ∈ R. Then in Section 4,
we investigate the local existence and uniqueness of solutions of the equation

u(x) = v(x) +
∫
Iba

K(x, y)
(
y, u(y)

)
dy ,

in the space of functions which has been mentioned above and finally, in Section 5,
using a nonlinear alternative of Leray-Schauder type, we prove the global existence
of solutions of the above equation in the same space of functions.

2. Preliminaries

This section contains some definitions and properties about the functions of
bounded ϕ-variation on the plane, in the sense of Riesz, which are used in this
paper.

Definition 2.1. Let us fix any real numbers a1 < b1 and a2 < b2. Let {ti}m1 =
{a1 = t0 < t1 < · · · < tm = b1} and {sj}n1 = {a2 = s0 < s1 < · · · < sn = b2}
be partitions of the intervals [a1, b1] and [a2, b2], respectively. Given a function
u : Iba := [a1, b1]× [a2, b2]→ R, we define the following quantities:

∆10u(ti, a2) := u(ti, a2)− u(ti−1, a2) ,

∆01u(a1, sj) := u(a1, sj)− u(a1, sj−1) ,

∆11u(ti, sj) := u(ti−1, sj−1) + u(ti, sj)− u(ti−1, sj)− u(ti, sj−1) .

Let us consider the following definition, which is similar to the above Defini-
tion 2.1.

Definition 2.2. Let us fix any real numbers a1 < b1 and a2 < b2. Let {ti}m1 =
{a1 = t0 < t1 < · · · < tm = b1} and {sj}n1 = {a2 = s0 < s1 < · · · < sn = b2}
be partitions of the intervals [a1, b1] and [a2, b2], respectively. Given a function
K : [a1, b1]× [a2, b2]× Iba → R, we define the following quantities:

∆10K(ti, a2, y) := K(ti, a2, y)−K(ti−1, a2, y) ,

∆01K(a1, sj , y) := K(a1, sj , y)−K(a1, sj−1, y) ,

∆11K(ti, sj , y) := K(ti−1, sj−1, y) +K(ti, sj , y)
−K(ti−1, sj , y)−K(ti, sj−1, y) .
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Definition 2.3. The function ϕ : [0,∞) → [0,∞) is called a ϕ-function, if the
following conditions are verified:

1. ϕ is continuous,
2. ϕ(t) = 0 if and only if t = 0,
3. ϕ(t)→∞ as t→∞ and
4. the function ϕ is nondecreasing.

Definition 2.4. Given a function u : Iba → R, we define the Riesz ϕ-variation of
the function u in [a1, b1]× {a2} by the formula

V Rϕ,[a1,b1](u) := sup
Π1

m∑
i=1

ϕ
[ |∆10u(ti, a2)|
|ti − ti−1|

]
· |ti − ti−1| ,

where the supremum is taken over the set of all partitions Π1 of the interval [a1, b1].

Definition 2.5. Given a function u : Iba → R, we define the Riesz ϕ-variation of
the function u in {a1} × [a2, b2] by putting

V Rϕ,[a2,b2](u) := sup
Π2

n∑
j=1

ϕ
[ |∆01u(a1, sj)|
|sj − sj−1|

]
· |si − si−1| ,

where the supremum is taken over the set of all partitions Π2 of the interval [a2, b2].

Definition 2.6. Given a function u : Iba → R, we define the Riesz two dimensional
ϕ-variation of the function u in Iba by the formula

V Rϕ (u) := sup
Π1,Π2

m∑
i=1

n∑
j=1

ϕ
[ |∆11u(ti, sj)|
|∆ti||∆sj |

]
· |∆ti| · |∆sj | ,

where the supremum is taken over the set of all pairs of partitions (Π1,Π2) of the
intervals [a1, b1] and [a2, b2], respectively.

Definition 2.7. Given a function u : Iba → R, we define the Riesz total ϕ-variation
of u, which is denoted TV Rϕ (u), by putting

TV Rϕ (u) := V Rϕ,[a1,b1](u) + V Rϕ,[a2,b2](u) + V Rϕ (u) .

