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DISTINGUISHED CONNECTIONS

ON (J2 = ±1)-METRIC MANIFOLDS

Fernando Etayo and Rafael Santamaría

Abstract. We study several linear connections (the first canonical, the Chern,
the well adapted, the Levi Civita, the Kobayashi-Nomizu, the Yano, the Bismut
and those with totally skew-symmetric torsion) which can be defined on the
four geometric types of (J2 = ±1)-metric manifolds. We characterize when
such a connection is adapted to the structure, and obtain a lot of results about
coincidence among connections. We prove that the first canonical and the well
adapted connections define a one-parameter family of adapted connections,
named canonical connections, thus extending to almost Norden and almost
product Riemannian manifolds the families introduced in almost Hermitian
and almost para-Hermitian manifolds in [13] and [18]. We also prove that
every connection studied in this paper is a canonical connection, when it exists
and it is an adapted connection.

1. Introduction

In the present paper we study connections defined on manifolds having an
(α, ε)-structure. A manifold will be called to have an (α, ε)-structure if J is an
almost complex (α = −1) or almost product (α = 1) structure and J is an isometry
(ε = 1) or anti-isometry (ε = −1). It is also said that (M,J, g) is a (J2 = ±1)-metric
manifold. Thus, there exist four kinds of (α, ε) structures according to the values
α, ε ∈ {−1, 1}, where

J2 = α Id , g(JX, JY ) = εg(X,Y ) , ∀X,Y ∈ X(M) .

As is well known, these four geometries have been intensively studied. The corres-
ponding manifolds are known as:

i) Almost Hermitian manifold if it has a (−1, 1)-structure. We shall consider
through this paper the case g being a Riemannian metric.

ii) Almost anti-Hermitian or almost Norden manifolds if it has a (−1,−1)-struc-
ture. The metric g is semi-Riemannian having signature (n, n).
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iii) Almost product Riemannian manifolds if it has an (1, 1)-structure. We
shall consider through this paper the case g being a Riemannian metric
and the trace of J vanishing, which in particular means these manifolds
have even dimension.

iv) Almost para-Hermitian manifolds if it has an (1,−1)-structure. The metric
g is semi-Riemannian having signature (n, n).

If the structure J is integrable, i.e., the Nijenhuis tensor NJ = 0, the corresponding
manifolds are called Hermitian, Norden, Product Riemannian and para-Hermitian
(without the word “almost"). Integrabilty means M is a holomorphic manifold in
cases i) and ii), and M has two complementary foliations in cases iii) and iv).

A linear connection is said to be reducible, natural or adapted to a manifold
M having an (α, ε)-structure (J, g) if its covariant derivative ∇a parallelizes both
structures, i.e., ∇aJ = 0,∇ag = 0. The most significative natural connection is the
well adapted connection ∇w, which has been intensively studied in [7]. We say that
it is the most significative connection because it measures the integrability of the
G(α,ε)-structure defined by (J, g): it is integrable if and only if the torsion and the
curvature tensors of the well adapted connection vanish. Nevertheless there exist
other connections on M having very interesting properties, although they are not
adapted in the general case. The star is the Levi Civita connection: it is uniquely
defined in such a manifold (definition depends just on the metric) but it is adapted
to the (α, ε)-structure (J, g) if and only if the manifold is of Kähler type. Many
of the results obtained in the four geometries are expressed in terms of the Levi
Civita connection.

We can say that both connections, the well adapted and the Levi Civita ones,
are distinguished connections. There exist a plethora of connections which have
been defined in some of these manifolds. In the celebrated paper of Gauduchon [13],
he wrote in the introduction: “I propose to the Reader as a kind of vade mecum
for some basics of almost Hermitian geometry", including “a unified presentation
of a canonical class of (almost) Hermitian connections". Our purpose is to extend
that unified presentation to all the four geometries, describing different connections
appearing in the Literature, obtaining relations among them, and extending results
from some of the four geometries to the rest of them. Thus, there is a sensible
amount of new results in the present paper, which will be showed later. The
following ideas are important through the paper:

1. The most important number is the product αε, thus existing two classes
of structures: the first one (αε = −1) defined by almost Hermitian and
almost para-Hermitian and the second one (αε = 1) by almost Norden
and almost product Riemannian. As a basic example one can consider the
fundamental tensor Φ(X,Y ) defined as Φ(X,Y ) = g(JX, Y ), for all X,Y
vector fields on M : it is a 2 form if αε = −1 and a metric if αε = 1.

2. Some connections obtained in the Literature are given with an explicit
formula while others are given by imposing a condition they satisfy (in
general about the torsion tensor). In this second case, one should prove
existence and uniqueness of such a connection.
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3. Some of the connections are natural or adapted to the G(α,ε)-structure
while some other important connections are not adapted.

4. The more geometric properties the manifold has, the less number of different
distinguished connections exist (in the case of Kähler type manifolds all
distinguished connections studied here coincide).

These ideas will be carefully showed through the paper. The paper is as self-contained
as possible. Some of the known results are proved again according to the approach
to the topic given in the present paper. We do not follow a chronological order, this
is not a historical or survey paper, but a logical order from less to more structure.
The almost Hermitian geometry is the model for the other three geometries, but
we show the results for all the four geometries together, as possible, thus offering
a new perspective from which to view all the structures. Many mathematicians
have studied connections on a specific kind of (J2 = ±1)-metric manifolds. Main
contributions we have followed are in papers quoted in References. We classified
them according to the geometry they study:
• Almost Hermitian: Bismut [2]; Davidov, Grantcharov and Mus̆karov [5]; Gan-

chev and Kassabov [11]; Gauduchon [13]; Gray [15]; Gray and Hervella [16];
Rod Gover and Nurowski [14]; Vezzoni [29].

• Almost para-Hermitian: Chursin, Schäfer and Smoczyk [3]; Cruceanu and
Etayo [4]; Gadea and Muñoz Masqué [9]; Ivanov and Zamkovoy [18]; Olszak
[25].

• Almost Norden: Ganchev and Borisov [10]; Ganchev and Mihova [12]; Mekerov
[22]; Mekerov and Manev [23]; Teofilova [27] and [28].

• Almost Product Riemannian with vanishing trace: Gribacheva and Mekerov
[17]; Mekerov [21]; Mihova [24]; Staikova and Gribachev [26]; Yano [30].

Other references we have used can not be included in this elemental scheme. So
Agricola [1] and Friedrich and Ivanov [8] pay particular attention to non-integrable
G-structures on Riemannian manifolds, where connections with totally skew-sym-
metric torsion, if there exist, play an important role in the study this kind of
G-structures. A classical and seminal reference about this topic is the book of
Lichnerowicz [20]. Some similar comments can be said about the book of Kobayashi
and Nomizu [19], where basic results about almost complex and almost Hermitian
geometry are stated.

In [6] we have studied in a unified way the geometric properties of (J2 =
±1)-metric manifolds. In the recent paper [7] we introduce the well adapted
connection of any (J2 = ±1)-metric manifold, thus being our first approach to this
unified vision of connections in the four geometries.

The organization of the paper is as follows:
Section 2 is devoted to the study of reducible connections on (J2 = ±1)-manifolds,

i.e., manifolds having an almost complex or paracomplex structure, without a metric.
We say they have an α-structure. We are inspired in the works [4] and [14] which
take this starting point in their study of para-Hermitian and Hermitian geometries,
respectively. We obtain a characterization of reducible connections (Lemma 2.2
and Proposition 2.4). A key point is the definition of two adapted connections (see
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formulas (1) and (2)), whose covariant derivatives are denoted as ∇0 and ∇1. These
connections depend on the selection of an arbitrary connection ∇. They allow to
parametrize all the natural connections (Proposition 2.4) and the line they define
{(1−s)∇0+s∇1 : s ∈ R} is formed by natural connections (Proposition 2.6). Besides
we present Kobayashi-Nomizu and Yano type connections. All the connections in
this section depend on the selection of a connection ∇ which is the basis of the
definition of the other ones.

In Section 3 we show a first collection of results about reducible connections
on (J2 = ±1)-metric manifolds, i.e., manifolds (M,J, g) having an (α, ε)-structure.
In the previous paper ([7, Lemma 4.3]) we have parametrized the set of natural
connections of such a structure, by means of the Levi Civita connection and the
potential tensor (which is the difference tensor between a natural connection and
the Levi Civita connection). In the present paper we introduce the first canonical
connection ∇0 (Definition 3.9) from the Levi Civita connection ∇g, following the
ideas of the above Section. Thus, the connection ∇0 is uniquely determined, and it
is always natural (Lemma 3.10). In Lemma 3.12 we parametrize the set of natural
connections taking ∇0 as starting point.

The following Section 4 has technical character. We study some tensors derived
from ∇gJ which will be useful in the study of connections in the remaining sections.
Given a (J2 = ±1)-metric manifold (M,J, g), we study three tensors: the covariant
derivative ∇gΦ of the fundamental tensor Φ, the Nijenhuis tensor NJ and the
second Nijenhuis tensor Ñαε

J . Properties of the two first tensors are well known and
will be summarized. We focus on the expression of all of these tensors by means
of ∇gJ . The relations we obtain between Nijenhuis and torsion tensors allow us
to obtain sufficient conditions for the integrability of J expressed by means of
the torsion of an adapted connection to (M,J, g) (Lemmas 4.10 and 4.11). The
vanishing of the second Nijenhuis tensor characterizes quasi-Kähler manifolds, as
we prove in Propositions 4.15 and 4.17. The expression of this tensor depends on
the value αε = −1 or αε = 1 (see Definition 4.12 and formulas (14) and (15)). For
this reason we need two different characterization theorems. In the case αε = 1
this tensor was known (see, e.g. [10] and [26]) but as far as we know there was no
a definition for αε = −1. Last results in this Section provide relations among the
vanishing of the quoted tensors and the type of the manifold.

