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PSEUDOSYMMETRIC AND WEYL-PSEUDOSYMMETRIC
(ky, u)-CONTACT METRIC MANIFOLDS

N. MALEKZADEH, E. ABEDI, AND U.C. DE

ABSTRACT. In this paper we classify pseudosymmetric and Ricci-pseudo-
symmetric (k, pu)-contact metric manifolds in the sense of Deszcz. Next we
characterize Weyl-pseudosymmetric (k, p)-contact metric manifolds.

1. INTRODUCTION

Chaki [5] and Deszcz [1I] introduced two different concept of a pseudosym-
metric manifold. In both senses various properties of pseudosymmetric mani-
folds have been studied ([5]—-[10]). We shall study properties of pseudosymmetric,
Ricci-pseudosymmetric and Weyl-pseudostymmetric manifolds in the sense of
Deszcz.

A Riemannian manifold is called semisymmetric if R(X,Y) - R = 0 where
X,Y € x(M), [24]. Deszcz [11] generalized the concept of semisymmetry and
introduced pseudosymmetric manifolds. Let (M™,g), n > 3 be a Riemannian
manifold. We denote by V, R and 7 the Levi-Civita connection, the curvature
tensor and the scalar curvature of (M, g), respectively. We define endomorphism
X AY for arbitrary vector field Z, (0, k)-tensor T" and (1, k)-tensor T3, k > 1, by

(1) (XAY)Z=g(Y,2)X —g(X,2)Y,
(XAY)-T)(X1,Xo,..., X)) = -T((X NY) X1, Xo, ..., Xp)
@ — = T(Xy, . X1, (X AY)Xy),
and
(XAY) T0)(X1, Xo,..., Xp) = (X AY)T1 (X1, Xo, ..., Xi)
(3) ~T (X AY)X1, Xa, ..., X})

e =T X, L X1, (X AY) XS,
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respectively. For a (0, k)-tensor field T, the (0, k + 2) tensor fields R-T and Q(g,T)
are defined by ([I], [T1])

(R-T)(X1,..., X5; X,Y) = (R(X,Y) - T)(X1,..., Xp)

(4) = —T(R(X,Y)X1, Xz2,..., Xk)

— = T(Xy,.. ., X1, R(X,Y) X)),
and
) Q9. T)(X1,..., X X,Y) = -T((X ANY)X1, Xo,..., Xy)

,...7T(X1,...,Xk_17(X/\Y)Xk)'

A Riemannian manifold M is said to be pseudosymmetric if the tensors R - R and
Q(g, R) are linearly dependent at every point of M, i.e.

(6) R-R=LrQ(g,R).
This is equivalent to
(7) (R(X,Y)~R)(U,V,W):LR[((X/\Y)~R)(U,V,W)]

holding on the set U = {x € M : Q(g, R) # 0 at x}, where Lp is some function
on Ug, [II]. The manifold M is called pseudosymmetric of constant type if L is
constant. Particularly if Lr = 0 then M is a semisymmetric manifold. The manifold
M is said to be locally symmetric if VR = 0. Obviously locally symmetric spaces
are semisymmetric, [25].

Let S denote the Ricci tensor of M?2"*1. The Ricci operator @ is the symmetric
endomorphism on the tangent space given by

(8) S(X,Y) =9(QX,Y).

If the tensors R - S and Q(g, S) are linearly dependent at every point of M, i.e.
(9) R-5=LsQ(g,9),

then M is called Ricci-pseudosymmetric. This is equivalent to

(10) (R(X,Y)-S8)(Z,W) =Ls[((XAY)-S5)(Z,W)]

holds on the set Us = {z € M : S — Tg # 0 at x}, for some function Ls on Usg
([7], [19]). We note that Us C Ur and on 3-dimensional Riemannian manifolds we
have Ug = Ug. Every pseudosymmetric manifold is Ricci-pseudosymmetric but the
converse statement is not true.
The Weyl conformal curvature operator C' is defined by
1

n—1
If C =0,n >3, then M is called conformally flat. If the tensors R - C and Q(g,C)
are linearly dependent, then M is called Weyl-pseudosymmetric. This is equivalent
to the statement that

(R-C)U,V,W,X,Y) = Lo[((X AY) - C)(U,V)W]

(1) C(X.Y)Z =R(X,Y)Z~ {(X/\QY)Z+(QX/\Y)Z—i(X/\Y)Z} :
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holds on the set Us = {x € M : C # 0 at x}, where L¢ is defined on Ug. If
R-C =0, then M is called Weyl-semisymmetric. If VC = 0, then M is called
conformally symmetric ([21], [23]).