Definition 2.8. The set of all functions u : Iba → R with finite bounded Riesz total
ϕ-variation is denoted by V Rϕ (Iba); that is,

V Rϕ (Iba) :=
{
u : Iba → R : TV Rϕ (u) < ∞

}
.

Remark 2.1. We denote by BV Rϕ (Iba) :=
〈
V Rϕ (Iba)

〉
the linear space generated by

V Rϕ (Iba).

Theorem 2.1. Let ϕ : [0,∞) → [0,∞) be a ϕ-function. If ϕ is convex and
lim
t→∞

ϕ(t)
t = ∞, then the pair

(
BV Rϕ (Iba) , ‖ · ‖Rϕ

)
is a Banach space with the

norm
‖u‖Rϕ :=

∣∣u(a1, a2)
∣∣+ inf

{
ε > 0 : TV Rϕ

(u
ε

)
≤ 1
}
.
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Remark 2.2 ([2, p. 82]). If ϕ is a convex ϕ-function such that lim
t→∞

ϕ(t)
t =∞, then

‖u‖∞ := sup
{
|u(x)| : x ∈ Iba

}
≤ ‖u‖Rϕ .

Definition 2.9. We denote by G(Iba) the set of all rectangles P := [t1, t2]× [x1, x2]
contained in Iba, where |P | := (t2 − t1) · (x2 − x1).

Definition 2.10. A function F : G(Iba) → R is absolutely continuous if for any
ε > 0, there exists δ > 0 such that if P1, . . . , Pk ∈ G(Iba) are rectangles of which
their interiors are pairwise disjoints and

k∑
j=1

∣∣Pj∣∣ ≤ δ ,
then

k∑
j=1

∣∣F (Pj)∣∣ < ε .

Definition 2.11. Given a function u : Iba → R, we define the rectangles function
Fu : G(Iba)→ R by Fu

(
[t1, t2]× [x1, x2]

)
= ∆11u(t2, x2).

Definition 2.12. A function u : Iba → R is absolutely continuous in Iba in the sense
of Carathéodory, if the rectangles function Fu is absolutely continuous and the
functions u(a1, ·) : [a2, b2]→ R, u(·, a2) : [a1, b1]→ R are absolutely continuous in
the usual sense.

Theorem 2.2 ([2, p. 23]). Let ϕ : [0,∞) → [0,∞) be a convex ϕ-function such
that lim

t→∞
ϕ(t)
t =∞ and let us consider a function u : Iba → R. Then TV Rϕ (u) <∞

if, and only if, u is absolutely continuous in Iba in the sense of Carathéodory.

Theorem 2.3 ([2, p. 22]). A function u : Iba → R is absolutely continuous in Iba in
the sense of Carathéodory if, and only if, u has the integral representation

u(t, x) = e+
∫ t

a1

f(s) ds+
∫ x

a2

g(η) dη +
∫ ∫

Q(t,x)
h(s, η) dsdη ,

where (t, x) ∈ Iba, e ∈ R, f and g are Lebesgue-integrable in [a1, b1] and [a2, b2],
respectively, h is Lebesgue-integrable in Iba and Q(t, x) = [a1, t]× [a2, x].

Lemma 2.1. If ϕ is a convex ϕ-function such that lim
t→∞

ϕ(t)
t = ∞ and u ∈

BV Rϕ (Iba), then the function u is continuous.

Proof. This lemma is a consequence of Remark 2.1, Theorems 2.2 and 2.3 and
the continuity of the Lebesgue integral with regard to its measure. �
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3. Existence and uniqueness of solutions

In this section we study the existence and uniqueness of solutions of the integral
equation

(1) u(x) = v(x) + λ

∫
Iba

K(x, y)f
(
y, u(y)

)
dy

in the Banach space BV Rϕ (Iba) with the norm ‖u‖Rϕ , where λ ∈ R. From now on,
we assume the following hypotheses.