Sections 5 and 6 are the core of the paper. In Section 5 we study the following
distinguished connections on a (J2 = ±1)-metric manifold (M,J, g): the first
canonical, the Chern (which can be defined just in the case αε = −1), the well
adapted, the Levi Civita, the Kobayashi-Nomizu, the Yano and those with totally
skew-symmetric torsion. The three first are always natural connections. In the case
of the remaining four, one needs to determine the conditions to be satisfied in order
to be natural (which are summarized in Table 1). The principal difference which
allows to group them is the following: the first canonical, the Kobayashi-Nomizu and
the Yano connections are uniquely defined from the Levi Civita connection whilst
the Chern, the well adapted connection and those with totally skew-symmetric
torsion are defined imposing a condition about the torsion. We start the section
relating the torsion tensor of the first canonical connection with the integrability
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of the α-structure J (Corollary 5.2). We follow recalling the unified presentation of
the Chern connection in the case αε = −1 obtained in [7] (Theorem 5.3). We also
prove that (M,J, g) is a quasi-Kähler type manifold if and only if the Chern and
the first canonical connection coincide (Proposition 5.4). After that we study the
well adapted connection. First, we introduce a tensor evaluating the first canonical
connection over the condition (21) which defines the well adapted connection.
This tensor, denoted by F(∇0), measures in fact the difference between the first
canonical and the well adapted connection (Theorem 5.6). We show that F(∇0) can
be obtained from the second Nijenhuis tensor if αε = −1, and from the Nijenhuis
tensor in the case αε = 1 (see formulas (22) and (23)). We continue our study about
this connection relating the torsion tensor with the class of the manifold, principally
with Kähler type manifolds. Following the above quoted order, we also study the
Kobayashi-Nomizu and Yano connections (see formulas (25) and (26). We prove
that they coincide if and only if J is integrable. We also characterize when they
are natural connections (Corollaries 5.14 and 5.18). It is a remarkable fact about
the Kobayashi-Nomizu connection: it is natural if and only if the manifold is of
quasi-Kähler type. Besides, in this case, the Kobayashi-Nomizu and the well adapted
connections coincide. This fact supplies an explicit expression of the well adapted
connection more handle than condition (21). Finally we analyze the existence of
natural connections with totally skew-symmetric torsion. We characterize their
existence by conditions valid for the four geometries unified under the notion
of (J2 = ±1)-metric manifold (Theorem 5.21). Of course, we show that these
conditions are equivalent to previous chacterizations that assure the existence of
such connections (Propositions 5.22 and 5.24). We also obtain simple expressions
of connections with totally skew-symmetric torsion, if there exist, by means of the
covariant derivative ∇0, the metric g and the tensor ∇gJ (see formulas (31) and
(32)).

Section 6 is devoted to the study of canonical connections. In the αε = −1
case, they were introduced in the papers [13] and [18]. They are generated by
the first canonical and the Chern connections, i.e., they form the one-parameter
family {(1− t)∇0 + t∇c : t ∈ R} (see Theorem 6.1). In this theorem we also prove
that this family is also generated by the first canonical and the well adapted
connections, and thus one can parametrize it as {(1− s)∇0 + s∇w : s ∈ R}. This is
very important, because one can define a family of canonical connections in the
case αε = 1, generated by the first canonical and the well adapted connections
(Proposition 6.5). The key of the definition of these families of natural connections
is the tensor F(∇0) again, which allows to obtain a unified presentation of them
(see formulas (37) and (40)). We prove that all distinguished connections studied in
the previous section belong to the one-parameter family of canonical connections of
the (J2 = ±1)-metric manifold, when they exist and they are natural connections.

We will consider smooth manifolds and operators being of class C∞.

2. Reducible connections on (J2 = ±1)-manifolds

A manifold M having a tensor field J of type (1, 1) with J2 = α Id, where Id
denotes the identity tensor field and α ∈ {−1, 1}, is said to be a (J2 = ±1)-manifold
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or a manifold endowed with an α-structure. The corresponding G-structure is
denoted by π : Cα →M and the manifold is said to have a Gα-structure. We are
interested in the study of connections reducible to a Gα-structure. The following
result characterizes these connections, generalizing the well known result for the
almost complex manifolds ([19, Vol. II, Prop. 3.3]).

Proposition 2.1. Let (M,J) be a (J2 = ±1)-manifold. A linear connection Γ on
M is reducible to π : Cα →M if and only if its covariant derivative ∇ parallelizes
J , i.e., ∇J = 0, which means ∇XJY = J(∇XY ), for all vector fields X, Y on M .
In this case, ∇ is said to be natural or adapted to the α-structure.

Following [4] and [14], one can determine the set of covariant derivatives adapted
to a Gα-structure.

Lemma 2.2. Let (M,J) be a manifold endowed with an α-structure J and let ∇
be a covariant derivative on M . The set of covariant derivatives adapted to J is:

{∇+ S : S ∈ T 1
2 (M), (∇XJ)Y = JS(X,Y )− S(X, JY ), ∀X,Y ∈ X(M)} .

In [7, Lemma 4.3] we have obtained the corresponding result to (J2 = ±1)-metric
manifolds. The main difference between both results is the existence of the
Levi-Civita connection in the metric case, which allows to parametrize all the
adapted connections by the potential tensor field (the difference of any connec-
tion and the Levi Civita connection). In the case of an α-structure we have no
such a distinguished connection. This fact implies that one can not define specific
connections obtained from a distinguished one. Thus, we can define connection
types, but no isolated connections. In this section we deal with the following types
of connections on (M,J):
• ∇0 type connections are natural connections which can be used to parametrize

the set of natural connections taking a natural connection as starting point.
Each covariant derivative ∇ on the manifold defines a ∇0 type connection.

• ∇1 type connections are also natural connections. The corresponding covariant
derivatives will be denoted as ∇1. Each ∇0 type connection defines a ∇1

connection. All the connections ∇s of the 1-parameter family of connections
{∇s = (1 − s)∇0 + s∇1 : s ∈ R} are natural connections. Each covariant
derivative ∇ defines a unique ∇0 type connection and then a unique ∇1 type
connection. When ∇ is torsion-free, the corresponding ∇1 type connection is
called a Kobayashi-Nomizu type connection.

• Yano type connections, whose covariant derivative will be denoted as ∇̃1,
are natural if and only if J is integrable. Each torsion-free connection on M
induces a Yano type connection.

Besides proving the above results we will solve other problems such as the
characterization of the coincidence among ∇, ∇0, ∇1 and ∇̃1.

In order to have a better presentation of the set of adapted connections, we
observe that one can decompose T 1

2 (M) as direct sum of two suitable subspaces:
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Proposition 2.3. Let (M,J) be a (J2 = ±1)-manifold. Then T 1
2 (M) = Aα ⊕Lα,

where
Aα = {K ∈ T 1

2 (M) : K(X, JY ) = −JK(X,Y ) ,∀X,Y ∈ X(M)} ,
Lα = {Q ∈ T 1

2 (M) : Q(X, JY ) = JQ(X,Y ) ,∀X,Y ∈ X(M)} .

Proof. Let S ∈ T 1
2 (M) and

K(X,Y ) = 1
2(S(X,Y )−αJS(X,JY )) , Q(X,Y ) = 1

2(S(X,Y ) +αJS(X,JY )) ,

for all X, Y ∈ X(M), then S = K +Q. Besides one has

K(X, JY ) = 1
2(S(X, JY )− JS(X,Y )) , JK(X,Y ) = 1

2(JS(X,Y )− S(X, JY )) ,

Q(X, JY ) = 1
2(S(X, JY ) + JS(X,Y )) , JQ(X,Y ) = 1

2(JS(X,Y ) + S(X,JY )) ,

for all X, Y ∈ X(M), thus proving K ∈ Aα and Q ∈ Lα. As Aα ∩ Lα = ∅, one
obtains T 1

2 (M) = Aα ⊕ Lα. �

2.1. ∇0 type connections. Let ∇ be a covariant derivative on a (J2 = ±1)-mani-
fold (M,J). Then, we denote by ∇0 the covariant derivative given by

(1) ∇0
XY = ∇XY + (−α)

2 (∇XJ)JY , ∀X,Y ∈ X(M) .

One easily checks that ∇0
X(JY ) = (1/2)∇XJY + (1/2)J(∇XY ) = J(∇0

XY ) thus
proving ∇0J = 0, i.e., ∇0 is a natural connection respect to J . This connection can
be used to parametrize all the adapted covariant derivatives. Observe, nevertheless,
that ∇0 is not uniquely defined (depends on the arbitrary derivative ∇).

Proposition 2.4. Let (M,J) be a manifold endowed with an α-structure J and
let ∇ be a covariant derivative on M . The set of derivation laws adapted to J is:

{∇0 +Q : Q ∈ Lα} .

Proof. Let ∇a = ∇0 + Q, with Q ∈ Lα. A direct calculus shows that ∇aJ = 0.
Conversely let ∇a be a natural connection and consider the difference tensor
Q = ∇a −∇0. Then, a direct calculus shows that Q(X, JY ) = JQ(X,Y ) for all
vectors fields X,Y on M , thus proving Q ∈ Lα. �

Remark 2.5. The above result shows that one can parametrize the set of natural
connections taking the natural connection ∇0 as a starting point, which differs
from the case in Lemma 2.2 where the connection ∇ does not have to be natural.
Besides

K(X,Y ) = (−α)
2 (∇XJ)JY , ∀X,Y ∈ X(M) ,

is the unique tensor in Aα such that ∇+K is a natural connection. This is the key
point in the definition of ∇0 = ∇+K. We prove this claim. Let ∇a be a natural
connection. Taking into account Lemma 2.2 and Proposition 2.3 we can decompose
∇a = ∇+ S = ∇+K +Q where

(∇XJ)Y = JS(X,Y )− S(X, JY ) , ∀X,Y ∈ X(M) , K ∈ Aα , Q ∈ Lα .
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Then one has

(∇XJ)Y = JS(X,Y )− S(X,JY ) = JK(X,Y )−K(X, JY )
+ JQ(X,Y )−Q(X, JY ) = −2K(X,JY )

and then

K(X, JY ) = −1
2(∇XJ)Y ⇒ αK(X,Y ) = K(X, J2Y ) = −1

2(∇XJ)JY

thus proving K(X,Y ) = (−α)
2 (∇XJ)JY .

2.2. Kobayashi-Nomizu type connections. Let ∇ be a covariant derivative
on a (J2 = ±1)-manifold (M,J). We have found a natural covariant derivative ∇0

defined from ∇ as ∇0 = ∇+K as it is specified in formula (1). We are looking for
another natural covariant derivative ∇1 defined from ∇. Let us consider the tensor
field LK , defined as

LK(X,Y ) = 1
2(K(Y,X)− αK(JY, JX)) = (−α)

4 ((∇Y J)JX − (∇JY J)X) ,

for all X, Y ∈ X(M). One easily checks that LK ∈ Lα. Then, ∇1 = ∇0 + LK is a
natural covariant derivative according to Proposition 2.4. The explicit expression
is:

(2) ∇1
XY = ∇0

XY + (−α)
4
(
(∇Y J)JX − (∇JY J)X

)
, ∀X,Y ∈ X(M) .