3-dimensional pseudosymmetric spaces of constant type have been studied by
Kowalski and Sekizawa ([L6]-[17]). Conformally flat pseudosymmetric spaces of
constant type were classified by Hashimoto and Sekizawa for dimension three,
[14] and by Calvaruso for dimensions > 2, [4]. In dimension three, Cho and
Inoguchi studied pseudosymmetric contact homogeneous manifolds, [6]. Cho et al.
treated the conditions that 3-dimensional trans-Sasakians, non-Sasakian generalized
(K, p1)-spaces and quasi-Sasakians manifolds be pseudosymmetric, [I]. Belkhelfa et
al. obtained some results on pseudosymmetric Sasakian space forms, [I]. Finally
some classes of pseudosymmetric contact metric 3-manifolds have been studied by
Gouli-Andreou and Moutafi ([12], [13]).

Papantoniou classified semisymmetric (k, p1)-contact metric manifolds ([22]
Theorem 3.4]). As a generalization, in this paper, we study pseudosymmetric
(k, p)-contact metric manifolds.

This paper is organized as follows. After some preliminaries on (k, p)-contact me-
tric manifolds, in Section [3] we study pseudosymmetric and Ricci-pseudosymmetric
(k, pt)-contact metric manifolds. Next in Section [4] we characterize Weyl-pseudo-
symmetric (k, p)-contact metric manifolds.

2. PRELIMINARIES

A contact manifold is an odd-dimensional C* manifold M?2"*+! equipped with
a global 1-form 7 such that n A (dn)™ # 0 everywhere. Since dn is of rank 2n, there
exists a unique vector field ¢ on M?"*! satisfying 7(¢) = 1 and dn(&, X) = 0 for
any X € x(M) is called the Reeb vector field or characteristic vector field of 7.
A Riemannian metric g is said to be an associated metric if there exists a (1,1)
tensor field ¢ such that

dn(X,Y) = g(X,¢Y), n(X) = g(X,9), P’ =—-I+n®E.

The structure (¢, &, 7, g) is called a contact metric structure and a manifold M27+1
with a contact metric structure is said to be a contact metric manifold. Given a
contact metric structure (@, £, 7, g), we define a (1, 1) tensor field h by h = (1/2)Le¢p
where £ denotes the operator of Lie differentiation. A contact metric manifold for
which £ is a Killing vector field is called a K-contact manifold. It is well known that
a contact manifold is K-contact if and only if h = 0. A contact metric manifold is
said to be a Sasakian manifold if

(Vxe)Y =g(X,Y){ —n(Y)X
in which case
(12) R(X,Y)E = n(Y)X —n(X)Y .

Note that a Sasakian manifold is K-contact, but the converse holds only if
dim M = 3.
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A contact manifold is said to be n-Einstein if the Ricci operator ) satisfies the
condition

(13) Q=ald+n®E,

where a and b are smooth functions on M?2"*1,

The sectional curvature K (&, X) of a plane section spanned by £ and a vector
X orthogonal to £ is called a &-sectional curvature, while the sectional curvature
K(X,pX) is called a p-sectional curvature.

The (&, p)-nullity distribution of a contact metric manifold M (p,&,n,g) is a
distribution, [3]

N(k,p1): p— Ny(r,p) = {W € T,M | R(X, Y)W
= k[g(V, W)X —g(X, W)Y ]+pulg(Y,W)hX —g(X,W)hY]}

where k, i are real constants. Hence if the characteristic vector field ¢ belongs to
the (k, p)-nullity distribution, then we have

(14) R(X,Y)¢ = K:{r](Y)X — n(X)Y} + ,u{n(Y)hX — n(X)hY} .