Assumption 3.1. Suppose that K : Iba × Iba → R is a bounded function and
f : Iba × R → R is continuous. Moreover, we assume that K(x, ·) : Iba → R is
measurable for each fixed x ∈ Iba, the function f is locally Lipschitz in the second
variable and the sign

∫
stands for the Lebesgue integral.

Assumption 3.2. We denote Iba by I. Also, assume that the function ϕ : [0,∞)→
[0,∞) is a convex ϕ-function such that lim

t→∞
ϕ(t)
t =∞.

Assumption 3.3. We assume that there exists a function w ∈ BV Rϕ (I) such that
for all pair of real numbers (ti, sj) ∈ [a1, b1]× [a2, b2] and each y ∈ I, we have
that

1.
∣∣∆10K(ti, a2, y)

∣∣ ≤ ∣∣∆10w(ti, a2)
∣∣ ,

2.
∣∣∆01K(a1, sj , y)

∣∣ ≤ ∣∣∆01w(a1, sj)
∣∣ ,

3.
∣∣∆11K(ti, sj , y)

∣∣ ≤ ∣∣∆11w(ti, sj)
∣∣ ,

4. sup
{∣∣K(a1, a2, y)

∣∣ : y ∈ I
}
≤
∣∣ w(a1, a2)

∣∣ .
Now we give an example of the function K which is mentioned in the above

Assumption 3.3.

Example 3.1. Let p : I → R and q : I → R be two bounded functions such that
0 ≤ p(a1, a2), p ∈ BV Rϕ (I) and q is measurable. We define K by

K : I × I → R ; K(x, y) := p(x)q(y) .
Observe that the function K has the properties which were assumed, where

w(x) := sup
{∣∣K(a1, a2, y)

∣∣ : y ∈ I
}

+ sup
{
|q(y)| : y ∈ I

}
· p(x) .

We shall define a function F (u) from I into R for each u ∈ BV Rϕ (I).

Definition 3.1. Given u ∈ BV Rϕ (I), we define F (u) : I → R by

F (u)(t, s) :=
∫
I

K(t, s, y)f(y, u(y)) dy .

Remark 3.1. Since we assumed that K : I × I → R is a bounded function,
f : I ×R→ R is continuous and K(x, ·) : I → R is a measurable function for each
fixed x ∈ I, then the above function F (u)(x) :=

∫
I
K(x, y)f(y, u(y)) dy is well

defined.

Now we shall prove some useful lemmas and theorems related to the above
function F .
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Lemma 3.1. If u ∈ BV Rϕ (I), then

∆11

(F (u)
ε

)
(ti, sj) =

∫
I

∆11

( K

ε

)
(ti, sj , y)f

(
y, u(y)

)
dy .

Proof. We have the following chain of equalities:

∆11

(F (u)
ε

)
(ti, sj) = F (u)

ε
(ti−1, sj−1) + F (u)

ε
(ti, sj)

− F (u)
ε

(ti−1, sj)−
F (u)
ε

(ti, sj−1)

= 1
ε

[ ∫
I

K(ti−1, sj−1, y)f
(
y, u(y)

)
dy +

∫
I

K(ti, sj , y)f
(
y, u(y)

)
dy

−
∫
I

K(ti−1, sj , y)f
(
y, u(y)

)
dy −

∫
I

K(ti, sj−1, y)f
(
y, u(y)

)
dy
]

=
∫
I

K

ε
(ti−1, sj−1, y)f

(
y, u(y)

)
dy +

∫
I

K

ε
(ti, sj , y)f

(
y, u(y)

)
dy

−
∫
I

K

ε
(ti−1, sj , y)f

(
y, u(y)

)
dy −

∫
I

K

ε
(ti, sj−1, y)f

(
y, u(y)

)
dy

=
∫
I

∆11

(K
ε

)
(ti, sj , y)f

(
y, u(y)

)
dy .

This completes the proof. �

Definition 3.2. We define C and |I| by C := C(u) := max
y∈I

∣∣f(y, u(y))
∣∣ and

|I| := (b1 − a1) · (b2 − a2), respectively.