Proposition 2.6. Let (M,J) be a manifold endowed with an α-structure J and
let ∇ be a covariant derivative on M . Then

∇s
XY = (1− s)∇0

XY + s∇1
XY , ∀X,Y ∈ X(M) , s ∈ R ,

is a one-parameter family of natural covariant derivatives. The explicit expression
of ∇s is given by

∇s
XY = ∇0

XY + (−α)s
4 ((∇Y J)JX − (∇JY J)X) , ∀X,Y ∈ X(M) , s ∈ R .

Proof. Trivial. �

Up to this point, we have found a one-parameter family of covariant derivatives
adapted to an α-structure, which is defined from an arbitrary covariant derivative
∇. The family is determined by ∇0 and ∇1. One expect better properties of ∇0

and ∇1 if ∇ is a torsion-free covariant derivative. This is not a restriction, because,
as is well known, one also can define a torsion-free covariant derivative ∇̃ from
∇, given by ∇̃XY = ∇XY − 1

2 T(X,Y ), for all vectors fields X,Y on M , where T
denotes the torsion tensor of ∇. In fact, one has:

Proposition 2.7. Let M be a manifold and let ∇ be a torsion-free covariant
derivative on M . The torsion tensor TS of the covariant derivative ∇S = ∇+ S,
with S ∈ T 1

2 (M), satisfies

TS(X,Y ) = S(X,Y )− S(Y,X), ∀X,Y ∈ X(M).
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Proof. Given X, Y vector fields on M one has

TS(X,Y ) = ∇XY + S(X,Y )−∇YX − S(Y,X)− [X,Y ] = S(X,Y )− S(Y,X) .

�

Thus, in the rest of this section, we focus our attention on torsion-free covariant
derivatives. Let us remember

Definition 2.8. Let M be a manifold and let J be a tensor field of type (1, 1).
The Nijenhuis tensor of J is the tensor field of type (1, 2) given by

NJ(X,Y ) = J2[X,Y ] + [JX, JY ]− J [JX, Y ]− J [X,JY ] , ∀X,Y ∈ X(M) .

Then we obtain some easy results which will be used in the future.

Proposition 2.9. Let (M,J) be a (J2 = ±1)-manifold and let ∇ be a torsion-free
covariant derivative on M . Then
(3)
NJ(X,Y ) = (∇XJ)JY + (∇JXJ)Y − (∇Y J)JX − (∇JY J)X , ∀X,Y ∈ X(M) .

Proof. Taking into account ∇ is torsion-free one has ∇XY −∇YX = [X,Y ], ∀X,
Y ∈ X(M), the proof is trivial. �

Proposition 2.10. Let (M,J) be a (J2 = ±1)-manifold and let ∇ be a torsion-free
covariant derivative on M . Then the natural covariant derivative ∇1 defined in (2)
satisfies

(−α)NJ(X,Y ) = 4T1(X,Y ) , ∀X,Y ∈ X(M) ,

where T1 denotes the torsion tensor of ∇1.

Proof. Formula (1) expresses ∇0 in terms of ∇ and formula (2) expresses ∇1 in
terms of ∇0. Combining both formulas one has
(4)

∇1
XY = ∇XY+(−α)

2 (∇XJ)JY+(−α)
4 ((∇Y J)JX−(∇JY J)X) , ∀X,Y ∈ X(M) .

Applying Proposition 2.7 to the difference tensor S = ∇1 −∇, one obtains

T1(X,Y ) = S(X,Y )− S(Y,X)

= (−α)
2 (∇XJ)JY + (−α)

4
(
(∇Y J)JX − (∇JY J)X

)
− (−α)

2 (∇Y J)JX − (−α)
4
(
(∇XJ)JY − (∇JXJ)Y

)
= (−α)

4
(
(∇XJ)JY + (∇JXJ)Y − (∇Y J)JX − (∇JY J)X

)
= (−α)

4 NJ(X,Y ) ,

for all vector fields X, Y on M , where the last equality follows from (3). �
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Remark 2.11. In the case α = −1 the adapted covariant derivative ∇1 had been
previously studied by Kobayashi and Nomizu (see [19, Vol. II, Theor. 3.4]). Starting
from a torsion-free covariant derivative ∇, they had introduced the covariant
derivative ∇̃ as

∇̃XY = ∇XY −Q(X,Y ) , ∀X,Y ∈ X(M) ,

where

Q(X,Y ) = 1
4
(
(∇JY J)X + J

(
(∇Y J)X

)
+ 2J

(
(∇XJ)Y

))
, ∀X,Y ∈ X(M) .

Given X, Y vector fields on M and defining

S(X,Y ) = −Q(X,Y ) = −1
2J
(
(∇XJ)Y

)
− 1

4
(
J
(
(∇Y J)X

)
+ (∇JY J)X

)
,

by property (8) (which is true for any covariant derivative) the above expression
reads as

S(X,Y ) = 1
2(∇XJ)JY + 1

4
(
(∇Y J)JX − (∇JY J)X

)
,

which is formula (2)

S(X,Y ) = (−α)
2 (∇XJ)JY + (−α)

4
(
(∇Y J)JX − (∇JY J)X

)
, ∀X,Y ∈ X(M) ,

in the case α = −1, thus proving ∇̃ = ∇1.

The above Remark allows us to introduce the following:

Definition 2.12. Let (M,J) be a (J2 = ±1)-manifold and let ∇ be a torsion-free
covariant derivative on M . The adapted covariant derivative ∇1 on M defined from
∇ in (2) is said to be a covariant derivative of Kobayashi-Nomizu type.

One can prove the following result which shows the interest of derivatives of
Kobayashi-Nomizu type:

Proposition 2.13. Let (M,J) be a manifold endowed with an α-structure J . The
following conditions are equivalent:

i) The α-structure J is integrable.
ii) The manifold M admits a torsion-free covariant derivative adapted to J .

Proof. i) ⇒ ii) As J is integrable, then NJ = 0. Taking into account Proposition
2.10 one obtains that any covariant of Kobayashi-Nomizu type is torsion-free and
natural.

ii) ⇒ i) Let ∇ be a torsion-free adapted covariant derivative. Then, by formula
(3), one obtains that the Nijenhuis tensor NJ vanishes and thus J is integrable. �

Remark 2.14. Let (M,J) be a manifold endowed with an α-structure J . If ∇ is
a torsion-free adapted covariant derivative, then ∇ = ∇0 = ∇1 because of formulas
(1) and (4).
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2.3. Yano type connections. A Yano type connection is defined from a torsion-free
connection as follows:

Definition 2.15. Let (M,J) be a (J2 = ±1)-manifold and let ∇ be a torsion-free
covariant derivative on M . The covariant derivative ∇̃1 on M defined from ∇ as
follows

(5) ∇̃1
XY = ∇XY + (−α)

2 (∇Y J)JX + (−α)
4
(
(∇XJ)JY − (∇JXJ)Y

)
,

for all X, Y ∈ X(M), is said to be a covariant derivative of Yano type.

Yano had defined special connections in both the almost complex and almost
product cases, which are the model for the above definition. For instance, in [30]
he studied an almost product manifold (M,J) and by means of the Levi Civita
connection of an arbitrary metric g, he defined

∇XY = ∇g
XY −

1
2(∇g

Y J)X − 1
4
(
(∇g

XJ)JY − (∇g
JXJ)Y

)
, ∀X,Y ∈ X(M) .

This was important because of the following result:

Theorem 2.16 ([30, Theor. 25]). Let (M,J) be an almost product manifold. The
following conditions are equivalent:

i) The almost product structure J is integrable.

ii) The manifold M admits a torsion-free connection adapted to J .

In order to prove the result, one needs ∇g to be torsion-free. In fact, this is the
essential point, and not other properties of ∇g. Thus, the above result remains true
when ∇g is substituted by any torsion-free connection. And this is the reason of
our above definition. That definition is quite similar to that of Kobayashi-Nomizu
type connections given in (4), thus leading us to study the relationship between
these Yano and Kobayashi-Nomizu types connections in the case they are derived
from the same torsion-free connection. We need the following technical lemma in
order to answer the question.

Lemma 2.17. Let (M,J) be a (J2 = ±1)-manifold and let ∇ be a torsion-free
covariant derivative on M . Let ∇1 and ∇̃1 be the Kobayashi-Nomizu and the Yano
type connections defined from ∇ according to (4) and (5) respectively. For all vector
fields X,Y on M the following relations hold:

i) ∇1
XY − ∇̃1

XY = (−α)
4 NJ(X,Y ).

ii) T̃1(X,Y ) = α
4NJ(X,Y ), where T̃1 denotes the torsion tensor of ∇̃1.

iii) ∇1
XY = ∇̃1

XY − T̃1(X,Y ).

iv) JS̃1(X,Y )−S̃1(X, JY )−(∇XJ)Y = (−α)
2 NJ (JX, Y ), where S̃1 = ∇̃1−∇.
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Proof. i) Given X, Y vector fields on M , according to formulas (4), (5) and (3)
one has

∇1
XY − ∇̃1

XY = (−α)
2 (∇XJ)JY + (−α)

4
(
(∇Y J)JX − (∇JY J)X

)
+ α

2 (∇Y J)JX + α

4
(
(∇XJ)JY − (∇JXJ)Y

)
= (−α)

4
(
(∇XJ)JY + (∇JXJ)Y − (∇Y J)JX − (∇JY J)X

)
= (−α)

4 NJ(X,Y ) .

ii) Given X, Y vector fields on M , as ∇ is torsion-free and according to Propo-
sition 2.7 and formula (3) one obtains

T̃1(X,Y ) = S̃1(X,Y )− S̃1(Y,X)

= (−α)
2 (∇Y J)JX + (−α)

4
(
(∇XJ)JY − (∇JXJ)Y

)
+ α

2 (∇XJ)JY + α

4
(
(∇Y J)JX − (∇JY J)X

)
= α

4
(
(∇XJ)JY + (∇JXJ)Y − (∇Y J)JX − (∇JY J)X

)
= α

4NJ(X,Y ) .

iii) Trivial, by the previous items i) and ii).
iv) Given X, Y vector fields on M and taking into account formulas (5) and (8)

one has

JS̃1(X,Y ) = 1
2(∇Y J)X + 1

4(∇XJ)Y − α

4 (∇JXJ)JY ,

S̃1(X, JY ) = (−α)
2 (∇JY J)JX − 1

4

(
(∇XJ)Y + α

4 (∇JXJ)JY
)
,

and, according to formula (3) one obtains

JS̃1(X,Y )− S̃1(X,JY )− (∇XJ)Y = −1
2(∇XJ)Y − α

2 (∇JXJ)JY

+ 1
2(∇Y J)X + α

2 (∇JY J)JX = (−α)
2 NJ(JX, Y ) .