A contact metric manifold satisfying is called a (k, p1)-contact metric manifold.
If M be a (k, u)-contact metric manifold, then the following relations hold, [3]:

(15)  S(X,€) = 2nkn(X),
(16) Q¢ = 2nk¢,
(7) W= (k- 1),

(18)  R(§,X)Y = w{g(X,Y)§ —n(Y)X} + pu{g(hX,Y)E —n(Y)hX},

S(X,Y) = [2(n = 1) —npulg(X,Y) + [2(n — 1) + plg(hX,Y)

(19)

+[2(1 = n) +n(2k + p)n(X)n(Y),
(20) T=2n2(n—1)+ Kk —np),
(21) Qe —¢Q =2[2(n — 1) + plhe.

We note that if M?"*! be a (k, u)-contact metric manifold, then x < 1, [3]. When
k < 1, the nonzero eigenvalues of h are +4/1 — k each with multiplicity n. Let A and
D denote the positive eigenvalue of h and the distribution Ker n respectively. Then
M?"+1 admits three mutually orthogonal and integrable distributions D(0), D()\)
and D(—A\) defined by the eigenspaces of h, [26]. We easily check that Sasakian
manifolds are contact (x, y)-manifolds with x =1 and h = 0, [3]. In particular, if
1 = 0, then we obtain the condition of k-nullity distribution introduced by Tanno,
[26].
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3. PSEUDOSYMMETRIC AND RICCI-PSEUDOSYMMETRIC
(K, {t)-MANIFOLDS

We know that [2] if M?"*! be a contact metric manifold and Rxy¢ = 0 for all
vector fields X and Y, then M?2"*! is locally isometric to the Riemannian product
of a flat (n + 1)-dimensional manifold and an n-dimensional manifold of positive
constant curvature 4.

In [3] Blair et al. studied the condition of (k, u)-nullity distribution on a contact
manifold and obtained the following theorem.

Theorem 1. Let M?" (o, & 1, g) be a contact manifold with & belonging to the
(k, p)-nullity distribution. If k < 1, then for any X orthogonal to £ the following
formulas hold:

1. The &-sectional curvature K (X, &) is given by

K+ if X €D

K(X,§)=m+ug(thX):{K+Aﬂ if X € D(-)\)

2. The sectional curvature of a plan section {X,Y} normal to € is given by

D201+ — if X,Y € D)
i) — (k+ p)[g(X,0Y)])? for any unit vectors
X € D(\),Y € D(-))
i) 2(1—\) —p if X,Y €D(-\), n>1.

(22) K(X,Y)=

Pseudosymmetric contact 3-manifold were studied in [6] and following result
obtained.

Theorem 2. Contact Riemannian 3-manifolds such that Qo = pQ are pseudo-
symmetric. In particular, every Sasakian 3-manifold is a pseudosymmetric space of
constant type.

Firstly we give the following propositions.

Proposition 1. Let M*"*! be a (k, u)-contact metric pseudosymmetric manifold.
Then for any unit vector fields X, Y € x(M) orthogonal to & and such that
g(X,Y) =0 we have:
{(k = Lr)g(X,R(X,Y)Y) + ng(hX,R(X,Y)Y) — k(k — Lg)
— (k= Lr)g(hY,Y) — kug(hX, X) — pg(hX, X )g(hY,Y)
+ g (hX,Y)}¢
(23) — (k= Lr)g(R(X, Y)Y, )X — ng(R(X,Y)Y,§)hX = 0.

Proof. Since M is pseudosymmetric then

(24) (R(f,X)-R)(U,V)W:LR[((E/\X)~R)(U,V)W].
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PuttingU =X and V=W =Y in and using and , we get
R, X) - R(X,Y)Y — R(RexX,Y)Y — R(X, RexY)Y — R(X,Y)RexY
= Lr{(EAX)-R(X,Y)Y - R((E A X)X,Y)Y
(25) — R(X,(EAX)Y)Y — R(X,Y)((EAX)Y))e.
From () and one can easily get the result. O

Proposition 2. Fvery pseudosymmetric Sasakian manifold with Lr # 1 is of
constant curvature 1.