Lemma 3.2. If u ∈ BV Rϕ (I), then∣∣∣∆11

(F (u)
ε

)
(ti, sj)

∣∣∣ ≤ ∣∣∣∆11

( |I|Cw
ε

)
(ti, sj)

∣∣∣ .
Proof. Observe that∣∣∣∆11

(F (u)
ε

)
(ti, sj)

∣∣∣ ≤ ∫
I

∣∣∣∆11

(K
ε

)
(ti, sj , y)f

(
y, u(y)

)∣∣∣ dy
≤
∫
I

∣∣∣∆11

(w
ε

)
(ti, sj)

∣∣∣ ·max
y∈I

∣∣f(y, u(y)
)∣∣ dy

= C
∣∣∣∆11

(w
ε

)
(ti, sj)

∣∣∣ · |I| = ∣∣∣∆11

( |I|Cw
ε

)
(ti, sj)

∣∣∣ . �

Lemma 3.3. If u ∈ BV Rϕ (I), then

V Rϕ

(F (u)
ε

)
≤ V Rϕ

( |I|Cw
ε

)
.
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Proof. Since the function ϕ is nondecreasing, we have that

ϕ
( |∆11

(F (u)
ε

)
(ti, sj)|

|∆ti| · |∆sj |

)
≤ ϕ

( |∆11
( |I|Cw

ε

)
(ti, sj)|

|∆ti| · |∆sj |

)
.

After the use of Definition 2.6, we conclude that V Rϕ
(F (u)

ε

)
≤ V Rϕ

( |I|Cw
ε

)
. �

In the same way as the above Lemma 3.3, we can deduce the following two
lemmas.

Lemma 3.4. If u ∈ BV Rϕ (I), then

V Rϕ,[a1,b1]

(F (u)
ε

)
≤ V Rϕ,[a1,b1]

( |I|Cw
ε

)
.

Lemma 3.5. If u ∈ BV Rϕ (I), then

V Rϕ,[a2,b2]

(F (u)
ε

)
≤ V Rϕ,[a2,b2]

( |I|Cw
ε

)
.

The following theorem is a straightforward consequence of the above lemmas.

Theorem 3.1. If u ∈ BV Rϕ (I) and ε > 0, then

TV Rϕ

(F (u)
ε

)
≤ TV Rϕ

( |I|Cw
ε

)
.

Lemma 3.6. If u ∈ BV Rϕ (I) and ε > 0, then

inf
{
ε > 0 : TV Rϕ

(F (u)
ε

)
≤ 1
}
≤ inf

{
ε > 0 : TV Rϕ

( |I|Cw
ε

)
≤ 1
}
.

The above lemma allows us to prove the following theorem, which plays an
important role in this paper.

Theorem 3.2. If u ∈ BV Rϕ (I), then F (u) ∈ BV Rϕ (I) and

‖F (u)‖Rϕ ≤ |I| ·max
y∈I

∣∣f(y, u(y)
)∣∣ · ‖w‖Rϕ .

Theorem 3.3. If u and ũ belong to BV Rϕ (I), then

‖F (u)− F (ũ)‖Rϕ ≤ |I| ·max
y∈I

∣∣f(y, u(y)
)
− f

(
y, ũ(y)

)∣∣ · ‖w‖Rϕ .
Proof. This theorem can be deduced in same way as Theorem 3.2, if we take C :=
C(u, v) := max

y∈I

∣∣f(y, u(y))− f(y, v(y))
∣∣ instead of C := C(u) := max

y∈I

∣∣f(y, u(y))
∣∣.

�

The following lemmas will be useful in order to prove the existence of solutions
of integral equation (1).