�

Then, the above Lemma and Lemma 2.2 allow to obtain:

Proposition 2.18. Let M be a (J2 = ±1)-manifold and let ∇ be a torsion-free
covariant derivative on M . Let ∇1 and ∇̃1 be the Kobayashi-Nomizu and the Yano
type connections defined from ∇ according to (4) and (5) respectively. Then the
following conditions are equivalent:

i) The α-structure J is integrable.

ii) The covariant derivative ∇̃1 is adapted to J .

iii) The covariant derivatives ∇̃1 and ∇1 coincide.
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As one can see, Kobayashi-Nomizu and Yano type connections derived from the
same torsion-free connection are almost equal and then the above result can be
derived from Proposition 2.13. In fact, naming ∇1 = ∇+ S and ∇̃1 = ∇+ S̃1 one
has

S1(X,Y ) = S̃1(Y,X) , ∀X,Y ∈ X(M) ,
and then their torsion tensors satisfy T1(X,Y ) = −T̃1(X,Y ). Then, why is the
interest in having these two connection types? We will study the question on (J2±
1)-metric manifolds, where we have the Levi Civita connection ∇g as a distinguished
torsion-free covariant derivative. Then Kobayashi-Nomizu and Yano connections
are uniquely determined. The first one and the well adapted connection coincide in
the case of quasi-Kähler manifolds while the Yano connection is torsion-free if and
only if the structure J is integrable. All of this will be showed later.

3. Reducible connections on (J2 = ±1)-metric manifolds

The core of this paper concerns to manifolds having two compatible structures,
an α-structure J and a (semi)-Riemannian metric g. Compatibility means:

Definition 3.1 ([7, Defin. 3.1]). Let M be a manifold, g a semi-Riemannian metric
on M , J a tensor field of type (1,1) and α, ε ∈ {−1, 1}. Then (J, g) is called an
(α, ε)-structure on M if

J2 = α Id , trace J = 0 , g(JX, JY ) = εg(X,Y ) , ∀X,Y ∈ X(M) ,

g being a Riemannian metric if ε = 1. Then (M,J, g) is called a (J2 = ±1)-metric
manifold.

Condition trace J = 0 is a consequence of the other conditions in all the cases
unless the (1, 1). We impose it in this case looking for a common treatment of all the
four geometric structures. See [7] for a more complete description. Having a metric
we can choose its Levi Civita connection as the starting point to study connections
on a (J2 = ±1)-metric manifold. This is the key point in which manifolds endowed
with an α- or an (α, ε)-structure differ.

The G-structure defined by an (α, ε)-structure will be denoted as a G(α,ε)-structu-
re. The corresponding structure groups and Lie algebras have been studied in [7].
In particular one has:

Proposition 3.2 ([7, Prop. 3.9]). Let (M,J, g) be a (J2 = ±1)-metric manifold
and let π : C(α,ε) → M the G(α,ε)-structure on M defined by (J, g). Let Γ be a
linear connection on M and let ∇ be the corresponding derivation law. Then Γ is
a reducible connection to π : C(α,ε) →M if and only if ∇J = 0, ∇g = 0.

As in the case of an α-structure, we introduce the following:

Definition 3.3 ([7, Def. 4.1]). Let (M,J, g) be a (J2 = ±1)-metric manifold. A
covariant derivative or derivation law ∇a on M is said to be natural or adapted to
(J, g) if ∇aJ = 0,∇ag = 0.
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As we have a distinguished derivative, that defined by the Levi Civita connection,
we can compare any other one with that one:

Definition 3.4 ([7, Prop. 4.2]). Let (M,J, g) be a (J2 = ±1)-metric manifold,
let ∇g be the derivation law of the Levi Civita connection of g and let ∇a be a
derivation law adapted to (J, g). The potential tensor of ∇a is the tensor S ∈ T 1

2 (M)
defined as

S(X,Y ) = ∇a
XY −∇

g
XY , ∀X,Y ∈ X(M) .

Then, we can parametrize the set of natural covariant derivatives by means of
the Levi Civita connection and the potential tensor:

Lemma 3.5 ([7, Lemma 4.3]). Let (M,J, g) be a (J2 = ±1)-metric manifold. The
set of derivation laws adapted to (J, g) is:{
∇g + S : S ∈ T 1

2 (M), JS(X,Y )− S(X, JY ) = (∇g
XJ)Y,

g(S(X,Y ), Z) + g(S(X,Z), Y ) = 0, ∀X,Y, Z ∈ X(M)
}
.

The following result can be thought as a translation of Proposition 2.7 to the
present situation:

Proposition 3.6. Let (M,J, g) be a (J2 = ±1)-metric manifold, let ∇a be an
adapted covariant derivative and let Ta (resp. S) be the torsion tensor (resp. the
potential tensor) of ∇a. The following equalities hold:

Ta(X,Y ) = S(X,Y )− S(Y,X) , ∀X,Y ∈ X(M) .(6)

g(S(X,Y ), Z) = 1
2(g(Ta(X,Y ), Z)− g(Ta(Y,Z), X) + g(Ta(Z,X), Y )) ,(7)

∀X,Y, Z ∈ X(M) .

Proof. Formula (6) is a direct consequence of Proposition 2.7. We prove the other
formula. As ∇a is adapted to (J, g), according to Lemma 3.5, one has

(g(S(X,Y ), Z) + g(S(X,Z, Y )))− (g(S(Z,X), Y ) + g(S(Z, Y ), X))
+ (g(S(Y,Z), X) + g(S(Y,X), Z)) + (g(S(X,Y ), Z)
− g(S(X,Y ), Z)) = 0 ,

for all X, Y , Z ∈ X(M), which, taking into account formula (6), reads as
2g(S(X,Y ), Z) + g(Ta(X,Z), Y ) + g(Ta(Y,Z), X) + g(Ta(Y,X), Z) = 0 .

�

The above properties are well known. Formula (7) in the Riemannian case
appears in [1, Prop. 2.1] and [14, Theor. 3.4]. Both formulas are also used in [12]
and [24].

The following two results summarize some properties which have easy proofs.

Lemma 3.7. Let M be a manifold endowed with an α-structure J and a metric g.
The following conditions are equivalent:

i) g(JX, JY ) = εg(X,Y ), for all vector fields X, Y on M .
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ii) g(JX, Y ) = αεg(X, JY ), for all vector fields X, Y on M .
Lemma 3.8. Let (M,J, g) be a (J2 = ±1)-metric manifold. The tensor ∇gJ
satisfies the following relations:

(∇g
XJ)JY = −J(∇g

XJ)Y ,(8)
g
(
(∇g

XJ)Y,Z
)

= αεg
(
(∇g

XJ)Z, Y
)
,(9)

g
(
(∇g

XJ)JY, Z
)

= −αεg
(
(∇g

XJ)Y, JZ
)
,(10)

g
(
(∇g

XJ)JY, Z
)

= −g
(
(∇g

XJ)JZ, Y
)
,(11)

for all vector fields X, Y , Z on M .
Following the ideas of the above section about adapted covariant derivatives

to an α-structure, we can define ∇0 as in (1), choosing ∇g as a starting point.
Observe that in the present case ∇0 is uniquely defined on the manifold M because
the Levi Civita connection ∇g is uniquely determined.
Definition 3.9. Let (M,J, g) be a (J2 = ±1)-metric manifold. The first canonical
connection of (M,J, g) is the linear connection having the covariant derivative ∇0

given by
∇0
XY = ∇g

XY + (−α)
2 (∇g

XJ)JY , ∀X,Y ∈ X(M) .

As one can expect, we have the following result:
Lemma 3.10. Let (M,J, g) be a (J2 = ±1)-metric manifold. Then the covariant
derivative ∇0 is adapted to (J, g).
Proof. According to properties (8) and (11), the potential tensor S of ∇0 satisfies

JS(X,Y )− S(X, JY ) = (−α)
2 J(∇g

XJ)JY + 1
2(∇g

XJ)Y = (∇g
XJ)Y ,

g(S(X,Y ), Z) + g(S(X,Z), Y ) = (−α)
2
(
g((∇g

XJ)JY, Z) + g((∇g
XJ)JZ, Y ) = 0 ,

∀X,Y, Z ∈ X(M) ,

then by Lemma 3.5, ∇0 is adapted to (J, g). �

The first canonical connection can be characterized as it is shown in the next
proposition, which generalizes that of [14, Theor. 3.4] obtained for the almost
Hermitian case.
Proposition 3.11. Let (M,J, g) be a (J2 = ±1)-metric manifold. The covariant
derivative of the first canonical connection of (M,J, g) is the unique adapted
covariant derivative whose potential tensor S satisfies

S(X,Y ) + αJS(X, JY ) = 0 , ∀X,Y ∈ X(M) .
Proof. Let ∇a = ∇g + S be an adapted covariant derivative. Then, for all vector
fields X, Y on M , one has

S(X,Y ) + αJS(X, JY ) = 0⇔ J(S(X,Y ) + αJS(X, JY )) = 0
⇔ JS(X,Y ) + S(X, JY ) = 0 .
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As ∇a is an adapted covariant derivative, we have by Lemma 3.5

JS(X,Y )− S(X, JY ) = (∇g
XJ)Y , ∀X,Y ∈ X(M) ,

and substituting in the above expression one has

S(X,Y ) + αJS(X, JY ) = 0⇔ 2JS(X,Y ) = (∇g
XJ)Y

⇔ S(X,Y ) = (−α)
2 (∇g

XJ)Y ⇔ ∇a = ∇0 ,

thus proving the result. �

In Lemma 3.5 we have determined the set of adapted covariant derivatives taking
the Levi Civita connection of g as the starting point. We can also obtain a result
similar to Proposition 2.4, which allows to parametrize that set taking the first
canonical connection as starting point.