Proof. Let X and Y be tangent vectors such that n(X) = n(Y) = 0 and
g9(X,Y) =0. Since M is Sasakian then x = 1 and h = 0. Using and
in equation and direct computations we get

(1= Lr){n(R(X,Y)Y)X — g(X, R(X,Y)Y)& + g(X, X)g(Y,Y)E} = 0.
Since Lr # 1 then

(26) N(RX,Y)Y)X — g(X,R(X,Y)Y )&+ g(X, X)g(Y,Y)§ = 0.

Taking the inner product with £ gives

(27) 9(X,R(X,Y)Y) = g(X,X)g(Y)Y).

Then (M2 g) is of constant ¢-sectional curvature 1 and hence it is of constant
curvature 1, [19]. O

Theorem 3. Let M?"*t! n > 1 be a (k,u)-contact metric pseudosymmetric
manifold. Then M?"*1 is either
1) A Sasakian manifold of constant sectional curvature 1 if Lr # 1 or
2) Locally isometric to the product of a flat (n + 1)-dimensional Euclidean
manifold and an n-dimensional manifold of constant curvature 4.

Proof. If K =1 then M is a Sasakian manifold and result get from Proposition
Let k <1 and X, Y are orthonormal vectors of the distribution D()). Applying
the relation for A X = AX, hY =AY we get

{(k = Lr + pN)g(X, R(X,Y)Y) — k(k — Lg) — pA(k — Lr) — kp — p?X*}€
(28) —(k—Lpr+ u)\)g(R(X, Y)Y, §)X =0.
Considering £-component of gives

(29) i) K(X,)Y)=xk+M or ii)k=-A\u+Lg.
Comparing part (7) of equations and gives
(30) p=1+A.

Let X,Y € D(—A) and g(X,Y) = 0. Putting hX = —AX and hY = —AY in
and taking the inner product with £ we get

(31) ) K(X,)Y)=k—Au or i)k=Au+Lg.
Comparing the equations (22) (iii) and (31])(i) we have
(32) Hpu=1-X or i)A=1.
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In the case X € D(\) and Y € D(—)) equation is reduced to
{(k — Lr + pN)g(X, R(X,Y)Y) — k(k — Lr) + p\(k — Lr) — kX + u? A2}
(33) —(k—Lr+pNg(R(X,Y)Y, )X =0,

from which taking the inner products with & we have

(34) i) K(X,Y)=k—Au or k=-Mu+Lg,
while if X € D(—A) and Y € D(X) we similarly prove that
(35) ) K(X,)Y)=x+A or k=Au+Lg.

By the combination now of the equation (29)(ii), (30), BI)(ii), ([32), and
we establish the following nine systems among the unknowns x, \, 4 and Lg.

D{p=1=-X p=1+x A=0}

2) {k=-Mu+Lgr, k=Au+Lg, p =0, A\ >0}

3) {K: 7)‘N“+LR7 A= ]-7 N:O}

4) {k=-Au+Lg, A=1, p=Lg}

5) {K(X,Y)=r+ M, K(X,)Y)=r—du, p=1—X\, k=—-Au+ Lg}

6) {u=1+A A=1, Lp==+2}

N {p=14+\ KX, Y)=r— Ay, K(X,Y)=xr+ M}

8) {k=—-Ap+Lp, p=1—-X\ K(X,Y)=r+ A}

9) {p=1+X k=Au+Lg, K(X,)Y)=r—Au}

From the first system we get easily i = 1 and since A> = 1 — k we have k = 1,
which is a contradiction, since we required that x < 1.

The systems 2, 3, 4 and 5 have as the only solution k =0, u=0,A=1, Lr =0.
Then Rxy& =0 for any X, Y € x(M) and M is locally isometric to the product
E™1(0) x S™(4), [2]. We show that remainder systems can not occur.

In system 6, from A = 1 we have = 0 and k = 0. Using equation (or )
and (22) (i) we have [g(X,¢Y)]? = —1 and this is a contradiction.

From system 7, one can get easily Ay = 0. But A # 0 (since k < 1) and then
= 0. Therefore A = p — 1 = —1 and this is a contradiction with A > 0.