Lemma 3.7. Given r > 0, there exists C = C(r) > 0 such that ‖ F (u) ‖Rϕ≤ C
for each u ∈ Br :=

{
u ∈ BV Rϕ (I) : ‖ u ‖Rϕ≤ r

}
.
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Definition 3.3. Let v be a given function belonging to BV Rϕ (I) and λ ∈ R. Given
u ∈ BV Rϕ (I), we define

Gλ(u) : I → R ;

Gλ(u)(t, s) : = v(t, s) + λ

∫
I

K(t, s, y)f
(
y, u(y)

)
dy

= v(t, s) + λF (u)(t, s) .

Lemma 3.8. If u ∈ BV Rϕ (I), then Gλ(u) ∈ BV Rϕ (I).

Lemma 3.9. Let v be a given function in BV Rϕ (I) and r > 0. If ‖ v ‖Rϕ < r, then
there exists a real number D = D(r) > 0 such that Gλ(u) ∈ Br for each u ∈ Br
and λ with |λ| < D.

Lemma 3.10. Let v be a given function in BV Rϕ (I) and consider r > 0 such
that ‖ v ‖Rϕ< r. There exists a real number E = E(r) > 0 such that if |λ| < E,
then Gλ(u) : Br → Br is a contraction.

Proof. Let D be such as in Lemma 3.9 and let u, ũ ∈ Br. Observe that
‖ Gλ(u)−Gλ(ũ) ‖Rϕ= |λ| ‖ F (u)− F (ũ) ‖Rϕ .

By Theorem 3.3 and since f : I×R→ R is locally Lipschitz in the second variable,
there exists a constant Lr > 0 such that

‖F (u)− F (ũ)‖Rϕ ≤ |I|Lr‖w‖Rϕ · ‖u− ũ‖∞ for all u, ũ ∈ Br .

Therefore, we have

‖ Gλ(u)−Gλ(ũ) ‖Rϕ ≤ |I||λ|Lr‖w‖Rϕ · ‖u− ũ‖Rϕ for all u, ũ ∈ Br .

Observe that there exists a real number E := E(r) > 0 such that if |λ| < E, then
|I| |λ|Lr‖w‖Rϕ < 1. Hence we have that if |λ| < min{E,D}, then Gλ(u) : Br → Br
is a contraction.

In view of fact concerning the existence of an adequate function which is a
contraction, we can use the fixed point theorem of Banach to prove the existence
and uniqueness of a solution of integral equation (1). �

Theorem 3.4. Suppose that v ∈ BV Rϕ (I) and ‖ v ‖Rϕ< r for a real number
r > 0. There is a real number E = E(r) > 0 such that if |λ| < E, then there
exists a solution of the integral equation (1) belonging to BV Rϕ (I).

Proof. By a straightforward application of the fixed point theorem of Banach with
Gλ : Br → Br, there exists a unique solution in Br of the above integral equation,
which is a solution in BV Rϕ (I). �

Theorem 3.5. Suppose that v ∈ BV Rϕ (I). If f : I × R→ R is globally Lipschitz
in the second variable with Lipschitz constant L > 0, then there is a real number
D > 0 such that for each real number λ with |λ| < D, there exists a unique
solution of the integral equation (1) belonging to BV Rϕ (I).
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Proof. Let us choose a real number r > 0 such that ‖ v ‖Rϕ< r. By Theorem 3.4
there is a real number E = E(r) > 0 such that if |λ| < E, then there exists a
solution of the integral equation

u(x) = v(x) + λ

∫
I

K(x, y)f
(
y, u(y)

)
dy ,

belonging to BV Rϕ (I). Let us suppose that a function ũ ∈ BV Rϕ (I) is another
solution of the above integral equation. Due to Theorem 3.3, we have the estimate

‖u− ũ‖Rϕ ≤ |λ| ‖F (u)− F (ũ)‖Rϕ

≤ |λ| · |I| ·max
y∈I

∣∣f(y, u(y))− f
(
y, ũ(y)

)∣∣ · ‖w‖Rϕ
≤ |λ| · |I| · L ·

∥∥u− ũ∥∥∞ · ‖w‖Rϕ
≤ |λ| · |I| · L · ‖w‖Rϕ ·

∥∥u− ũ∥∥R
ϕ
.