Lemma 3.12. Let (M,J, g) be a (J2 = ±1)-metric manifold. The set of natural
derivation laws of (J, g) is:{
∇0+Q : Q∈Lα ⊆ T 1

2 (M), g(Q(X,Y ), Z)+g(Q(X,Z), Y ) = 0,∀X,Y, Z ∈ X(M)
}
.

The tensor Q of the natural covariant derivative is said to be the canonical potential
tensor.

Proof. Let ∇a = ∇0 + Q be a natural covariant derivative, with Q ∈ T 1
2 (M).

According to Proposition 2.4 one knows Q ∈ Lα if and only if ∇aJ = 0. Thus, we
must prove ∇ag = 0.

As ∇0g = 0, one has for all vector fields X,Y, Z on M

(∇a
Xg)(Y,Z) = −g(∇a

XY, Z)− g(∇a
XZ, Y ) + g(∇0

XY,Z) + g(∇0
XZ, Y )

= −(g(Q(X,Y ), Z) + g(Q(X,Z), Y ) ,

thus proving ∇ag = 0 if and only if g(Q(X,Y ), Z) + g(Q(X,Z), Y ) = 0. �

We have studied the first canonical connection of an (α, ε)-structure taking in
mind the case of the derivatives ∇0 associated to an α-structure. What can we say
about Kobayashi-Nomizu and Yano type covariant derivatives defined in (4) and
(5)? In Section 5 we will show that in general they are not reducible connections
on (J2 = ±1)-metric manifolds.

4. Tensors on (J2 = ±1)-metric manifolds defined from ∇gJ

This is a technical section. We study some tensors derived from ∇gJ which will
be useful in the study of connections in the remaining sections. Given a (J2 =
±1)-metric manifold, we will study three tensors: the covariant derivative ∇gΦ of
the fundamental tensor Φ, the Nijenhuis tensor NJ and the second Nijenhuis tensor
Ñαε
J . Properties of the two first tensors are well known and will be summarized.

We focus on the expression of all of these tensors by means of ∇gJ .
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4.1. The covariant derivative ∇gΦ of the fundamental tensor Φ. Remember
the definition:

Definition 4.1. Let (M,J, g) be a (J2 = ±1)-metric manifold. The fundamental
tensor Φ is the tensor field of type (0, 2) defined as

Φ(X,Y ) = g(JX, Y ) , ∀X,Y ∈ X(M) .

As is well known, one has:

Lemma 4.2. Let (M,J, g) be a (J2 = ±1)-metric manifold with fundamental
tensor Φ.

i) If αε = −1 then Φ is a 2-form on M . In this case Φ is called the fundamental
form of (M,J, g).

ii) If αε = 1 then Φ is a symmetric tensor field. In this case Φ = g̃ is called
the twin metric of g.

One can obtain an expression of the covariant derivative of the fundamental
tensor by means of ∇gJ :

Proposition 4.3. Let (M,J, g) be a (J2 = ±1)-metric manifold. Then

(12) (∇g
XΦ)(Y,Z) = g((∇g

XJ)Y,Z) , ∀X,Y, Z ∈ X(M) .

Proof. Trivial. �

The above result allows to introduce the more distinguished class of (J2 =
±1)-metric manifolds:

Definition 4.4. Let (M,J, g) be a (J2 = ±1)-metric manifold. It is said to be a
manifold of Kähler type if ∇gΦ = 0.

As is well known Kähler type manifolds are characterized by the condition
∇gJ = 0. This condition can be expressed in the following terms:

Lemma 4.5. Let (M,J, g) be a (J2 = ±1)-metric manifold. Then (M,J, g) is a
Kähler type manifold if and only if ∇g is a covariant derivative adapted to (J, g).

Proof. Trivial, according to formula (12). �

We will end this study of Kähler type with the following technical result in the
case of (J2 = ±1)-metric manifolds with αε = 1.

Lemma 4.6. Let (M,J, g) be a (J2 = ±1)-metric manifold with αε = 1. The
following conditions are equivalent:

i) (M,J, g) is a Kähler type manifold.
ii) g((∇g

XJ)Y,Z) = g((∇g
Y J)Z,X) + g((∇g

ZJ)X,Y ), for all vector fields
X,Y, Z on M .

iii) g((∇g
XJ)Y, Y ) = 0, for all vector fields X,Y on M .
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Proof. i) ⇒ ii) Trivial by the definition of a Kähler type manifold.
ii) ⇒ iii) Given X,Y, Z vector fields on M such that X = Z one has

g((∇g
XJ)Y,X) = g((∇g

Y J)X,X) + g((∇g
XJ)X,Y ) ,

according to formula (9) in the case αε = 1 one can deduce g((∇g
Y J)X,X) = 0.

iii) ⇒ i) Given X, Y , Z vector fields on M , by property (9) in the case αε = 1
one has
g((∇g

XJ)Y + Z, Y + Z) = g((∇g
XJ)Y, Y )

+ g((∇g
XJ)Y,Z) + g((∇g

XJ)Z, Y ) + g((∇g
XJ)Z,Z)

= 2g(∇g
XJ)(Y, Z) ,

then ∇gΦ = 0 and thus proving (M,J, g) is a Kähler type manifold. �

4.2. The Nijenhuis tensor. According to formula (3) the Nijenhuis tensor NJ
on a (J2 = ±1)-metric manifold can be written by means of ∇g as

NJ(X,Y ) = (∇g
XJ)JY + (∇g

JXJ)Y − (∇g
Y J)JX − (∇g

JY J)X ,(13)
∀X,Y ∈ X(M) .

Then one can easily deduce the following result:

Lemma 4.7. Let (M,J, g) be a (J2 = ±1)-metric manifold. The following relations
hold:

i) NJ(Y,X) = −NJ(X,Y ), NJ(JX, JY ) = αNJ(X,Y ),
NJ(JX, Y ) = NJ(X,JY ), for all vector fields X, Y on M .

ii) g(NJ(JX, Y ), JZ) = −εg(NJ(X,Y ), Z), for all vector fields X, Y , Z
on M .

The vanishing of the Nijenhuis tensor means the integrability of the α-structure
J . In the case of (J2 = ±1)-metric manifolds integrability can be expressed in
different ways, as the following results show. There exists a difference between cases
αε = −1 and αε = 1 as we are going to show.

Lemma 4.8 ([16, Table I], [25, Prop. 2.1]). Let (M,J, g) be a (J2 = ±1)-metric
manifold with αε = −1. The following conditions are equivalent:

i) The Nijenhuis tensor of J vanishes.
ii) (∇g

XJ)Y + α(∇g
JXJ)JY = 0, for all vector fields X,Y on M .

iii) (∇g
XΦ)(Y, Z) + α(∇g

JXΦ)(JY, Z) = 0, for all vector fields X,Y, Z on M .

Lemma 4.9 ([26], [28]). Let (M,J, g) be a (J2 = ±1)-metric manifold with αε = 1.
The following conditions are equivalent:

i) The Nijenhuis tensor vanishes.
ii) g((∇g

XJ)Y, JZ) + g((∇g
Y J)Z, JX) + g((∇g

ZJ)X, JY ) = 0, for all vector
fields X, Y , Z on M .

iii) (∇g
XΦ)(Y, JZ) + (∇g

Y Φ)(Z, JX) + (∇g
ZΦ)(X, JY ) = 0, for all vector fields

X, Y , Z on M .
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In fact, as we have pointed out, the results have been independently proved
for each one of the four geometries. Unifying the study of the four geometries as
possible is one of the goals of the present paper.

In order to obtain results about the integrability of J one can also consider
the torsion tensor of any covariant derivative adapted to the (α, ε)-structure. The
following two lemmas are examples of this situation.
Lemma 4.10. Let (M,J, g) be a (J2 = ±1)-metric manifold and let ∇a be a
covariant derivative on M adapted to (J, g). Then the torsion tensor Ta of ∇a

satisfies
NJ(X,Y )= JTa(JX, Y )+JTa(X, JY )−αTa(X,Y )−Ta(JX, JY ),∀X,Y ∈ X(M) .
Proof. Let S = ∇a −∇g be the potential tensor of ∇a. By Lemma 3.5 one has

(∇g
XJ)JY = JS(X, JY )− αS(X,Y ), (∇g

JXJ)Y = JS(JX, Y )− S(JX, JY ) ,
(∇g

Y J)JX = JS(Y, JX)− αS(Y,X), (∇g
JY J)X = JS(JY,X)− S(JY, JX) ,

for all X, Y ∈ X(M), and according to formulas (6) and (13), one obtains
NJ(X,Y ) = JTa(JX, Y ) + JTa(X,JY )− αTa(X,Y )− Ta(JX, JY ) ,

for all X, Y ∈ X(M). �

Lemma 4.11. Let (M,J, g) be a (J2 = ±1)-metric manifold and let ∇a be a
covariant derivative on M adapted to (J, g). The following relations hold:

i) If Ta(JX, JY ) = (−α)Ta(X,Y ), ∀X,Y ∈ X(M), then the Nijenhuis tensor
of J vanishes.

ii) If JTa(JX, Y ) = αTa(X,Y ), ∀X,Y ∈ X(M), then the Nijenhuis tensor of
J vanishes.

Proof. Given X,Y vector fields on M , if Ta(JX, JY ) = (−α)Ta(X,Y ) then
Ta(JX, Y ) = −Ta(X, JY ), and if JTa(JX, Y ) = αTa(X,Y ) then JTa(X, JY ) =
Ta(JX, JY ).

The result follows from the above equalities and Lemma 4.10. �

4.3. The second Nijenhuis tensor and quasi-Kähler type manifolds. As
we have shown in Lemma 4.5, Kähler type manifolds are those manifolds for which
the Levi Civita connection is natural respect to the (α, ε)-structure. By formula
(13) we know that the α-structure J of a Kähler type manifold is integrable. We are
looking for a new tensor which allows to characterize quasi-Kähler type manifolds.
This tensor will be called the second Nijenhuis tensor. Let us begin introducing
the tensor, studying its main properties and, after that, remembering the notion
of quasi-Kähler type manifold and comparing with the vanishing of the second
Nijenhuis tensor.

Taking in mind formula (13) for the Nijenhuis tensor, we introduce the following:
Definition 4.12. Let (M,J, g) be a (J2 = ±1)-metric manifold. The second
Nijenhuis tensor of (J, g) is the tensor field of type (1, 1) given by

Ñαε
J (X,Y )=(∇g

XJ)JY +αε
(
(∇g

JXJ)Y +(∇g
Y J)JX

)
+(∇g

JY J)X , ∀X,Y ∈ X(M) .
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Obviously, this definition is expressed in terms of ∇gJ , which is one of the aims
of this section. Observe that the above definition depends on the value αε and not
just of the α-structure. The next properties follow in a direct way.