In two last systems for all X, Y € x(M) we have

(36) K(X,Y)=Lg.

Let Y = X in and comparing it with equation (22)(ii) we get
(37) Lp=—(k+p),

Replacing « and p of two last systems in we get two equation
(38) (1—-))*=—2Lg,

and

(39) (1+)\)?=—2Lg,

respectively. Then in systems 8 and 9 Ly < 0.
In system 8, by virtue of kK = —Ap + L and k = 1 — A2, we have

2X2 —= A+ (Lp— 1) =0.
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This quadratic equation has two roots A =1+£+/9 —8Lr. If A =1+4+/9 — 8Lg and
replacing it in we get Lp = 1.5 and if A =1 — /9 — 8Lp, since X is positive,
we get Lr > 1. Then in the both case we get contradiction whit Lr < 0. The
roots of equation in last system are A = —1 ++/—2Lg and since A > 0 then
A= —1++/—2Lg and hence y = v/—2Lp. Substituting A and p in kK = A\u+ Lg
and k =1 — )2 we get Lr = —2 and then A\ = 1, = 2 and x = 0 which are not
acceptable since from (or (35))) we get a contradiction from (22)(ii) and this
complete the proof. O

Theorem 4. Every 3-dimensional (K, p)-contact metric manifold is pseudosym-
metric manifold.

Proof. From the combination of the equations and we get four systems
with respect to the k, A\, u , Lr and the sectional curvature K(X,Y), from which
we have the following possibilities:

1) K(X,)Y)=k, \u=0,

2) k=Lgr, \u=0,

3) k=Au+Lgork=A—Lgand K(X,Y) = Lg.

In two first cases we have Ay = 0. If ;4 = 0 then equation leads to Qy = pQ
and result get from Theorem [2} If A\ = 0 then M3 being a Sasakian manifold and
from Theorem [2] every Sasakian 3-manifold is a pseudosymmetric space of constant
type.

In the last case, let Y = X then K(X,pX) = Lg. On the other hand, from
(22) (i) K(X,9X) = —(k+ u). Then Lp = —(x + p) and manifold is of constant
sectional curvature. Every Riemannian manifold of constant sectional curvature
is locally symmetric ([20] page 221) and then pseudosymmetric. Thus M3 is
pseudosymmetric manifold of constant type. (Il

Theorem 5. Let M?"*! be a Ricci-pseudosymmetric (k, p)-contact metric mani-
fold. Then M?"+1 is either

(i) locally isometric to E"*! x S™(4), or

(ii) an FEinstein-Sasakian manifold if k # Lg, or

(iii) an n-FEinstein manifold provided

2nip — (k= Lg)[2(n — 1) + p] — p[2(n — 1) — nu] # 0.

Proof. (i) If k = 0,4 = 0 then we have Rxy & = 0 for any tangent vector fields X,
Y and hence M is locally isometric to E"+1 x S™(4), [2].

(ii) Let & # 0.

Since M is a Ricci-pseudosymmetric (k, u)-contact metric manifold for any
X,Y,U,V € x(M) we have
Then from (@) and (5]) we can write
(41) —S(R(&, X)Y,Z2)-S(Y,R(&,X)Z) = Ls[-S((EAX)Y, Z)-S(Y, (EAX)Z) .

Replacing Z with £ and using , and one can get
(42) —2nk(k—Lg)9(X,Y)—2nkug(hX,Y)+(k—Ls)S(X,Y)+uS(hX,Y) = 0.
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If = 0 then since k # 0, Lg, we get that the manifold is Einstein and then M is
a Sasakian manifold ([26] Theorem 5.2).

(iii) Suppose now that x # 0, 4 # 0. Then, using the equation and (T7),
Kk < 1, we have

S(hX,Y) = [2(n— 1) — nlg(hX,Y) — (5 — D[2(n — 1) + plg(X,Y)
(43) + (k= D[2(n — 1) + gn(X)n(Y).