If we take the real number λ such that

|λ| < D := D(r) := min
{
E(r), 1

|I| · L · ‖w‖Rϕ

}
,

then u(y) = ũ(y) for all y ∈ I. �

4. Existence of local solutions

In this section we prove the local existence of solutions of the integral equation

(2) u(x) = v(x) +
∫
I

K(x, y)f
(
y, u(y)

)
dy .

Let us formulate an assumption about function v : I → R appearing in the above
integral equation, which is only assumed in this section.

Assumption 4.1. The function v : I → R satisfies the following conditions:

1. V Rϕ,[a1,b2](v)(s) := sup
Π1

m∑
i=1

ϕ
[ |∆10v(ti, s)|
l|ti − ti−1|

]
· |ti − ti−1| <∞ for all

s ∈ [a2, b2] , where ∆10v(ti, s) := v(ti, s)− v(ti−1, s) ,

2. V Rϕ,[a2,b2](v)(t) := sup
Π2

n∑
j=1

ϕ
[ |∆01v(t, sj)|
|sj − sj−1|

]
· |sj − sj−1| <∞ for all

t ∈ [a1, b1] , where ∆01v(t, sj) := v(t, sj)− v(t, sj−1) and

3. V Rϕ (v) := sup
Π1,Π2

m∑
i=1

n∑
j=1

ϕ
[ |∆11v(ti, sj)|
|∆ti||∆sj |

]
· |∆ti| · |∆sj | <∞ , where

∆11v(ti, sj) := v(ti−1, sj−1) + v(ti, sj) − v(ti−1, sj) − v(ti, sj−1), such
that the supremum is taken over the set of all pairs of partitions Π1 and
Π2 of the intervals [a1, b1] and [a2, b2], respectively.
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Remark 4.1. If v satisfies Assumption 4.1, then v ∈ V Rϕ (J) ⊆ BV Rϕ (J) for each
rectangle J which is contained in I. In particular, if J = I, then v ∈ V Rϕ (I) ⊆
BV Rϕ (I).

Theorem 4.1. There is a real number δ > 0 such that if J := [c1, d1]× [c2, d2]
is a rectangle contained in I and |J | := (d1− c1) · (d2− c2) < δ, then there exists
a solution of the integral equation

(3) u(x) = vJ(x) +
∫
J

K(x, y)f
(
y, u(y)

)
dy

belonging to BV Rϕ (J), where vJ is the function v restricted to the rectangle J .
Moreover, if f is globally Lipschitz in the second variable, then such a solution is
unique.

Proof. Let u be an element of BV Rϕ (J). Define FJ(u) : J → R by putting

FJ(u)(t, s) :=
∫
J

K(t, s, y)f
(
y, u(y)

)
dy and

GJ(u) : J → R by

GJ(u)(t, s) := vJ(t, s) +
∫
J

K(t, s, y)f
(
y, u(y)

)
dy

= vJ(t, s) + FJ(u)(t, s) .

Let us denote by ‖ v ‖Rϕ,I the norm of the function v in the space BV Rϕ (I). Fix
r > 0 such that ‖ v ‖Rϕ,I< r. We define Br(J) by

Br(J) := {u ∈ BV Rϕ (J) : ‖ u ‖Rϕ≤ r} .

By Theorem 3.2, we have that FJ(u) ∈ BV Rϕ (J) for all u ∈ BV Rϕ (J) and there
exists a real number R(r) which does not depend on the rectangle J , such that

‖FJ(u)‖Rϕ ≤ |J | ·R(r) · ‖w‖Rϕ .

Note that there is a real number δ1 := δ1(r) > 0 such that if |J | < δ1, then

‖GJ(u)‖Rϕ ≤‖ vJ ‖Rϕ +‖FJ(u)‖Rϕ ≤‖ v ‖Rϕ,I +‖FJ(u)‖Rϕ < r .