Lemma 4.13. Let (M,J, g) be a (J2 = ±1)-metric manifold. The second Nijenhuis
tensor of (J, g) satisfies:

i) Ñαε
J (Y,X) = αεÑαε

J (X,Y ), Ñαε
J (JX, JY ) = εÑαε

J (X,Y ),
Ñαε
J (JX, Y ) = αεÑαε

J (X, JY ), for all vector fields X, Y on M .
ii)

g(Ñαε
J (X,Y ), JZ) =− εg((∇g

XJ)Y,Z)− g((∇g
JXJ)JY, Z)− αg((∇g

Y J)X,Z)
− αεg((∇g

JY J)JX,Z) ,

g(Ñαε
J (JX, Y ), JZ) =− εg((∇g

JXJ)Y,Z)− α(g((∇g
XJ)JY, Z)

+ g((∇g
Y J)JX,Z))− εg((∇g

JY J)X,Z) ,

for all vector fields X, Y , Z on M .

Definition of quasi-Kähler type manifold depends on the geometry we are
considering. The four geometries of (α, ε)-structures have had each own development.
In order to have a common presentation of the notion we must distinguish the
cases αε = 1 and αε = −1. Moreover, this will be useful to compare quasi-Kähler
type manifolds with the vanishing of the second Nijenhuis tensor.

Definition 4.14. Let (M,J, g) be a (J2 = ±1)-metric manifold with αε = 1. It is
said to be a quasi-Kähler type manifold if

g((∇g
XJ)Y, Z) + g((∇g

Y J)Z,X) + g((∇g
ZJ)X,Y ) = 0 , ∀X,Y, Z ∈ X(M) .

According to Definition 4.12 the second Nijenhuis tensor for a (J2 = ±1)-metric
manifold with αε = 1 is

Ñ1
J(X,Y ) = (∇g

XJ)JY + (∇g
JXJ)Y + (∇g

Y J)JX + (∇g
JY J)X ,(14)

∀X,Y ∈ X(M) .

The characterization of quasi-Kähler type manifolds in terms of the second
Nijenhuis tensor field has been obtained for each of the two geometries:

Proposition 4.15 ([10], [26]). Let (M,J, g) be a (J2 = ±1)-metric manifold with
αε = 1. The following conditions are equivalent:

i) The second Nijenhuis tensor of (J, g) vanishes.
ii) The manifold (M,J, g) is a quasi-Kähler type manifold.

Quasi-Kähler type manifolds with αε = 1 have been studied in several papers as
[21] and [28], in the case of (1, 1)-structures, and (−1,−1)-structures, respectively.
These manifolds correspond to the class W3 in the classification of (α, ε)-structures
with αε = 1, and it is the unique class of the basic ones characterized by the
non-integrability of the α-structure J (see [10] and [26], where almost Norden and
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almost-product Riemannian manifolds with null trace are classified, and Proposition
4.20).

In the case αε = −1 expression of the second Nijenhuis tensor of (J, g) is

(15) Ñ−1
J (X,Y ) = (∇g

XJ)JY − (∇g
JXJ)Y − (∇g

Y J)JX + (∇g
JY J)X ,

for all X, Y ∈ X(M), and the definition of quasi-Kähler type manifolds is:

Definition 4.16. Let (M,J, g) be a (J2 = ±1)-metric manifold with αε = −1. It
is said to be a quasi-Kähler type manifold if

(16) (∇g
XJ)JY − (∇g

JXJ)Y = 0 , ∀X,Y ∈ X(M) .

Then we obtain the following characterization of quasi-Kähler type manifolds
by means of the second Nijenhuis tensor:

Proposition 4.17. Let (M,J, g) be a (J2 = ±1)-metric manifold with αε = −1.
The following conditions are equivalent:

i) The second Nijenhuis tensor of (M,J, g) vanishes.
ii) (∇g

XΦ)(Y,Z)− α(∇g
JXΦ)(JY, Z) = 0, for all vector fields X, Y , Z on M .

iii) (∇g
XJ)Y − α(∇g

JXJ)JY = 0, for all vector fields X,Y on M .
iv) The manifold (M,J, g) is a quasi-Kähler type manifold.
v) (∇g

XJ)X − α(∇g
JXJ)JX = 0, for all vector field X on M .

Proof. i) ⇒ ii) As αε = −1, according to Lemmas 3.8 and 4.13, one has

g(Ñ−1
J (X,Y ), JZ)− g(Ñ−1

J (Y,Z), JX) + g(Ñ−1
J (Z,X), JY )

= 2
(
αg((∇g

XJ)Y,Z)− g((∇g
JXJ)JY, Z)

)
,

for all vector fields X,Y, Z on M . Then, the vanishing of the second Nijenhuis
tensor of (J, g) implies

(∇g
XΦ)(Y,Z)− α(∇g

JXΦ)(JY, Z) = 0 , ∀X,Y, Z ∈ X(M) .

ii) ⇒ iii) It follows in a direct way from formula (12).
iii) ⇒ iv) Evaluate the expression in (X, JY ).
iv) ⇒ v) As (M,J, g) is a quasi-Kähler type manifold, given X,Y vector fields

on M such that Y = JX from (16) one obtains

α(∇g
XJ)X − (∇g

JXJ)JX = 0⇔ (∇g
XJ)X − α(∇g

JXJ)JX = 0 .

v) ⇒ i) Given X, Y vector fields on M one has

(∇g
X+JY J)(X + JY ) = (∇g

XJ)X + (∇g
XJ)JY + (∇g

JY J)X + (∇g
JY J)JY ,

α(∇g
J(X+JY )J)J(X + JY ) = α(∇g

JXJ)JX+ (∇g
JXJ)Y + (∇g

Y J)JX+ α(∇g
Y J)Y .

Subtracting both equations and taking into account formula (15) one obtains the
result. �
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Manifolds having αε = −1 correspond to almost Hermitian, i.e., (−1, 1), ma-
nifolds and almost para-Hermitian, i.e., (1,−1), manifolds. In the case of almost
Hermitian, quasi-Kähler manifolds are introduced in [16] as manifolds satisfying
condition ii) of the above result, with α = −1. In the almost para-Hermitian
case quasi-Kähler type manifolds are introduced in [3] as we have written in the
corresponding definition. A characterization of quasi-Kähler type manifolds in
almost Hermitian and almost para-Hermitian geometries in terms of the second
Nijenhuis tensor has not been previously obtained. In the other two geometries
the corresponding characterizations had been obtained, as we have indicated in
Proposition 4.15, in terms of the second Nijenhuis tensor which is given by formula
(14), in this case of αε = 1. In order to have Proposition 4.17 we have had to obtain
an expression of the second Nijenhuis tensor for the case αε = −1 compatible with
that for the case αε = 1. This was done in Definition 4.12.

One obtains the following technical result:

Lemma 4.18. Let (M,J, g) be a (J2 = ±1)-metric manifold with αε = −1. The
following conditions are equivalent:

i) (∇g
XJ)JY − (∇g

JXJ)Y + (∇g
Y J)JX − (∇g

JY J)X = 0, for all vector fields
X,Y on M .

ii) (∇g
XJ)JX − (∇g

JXJ)X = 0, for all vector field X on M .
iii) (∇g

XJ)X − α(∇g
JXJ)JX = 0, for all vector field X on M .

Proof. i) ⇒ ii) Given X, Y vector fields on M such that X = Y one obtains
(∇g

XJ)JX − (∇g
JXJ)X = 0.

ii) ⇒ iii) Given X, Y vector fields on M one has

g((∇g
XJ)JX, JY )− g

(
(∇g

JXJ)X, JY
)

= 0 ,

then taking into account (10) one obtains

αg((∇g
XJ)X,Y )− g

(
(∇g

JXJ)JX, Y
)

= 0 ,

thus
α(∇g

XJ)X − (∇g
JXJ)JX = 0⇔ (∇g

XJ)X − α(∇g
JXJ)JX = 0 .

iii) ⇒ i) In these conditions the manifold (M,J, g) is a quasi-Kähler manifold
(see Proposition 4.17 v)), then one has

(∇g
XJ)JY − (∇g

JXJ)Y = 0, (∇g
Y J)JX − (∇g

JY J)X = 0, ∀X,Y ∈ X(M) ,

adding both equations one obtains the result. �

Remark 4.19. Then the following condition

(∇g
XJ)JY − (∇g

JXJ)Y + (∇g
Y J)JX − (∇g

JY J)X = 0 , ∀X,Y ∈ X(M) ,

also characterizes the (J2 = ±1)-metric manifolds of quasi-Kähler type in the case
αε = −1.

Now we prove a result relating integrable J-structures, quasi-Kähler type and
Kähler type manifolds:



DISTINGUISHED CONNECTIONS ON (J2 = ±1)-METRIC MANIFOLDS 181

Proposition 4.20. Let (M,J, g) be a (J2 = ±1)-metric manifold. If (M,J, g) is
a quasi-Kähler type manifold such that its α-structure J is integrable then (M,J, g)
is a Kähler type manifold.
Proof. In order to prove the result we must distinguish the cases αε = ±1.

Assuming αε = −1, and according to Lemma 4.8, the α-structure J is integrable
if and only if

(∇g
XJ)Y + α(∇g

JXJ)JY = 0 , ∀X,Y ∈ X(M) .
As (M,J, g) is a quasi-Kähler type manifold, and according to Proposition 4.17
one has

(∇g
XJ)Y − α(∇g

JXJ)JY = 0 , ∀X,Y ∈ X(M) ,
thus proving ∇gJ = 0, adding both equalities.

In the case αε = 1, the vanishing of both the Nijenhuis tensor and the second
Nijenhuis tensor implies

(∇g
XJ)JY + (∇g

JXJ)Y = 0 , ∀X,Y ∈ X(M) .
Adding the expression in Definition 4.14 valued in (X,Y, JZ) and the expression
of the second property of Lemma 4.9 one has
2g((∇g

XJ)Y, JZ) + g((∇g
ZJ)JY,X) + g((∇g

JZJ)Y,X) = 0 , ∀X,Y, Z ∈ X(M) ,
which implies ∇gJ = 0 taking in mind the above equality.