Replacing equation in equation gives
(44) {2nkp — (k= Ls)[2(n — 1) + p] — p[2(n — 1) — npl} g(hX,Y)
={-2nk(k — Ls) + (v — Lg)[2(n — 1) = np] — p(k = 1)[2(n — 1) + p]} g(X,Y)
+{(k = Lg)[2(1 = n) + n(2k + p)] + p(k = D[2(n — 1) + p]} n(X)n(Y) .
From and ([44), we get
S(X,Y) = ag(X,Y) + An(X)n(Y)

where

[2(n—1)+p][2nk(k—Lg)+ (5 —Ls)[2(n—1) —np] —p(r—1)(2(n—1)+p)]
2nkp — (k= Lg)[2(n = 1) + p] — p[2(n — 1) — ny
+[2(n—1) — pn].

200 — 1) + [(k — Ls)[20L — )+ (2 + ) + pls — 1)(2n — 1) + )
2 — (s — Ls)2(n — 1) + ] — p2(n — 1) — g
+2(1 —n)+n(2k+ ).

8=

So, the manifold is an n-Einstein manifold with constant coefficients and the proof
is complete. ([l

4. WEYL-PSEUDOSYMMETRIC (K, {4)-CONTACT METRIC MANIFOLDS

In the present section our aim is to find the characterization of (k, u)-contact
metric manifolds satisfying the condition R-C = LeQ(g,C).

Theorem 6. Let M?" 1 n > 1 be a non-Sasakian (k, u)-contact metric manifold.
If M is Weyl-pseudosymmetric manifold then either 4 = 0 and then Lo = k or

w= gz:é holds on M.

Proof. Since M is a Weyl-pseudosymmetric then

(45) (R(X’ Y) : C) (Ua V. W) = LCQ(97 C)(Ua V,W; X, Y) .
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Using (4 and (| . in . we can write
R(X, Y)C(U, VW — C’( (X, Y)U V)W — C(U,R(X,Y)V)W
CU,V)R(X,Y)W
= Lc[(X AY)C(U, V)W - C((X AY)U, V)W
(46) CU(XAY)V)W =C(U V)X AY)W].
Replacing X with £ and Y with U in we have
R, U)CUVIW — C( (&, U)U V)W —C(U,R(EU)V)W
CU,V)R(E U)W
= LC[(§ ANU)C(U, V)W = C((EAU)U, V)W
(47) ( EANU)WV)W = C(U,V)(EANU)W].
Substituting (I)) and in and taking the inner product with &, we get
(k= Le)g(U.CU V)W) + ug(hU, CU. V)W) — (k= Le)g(U, U)g(C (&, VW, E)
— ug(hU, U)g(C(& V)W, &) + un(U)g(C(hU, V)W, )
— (k= Le)g(U, V)g(C(U, W, &) —ug(hU, V) g(C(U, W, €)
+un(V)g(C(U, U)W, €) + (k — Le)n(W)g(C(U, VU, §)

(48) + un(W)g(C(U, V)hU,€) = 0.

Let U € D(\) and contraction of with respect to U we have

(49) (—2nk+ (1 =2n)Ap+2nLe)g(CE V)W, £) =0.
Similarity for U € D(—\) and contraction of with respect to U we get
(50) (—2nk — (1 =2n)Au+2nLc)g(C(E,VI)W,€) =0.

Suppose p = 0. Then from the equation we obtain

(51) (Lo — w)g(C(&, V)W) = 0.

If g(C(&, V)W, &) = 0. Using , and straightforward computation, we have

(52) + [2(1 = n) + n(2k + )| n(X)n(Y).
Comparing equation with one can get
2n —1
53 p—
(53) 2n — 2

and this is a contradiction. Then k = L¢.
Suppose now that p # 0 and substracting equations and , we get

(54) Ang(C(E, V)W, €) = 0.
But Ay # 0 since k < 1 and g # 0. Hence g(C(&, V)W, £) = 0 and then
2n —1
p= U

2n —2°
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Therefore we have the following corollary.

Corollary 1. If M be a Weyl-pseudosymmetric Sasakian manifold then either
2n —1
Le=1 oru:L holds on M.

2n — 2
Proof. Since M is Sasakian then x = 1 and A = 0. From equation (49)) one can
easily get the results. (|
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