By Theorem 3.3 and in view of the assumed fact that f : I × R → R is locally
Lipschitz in the second variable, there exists a constant L(r) > 0 which does not
depend on the rectangle J , such that

‖ GJ(u)−GJ(ũ) ‖Rϕ= ‖FJ(u)− FJ(ũ)‖Rϕ ≤ |J | · L(r) · ‖w‖Rϕ · ‖u− ũ‖∞

for all pair u, ũ ∈ Br(J). Hence, we get

‖ GJ(u)−GJ(ũ) ‖Rϕ≤ |J | · L(r) · ‖w‖Rϕ · ‖u− ũ‖Rϕ for all pair u, ũ ∈ Br(J) .

Observe that there exists a real number δ2 := δ2(r) > 0 such that if |J | < δ2, then
|J | ·L(r) · ‖w‖Rϕ < 1. Thus, if |J | < δ := min{δ1, δ2}, then GJ (u) : Br(J)→ Br(J)
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is a contraction. By the theorem of fixed point of Banach, the integral equation

u(x) = vJ(x) +
∫
J

K(x, y)f
(
y, u(y)

)
dy

has a unique solution u ∈ Br(J) ⊆ BV Rϕ (J). If the function f is globally Lipschitz
in the second variable, then by the ideas in the proof of Theorem 3.5 such a solution
is unique in the space BV Rϕ (J). �

5. Existence of global solutions

Again we consider the integral equation in above Section 4

u(x) = v(x) +
∫
I

K(x, y)f
(
y, u(y)

)
dy ,

but now we prove the existence of solutions of in the Banach space BV Rϕ (I). Let
us recall the following Leray-Schauder alternative, which statement is taken from
[5].

Theorem 5.1. Let U be an open subset of a Banach space (X, ‖ · ‖) with 0 ∈ U .
Suppose H : U → X and assume there exists a continuous nondecreasing function
φ : [0,∞)→ [0,∞) satisfying φ(z) < z for z > 0 such that for x, y ∈ U we have
‖H(x)−H(y)‖ ≤ φ(‖x− y‖); here U denotes the closure of U in X. In addition
assume that H(U) is bounded and x 6= λH(x) for x ∈ ∂U and λ ∈ (0, 1]; here
∂U denotes the boundary of U in X. Then H has a fixed point in U .

Now we shall prove the main results of this section.

Theorem 5.2. If f : I × R → R is a continuous function which is globally Lip-
schitzian with respect to the second variable with Lipschitz constant L > 0 and
κ := κ(I, L,w) := |I| · L · ‖w‖Rϕ < 1, then there exists a solution of the integral
equation (2) belonging to BV Rϕ (I) for each fixed function v ∈ BV Rϕ (I).

Proof. Let r be a fixed positive real number such that ‖v+F (0)‖Rϕ
1−κ < r, where F

is the function giving in Definition 3.1. Now define the set

U := U(r) :=
{
u ∈ BV Rϕ (I) : ‖u‖Rϕ < r

}
and the function H : U → BV Rϕ (I) by the formula

H(u)(t, s) := v(t, s) + F (u)(t, s) = v(t, s) +
∫
I

K(t, s, y)f
(
y, u(y)

)
dy .

By Theorem 3.3, we have that

‖ H(u)−H(ũ) ‖Rϕ≤ |I| · L · ‖w‖Rϕ ·
∥∥u− ũ∥∥R

ϕ
for all pair u, ũ ∈ U .

Observe that above inequality implies that H(U) is bounded. Now we define
φ : [0,∞)→ [0,∞) by φ(z) := κz, where κ is the constant which was mentioned
in the hypothesis of the theorem.
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Let us suppose that there is an element u ∈ U such that u = λH(u) for some
λ ∈ (0, 1]. Applying the above inequality, we get

‖ u ‖Rϕ = ‖ λH(u) ‖Rϕ= λ ‖ H(u) ‖Rϕ≤‖ H(u) ‖Rϕ

≤ ‖ H(u)−H(0) ‖Rϕ + ‖ H(0) ‖Rϕ

≤ κ
∥∥u∥∥R

ϕ
+ ‖ H(0) ‖Rϕ .