In both cases αε = ±1 we have proved ∇gJ = 0. As ∇gg = 0, then ∇g is adapted
to (J, g) and, according to Lemma 4.5, (M,J, g) is a Kähler type manifold. �

We finish this section recalling briefly the nearly Kähler type manifolds in the
case of αε = −1. They were introduced by Gray in the almost Hermitian case (see
[15]) and correspond to a class in the classification of almost Hermitian manifolds
of Gray and Hervella (see [16]). In the almost para-Hermitian case the analogous
class also appears in the classification of Gadea and Muñoz Masqué (see [9]), where
two of the eight classes are the so-called (+)-nearly para-Kählerian and (−)-nearly
para-Kählerian manifolds.
Definition 4.21 ([15], [18]). Let (M,J, g) be a (J2 = ±1)-metric manifold with
αε = −1. Then (M,J, g) is said to be a nearly Kähler type manifold if the following
relation holds

(∇g
XJ)X = 0 , ∀X ∈ X(M) .

Lemma 4.22. Let (M,J, g) be a (J2 = ±1)-metric manifold such that αε = −1.
The following conditions are equivalent:

i) (∇g
XJ)X = 0, for all vector field X on M .

ii) (∇g
XJ)Y + (∇g

Y J)X = 0, for all vector fields X,Y on M .
Proof. Trivial. �

Proposition 4.23. Let (M,J, g) be a (J2 = ±1)-metric manifold with αε = −1. If
(M,J, g) is a nearly Kähler type manifold then is also a quasi-Kähler type manifold
and the Nijenhuis tensor of J satisfies the following relation

NJ(X,Y ) = 2
(
(∇g

XJ)JY + (∇g
JXJ)X

)
, ∀X,Y ∈ X(M) .
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Proof. As (M,J, g) is a nearly Kähler manifold, given X,Y vector fields on M by
the previous lemma one has

(17) (∇g
XJ)JY + (∇g

JY J)X = 0 , (∇g
JXJ)Y + (∇g

Y J)JX = 0 .

Substracting both equations one obtains

(∇g
XJ)JY − (∇g

JXJ)Y − (∇g
Y J)JX + (∇g

JY J)X = 0 , ∀X,Y ∈ X(M) ,

then according to (14) and Proposition 4.17 (M,J, g) is a quasi-Kähler type
manifold.

Taking into account the equalities (17) one also obtains

NJ(X,Y ) = (∇g
XJ)JY + (∇g

JXJ)Y − (∇g
Y J)JX − (∇g

JY J)X

= (∇g
XJ)JY + (∇g

JXJ)Y + (∇g
JXJ)Y + (∇g

XJ)JY

= 2((∇g
XJ)JY + (∇g

JXJ)Y ) , ∀X,Y ∈ X(M) .

�

5. Distinguished connections on (J2 = ±1)-metric manifolds

This section and the following one are the core of the paper. We consider a
(J2 = ±1)-metric manifold. Our main aims are:

1. Studying the distinguished connections, namely, the first canonical, the
Chern, the well adapted, and the Kobayashi-Nomizu and the Yano connec-
tions, and connections with skew-symmetric torsion tensor when they can
be defined.

2. Characterizing the above connections by the vanishing of suitable ten-
sor fields defined in the previous section, when possible, and obtaining
properties of the torsion tensor.

3. Characterizing the coincidence among connections, when possible.
We present these connections in the quoted order and we study simultaneously

the characterization properties. In particular we will prove:

• The first canonical connection ∇0 can be defined in any (J2 = ±1)-metric
manifold and it is adapted to the structure.

• The Chern connection ∇c can be defined in (J2 = ±1)-metric manifold
with αε = −1 and it is adapted to the structure. There is no a definition
for the case αε = 1. Assuming αε = −1, it will be proved that ∇0 = ∇c if
and only if the manifold is quasi-Kähler.

• The well adapted connection ∇w can be defined in any (J2 = ±1)-metric
manifold and it is adapted to the structure. A characterization of ∇0 = ∇w

will be obtained.
• The Kobayashi-Nomizu connection ∇kn can be defined in any (J2 =
±1)-metric manifold but it is not natural in general. When a Kobayashi-No-
mizu connection is natural will be completely characterized.
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• The Yano connection ∇y can be defined in any (J2 = ±1)-metric manifold
but it is not natural in general (let us remember that it is not even adapted
to (M,J) in the general case). We will characterize the case when a Yano
connection is adapted.

• Connections with skew-symmetric torsion tensor ∇sk can be defined in any
(J2 = ±1)-metric manifold but they are not natural in general. Adapted
connections will be characterized. These connections are not uniquely
defined.

Besides, one can consider the Levi Civita connection ∇g, which is natural if
and only if the manifold is a Kähler type manifold (Lemma 4.5). In fact, ∇0, ∇kn

and ∇y are connections uniquely defined from the Levi Civita connection, while
the other ∇c, ∇w and ∇sk are connections defined imposing being adapted and
satisfying some conditions on the torsion tensor. In this second case one should
prove uniqueness, if there exists.

In the last section of the paper we will define a 1-parameter family of adapted
connections. This family will contain other distinguished connections such as the
Bismut connection ∇b, as we will show.

5.1. The first canonical connection. The covariant derivative∇0 of this connec-
tion was introduced in Definition 3.9 (in the almost Hermitian case the definition
was given in classical and seminal papers as [20] and [13]). According to formula
(6), its torsion tensor has the following expression

(18) T0(X,Y ) = (−α)
2
(
(∇g

XJ)JY − (∇g
Y J)JX

)
, ∀X,Y ∈ X(M) .

As ∇0 is a natural connection, Lemma 4.10 is valid for it, thus establishing a
link between the torsion tensor T0 and the Nijenhuis tensor. The following results
show other properties of T0.
Proposition 5.1. Let (M,J, g) be a (J2 = ±1)-metric manifold. The following
relation holds:

T0(JX, JY ) + αT0(X,Y ) = −1
2NJ(X,Y ) ,

(19)

T0(JX, JY )− αT0(X,Y ) = 1
2((∇g

XJ)JY − (∇g
JXJ)Y − (∇g

Y J)JX) + (∇g
JY J)X),

(20)

for all vector fields X,Y on M .
Proof. According to formulas (18) and (13) we obtain for all vector fields X,Y
on M

T0(JX, JY )+ αT0(X,Y ) = −1
2((∇g

XJ)JY +(∇g
JXJ)Y −(∇g

Y J)JX)−(∇g
JY J)X)

= −1
2NJ(X,Y ) ,

T0(JX, JY )− αT0(X,Y ) = 1
2((∇g

XJ)JY − (∇g
JXJ)Y − (∇g

Y J)JX)+(∇g
JY J)X) ,
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thus proving the result. �

Observe that in the case αε = −1, taking into account formula (15), one has
T0(JX, JY ) − αT0(X,Y ) = 1

2Ñ
−1
J (X,Y ), for all vector fields X,Y on M . Then

one easily proves:

Corollary 5.2. Let (M,J, g) be a (J2 = ±1)-metric manifold.
i) If α = −1 then J is integrable if and only if T0(JX, JY ) = T0(X,Y ), for

all vector fields X,Y on M .
ii) If α = 1 then J is integrable if and only if T0(JX, JY ) = −T0(X,Y ), for

all vector fields X,Y on M .
iii) If αε = −1 then (M,J, g) is a quasi-Kähler type manifold if and only if

T0(JX, JY ) = αT0(X,Y ), for all vector fields X,Y on M .

5.2. The Chern connection. The Chern connection was firstly introduced in
the case of almost Hermitian manifolds. In [7] we have extended the connection to
the almost para-Hermitian case, recovering the connection defined by Cruceanu
and one of us in [4]. The following results establish the existence and uniqueness of
the Chern connection in a (J2 = ±1)-metric manifold with αε = −1.

Theorem 5.3 ([7, Theor. 6.3]). Let (M,J, g) be a (J2 = ±1)-metric manifold with
αε = −1. Then there exists a unique linear connection ∇c in M reducible to the
G(α,ε)-structure defined by (J, g) whose torsion tensor Tc satisfies the following
condition

Tc(JX, JY ) = αTc(X,Y ) , ∀X,Y ∈ X(M) .
This connection is called the Chern connection of (M,J, g).

According to the second condition in Lemma 4.11 to the covariant derivative
∇c of the Chern connection, the condition

JTc(JX, Y ) = αTc(X,Y ) , ∀X,Y ∈ X(M) ,
determines the Chern connection in the case J is integrable. This property has
been taken in [18, Theor. 3.5] in order to introduce the Chern connection in
para-Hermitian manifolds. Our point of view is more general, because it also
includes the non-integrable case.

The following result characterizes the identity ∇0 = ∇c:

Proposition 5.4. Let (M,J, g) be a (J2 = ±1)-metric manifold with αε = −1.
Then the first canonical connection and the Chern connection of (M,J, g) coincide
if and only if the second Nijenhuis tensor of (M,J, g) vanishes.

Proof. By formula (20) one has

T0(JX, JY ) = αT0(X,Y )⇔ Ñ−1
J (X,Y ) = 0 , ∀X,Y ∈ X(M) .

�

According to Proposition 4.17 we can also have written ∇0 = ∇c if and only if
(M,J, g) is a quasi-Kähler type manifold.
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5.3. The well adapted connection. In [7] we have deeply studied this connec-
tion. It is an adapted connection to (M,J, g). It is also a functorial connection and
it is the most natural connection in the following sense: the G(α,ε)-structure defined
by (M,J, g) is integrable if and only if the torsion and the curvature tensors of the
well adapted connection vanish.

As in the case of the Chern connection, the well adapted connection can be
defined as the unique connection satisfying a condition about its torsion tensor:

Theorem 5.5 ([7, Theor. 4.4]). Let (M,J, g) be a (J2 = ±1)-metric manifold. Then
there exists a unique linear connection ∇w in M reducible to the G(α,ε)-structure
defined by (J, g) whose torsion tensor Tw satisfies the following condition

(21) g(Tw(X,Y ), Z)− g(Tw(Z, Y ), X)
= −ε(g(Tw(JX, Y ), JZ)− g(Tw(JZ, Y ), JX)) , ∀X,Y, Z ∈ X(M) .

This connection is called the well adapted connection of (M,J, g).