This yields

‖ u ‖Rϕ ≤
‖ H(0) ‖Rϕ

1− κ < r .

From this inequality and the fact that u ∈ ∂U implies ‖ u ‖Rϕ= r, we deduce that
u 6= λH(u) for each u ∈ ∂U and all λ ∈ (0, 1] . After the use of Leray-Schauder
alternative, we conclude that there exists a solution of the integral equation

u(x) = v(x) +
∫
I

K(x, y)f
(
y, u(y)

)
dy .

This completes the proof. �

In the prove of the following theorem, we use the same techniques which are
used in [3, Theorem 9, p. 275] and [5, Theorem 5, p. 303].

Theorem 5.3. If
1. there exists a continuous nondecreasing function ψ : [0,∞)→ [0,∞) satis-

fying |I| · ‖w‖Rϕ · ψ(z) < z for each z > 0, moreover

2.
|f(y, t)− f(y, t̃)| < ψ(|t− t̃|)

for all pair (y, t), (y, t̃) belonging to I × R, furthermore

3. there exists a continuous nondecreasing function Ψ: R→ R with Ψ(t) > 0
for all t > 0 and |f(y, t)| ≤ Ψ(|t|) for each (y, t) ∈ I × R, and

4. there exists a real number r > 0 such that
r

‖v‖Rϕ + |I| · ‖w‖Rϕ ·Ψ(r) > 1 ,

then the integral equation (2) has a solution belonging to BV Rϕ (I) for each
fixed function v ∈ BV Rϕ (I).

Proof. Let r be the real number appearing in the hypotheses. Let us define the set
U :=

{
u ∈ BV Rϕ (I) : ‖u‖Rϕ < r

}
and the function H : U → BV Rϕ (I) by putting

H(u)(t, s) := v(t, s) + F (u)(t, s) = v(t, s) +
∫
I

K(t, s, y)f
(
y, u(y)

)
dy .



THE HAMMERSTEIN EQUATION IN THE PLANE 63

By Theorem 3.3, we have
‖ H(u)−H(ũ) ‖Rϕ ≤ |I| ·max

y∈I

∣∣f(y, u(y)
)
− f

(
y, ũ(y)

)∣∣ · ‖w‖Rϕ
≤ |I| · ‖w‖Rϕ · ψ

(
max
y∈I

∣∣u(y)− ũ(y)
∣∣) ≤ |I| · ‖w‖Rϕ · ψ(‖ u− ũ ‖Rϕ )

for all pairs u, ũ ∈ U . If we define φ : R→ R by φ(z) := |I| · ‖w‖Rϕ ·ψ(z), then we
have

‖ H(u)−H(ũ) ‖Rϕ ≤ φ
(
‖ u− ũ ‖Rϕ

)
for all pairs u, ũ ∈ U . From this inequality we can deduce that H(U) is bounded.

Now, let us suppose that ‖u‖Rϕ = r and u = λH(u) for some real number
λ ∈ (0, 1]. Observe that we can write

u(x) = λ
(
v(x) +

∫
I

K(x, y)f
(
y, u(y)

)
dy
)
.

By Theorem 3.2, we obtain
r = ‖u‖Rϕ ≤ ‖v‖Rϕ + ‖F (u)‖Rϕ ≤ ‖v‖Rϕ + |I| · ‖w‖Rϕ ·max

y∈I
|f(y, u(y))|

≤ ‖v‖Rϕ + |I| · ‖w‖Rϕ ·Ψ(‖u‖Rϕ ) = ‖v‖Rϕ + |I| · ‖w‖Rϕ ·Ψ(r) .
Therefore

r

‖v‖Rϕ + |I| · ‖w‖Rϕ ·Ψ(r) ≤ 1 ,

which contradicts to a part of the hypothesis. The Leray-Schauder alternative
implies that there exists a solution of the integral equation

u(x) = v(x) +
∫
I

K(x, y)f
(
y, u(y)

)
dy .

The proof is complete. �
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