It is known (see [7, Theor. 5.2]) that the well adapted connection and the Levi
Civita connection coincide if and only if (M,J, g) is a Kähler type manifold, or,
equivalently if ∇g is a natural covariant derivative (Lemma 4.5).

We establish three results about the relation of the well adapted connection
with ∇0, with the integrability of J and with the Kähler condition.

Theorem 5.6. Let (M,J, g) be a (J2 = ±1)-metric manifold. Then the first
canonical connection and the well adapted connection coincide if and only if

i) (M,J, g) quasi-Kähler type manifold, in the case αε = −1.
ii) The α-structure J is integrable, in the case αε = 1.

Proof. For an adapted covariant derivative ∇a with torsion tensor Ta, let us
consider the tensor field F(∇a) of type (0,3) defined as

F(∇a, X, Y, Z) = g(Ta(X,Y ), Z)− g(Ta(Z, Y ), X)
+ ε(g(Ta(JX, Y ), JZ)− g(Ta(JZ, Y ), JX)),

for all vector fields X,Y, Z on M . By Theorem 5.5 we know that F(∇a) vanishes
if and only if ∇a = ∇w. Thus, we want to calculate the tensor field F(∇0)
corresponding to the first canonical connection ∇0 in order to characterize F(∇0) =
0.

The following relations hold:
i) If αε = −1 then

(22) F(∇0, X, Y, Z) = α

2 g(Ñ−1
J (X,Z), Y ) , ∀X,Y, Z ∈ X(M) .

ii) If αε = 1 then

(23) F(∇0, X, Y, Z) = α

2 g(NJ(X,Z), Y ) , ∀X,Y, Z ∈ X(M) .
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In order to prove the above relations, consider Lemma 3.8 and formula (18)
which allows to obtain

F(∇0, X, Y, Z) = α

2 (g((∇g
XJ)JZ, Y )− g((∇g

ZJ)JX), Y ))

+ ε

2(g((∇g
JXJ)Z, Y )− g((∇g

JZJ)X), Y )) ,

for all vector fields X, Y , Z on M . Then, taking into account formulas (15) and
(13) one easily obtains formulas (22) and (23).

Finally, taking into account formula (22) and Proposition 4.17 we obtain the
first statement of the present Theorem, and taking into account formula (23) and
the well known fact that the vanishing of the Nijenhuis tensor is equivalent to the
integrability of J one has the second statement. �

Concerning the integrability of J one obtains:

Proposition 5.7. Let (M,J, g) be a (J2 = ±1)-metric manifold with αε = 1.
Then the α-structure J is integrable if and only if the first canonical connection
and the well adapted connection coincide. Besides, J is integrable if and only if

Tw(JX, JY ) = (−α)Tw(X,Y ) , ∀X,Y ∈ X(M) .

Proof. It is a direct consequence of formulas (23) and (19). �

The study of Kähler condition will be divided in two cases: we will obtain a
specific result in the case αε = −1 and a general result for any (J2 = ±1)-metric
manifold.

Proposition 5.8. Let (M,J, g) be a J2 = ±1-metric manifold with αε = −1.
i) If the first canonical connection and the well adapted connection coincide

and the α-structure J is integrable then (M,J, g) is a Kähler type manifold.
ii) (M,J, g) is a Kähler type manifold if and only if

Tw(JX, JY ) = (−α)Tw(X,Y ) , ∀X,Y ∈ X(M) .

Proof. i) It follows from Proposition 4.20 and Theorem 5.6.
ii) We prove both implications.
⇒) If (M,J, g) is a Kähler type manifold then ∇w = ∇g, and then ∇w is a

torsion-free derivative thus obviously satisfying the condition.
⇐) As ∇w is a natural connection, by Lemma 4.11 i) one knows J in integrable.

Then, by Lemma 4.8 one has

(24) (∇g
XΦ)(Y,Z) = (−α)(∇g

JXΦ)(JY, Z) , ∀X,Y, Z ∈ X(M) .
According to Lemma 3.5 and formula (7), one obtains

(∇g
XΦ)(Y, Z) = − 1

2(g(Tw(JZ,X), Y )− g(Tw(Y,X), JZ)

+ g(Tw(Z,X), JY )− g(Tw(JY,X), Z)) ,
for all vector fields X, Y , Z on M . Condition (21) evaluated in (JZ,X, Y ) reads as
g(Tw(JZ,X), Y )− g(Tw(Y,X), JZ) = g(Tw(Z,X), JY )− g(Tw(JY,X), Z) ,
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for all X, Y , Z ∈ X(M), and then

(∇XΦ)(Y, Z) = g(Tw(JY,X), Z)− g(Tw(Z,X), JY )) ,

(∇JXΦ)(JY, Z) = −αg(Tw(JY,X), Z)− αg(Tw(Z, JX), Y ) , ∀X,Y, Z ∈ X(M) .

Taking into account the above equalities and formula (24) one concludes

αTw(Z,X) = JTw(Z, JX) , ∀X,Z ∈ X(M) .

Then

Tw(JX, JY ) = αTw(X,Y ) , ∀X,Y ∈ X(M) .

The last relation together the hypothesis prove the well adapted connection is
torsion-free, i.e., ∇w = ∇g, and then (M,J, g) is a Kähler type manifold. �

We finish the study of the well adapted connection characterizing Kähler type
manifolds.

Proposition 5.9. Let (M,J, g) be a (J2 = ±1)-metric manifold. Then (M,J, g)
is a Kähler type manifold if and only if

JTw(JX, Y ) = αTw(X,Y ) , ∀X,Y ∈ X(M) .

Proof.
⇒) In this case, ∇w = ∇g, and the condition is trivially satisfied.
⇐) Taking into account Lemma 3.7 and formula (21) reads as

g(Tw(X,Y ), Z)− g(Tw(Z, Y ), X) = −α(g(JTw(JX, Y ), Z)− g(JTw(JZ, Y ), X)) ,

for all X, Y , Z ∈ X(M), and by the hypothesis one has

g(Tw(X,Y ), Z) = g(Tw(Z, Y ), X) , ∀X,Y, Z ∈ X(M) ,

which is equivalent to the vanishing of the torsion tensor of ∇w, and then ∇w = ∇g,
thus proving the Levi Civita connection of g is a natural connection respect to
(J, g). By Lemma 4.5 one concludes (M,J, g) is a Kähler type manifold. �

5.4. The Kobayashi-Nomizu and the Yano connections. According to De-
finitions given by formulas (4) and (5) one has:

Definition 5.10. Let (M,J, g) be a (J2 = ±1)-metric manifold. The Kobayashi-No-
mizu connection of (M,J, g) is the linear connection whose covariant derivative is
given by

(25) ∇kn
X Y = ∇0

XY + (−α)
4 ((∇g

Y J)JX − (∇g
JY J)X), ∀X,Y ∈ X(M).

Definition 5.11. Let (M,J, g) be a (J2 = ±1)-metric manifold. The Yano connec-
tion of (M,J, g) is the linear connection whose covariant derivative is given by
(26)

∇y
XY = ∇g

XY+(−α)
2 (∇g

Y J)JX+(−α)
4 ((∇g

XJ)JY−(∇g
JXJ)Y ) , ∀X,Y ∈ X(M) .
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Remark 5.12. As we know ∇kn is always natural respect to J . According to
Proposition 2.13, ∇kn is torsion-free if and only if J is integrable. But, in general,
it is not reducible to the G(α,ε)-structure defined by (J, g). Taking into account
Lemma 3.12, ∇kn is natural respect to (J, g) if and only if

(27) g((∇g
Y J)JX,Z)−g((∇g

JY J)X,Z)+g((∇g
ZJ)JX, Y )−g((∇g

JZJ)X,Y ) = 0 ,

for all X, Y , Z ∈ X(M).
The Yano connection is adapted to the J-structure if and only if it is integrable

(Proposition 2.18), thus proving it is not natural respect to (J, g) in general.

The following result gives a condition about ∇kn = ∇w.

Proposition 5.13. Let (M,J, g) be a (J2 = ±1)-metric manifold. If the Kobayashi-
-Nomizu connection is reducible to the G(α,ε)- structure defined by (J, g) then the
Kobayashi-Nomizu connection and the well-adapted connection coincide.

Proof. By Lemmas 2.10 and 4.7 one obtains the following relation about the
torsion tensor of the Kobayashi-Nomizu connection

− ε(g(Tkn(JX, Y ), JZ)− g(Tkn(JZ, Y ), JX))
= g(Tkn(X,Y ), Z)− g(Tkn(Z, Y ), X) , ∀X,Y, Z ∈ X(M) .

Then the Kobayashi-Nomizu connection satisfies the condition (21) in Theorem
5.5. As the Kobayashi-Nomizu connection is assumed to be reducible, one also has
∇kng = 0, and then ∇kn = ∇w by Theorem 5.5. �

Corollary 5.14. Let (M,J, g) be a (J2 = ±1)-metric manifold. Then (M,J, g) is
a quasi-Kähler type manifold if and only if the Kobayashi-Nomizu connection is
natural respect to the (α, ε)-structure (J, g).

Proof. If αε = 1 then, by relations (9) and (11), formula (27) reads as

−g(Ñ1
J(Y,Z), X) = 0 , ∀X,Y, Z ∈ X(M) ,

thus proving the Kobayashi-Nomizu connection is metric if and only if (M,J, g) is
a quasi-Kähler type manifold (according to Proposition 4.15).

In the case αε = −1 the above quoted formulas (9) and (11) allow formula (27)
to be read as

−(g((∇g
J)JZ,X)− g((∇g

JY J)Z,X) + g((∇g
ZJ)JY,X)− g((∇g

JZJ)Y,X) = 0 ,

for all X, Y , Z ∈ X(M), thus proving the Kobayashi-Nomizu connection is metric
if and only if (M,J, g) is a quasi-Kähler type manifold (according to Remark
4.19). �

The Kobayashi-Nomizu connection has been studied in papers about specific
(J2 = ±1)-metric manifolds (see e.g., [3], [11], [17]).

We study now the situation of the Yano connection. As we have said, it is not a
natural connection in general. We want to characterize the case ∇y is reducible to
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the G(α,ε)-structure defined by (J, g). Let Sy be the diference tensor between ∇y

and ∇g, i.e.,
(28)

Sy(X,Y ) = (−α)
2 (∇g

Y J)JX + (−α)
4 ((∇g

XJ)JY − (∇g
JXJ)Y ) , ∀X,Y ∈ X(M) .

Then one has:

Proposition 5.15. Let (M,J, g) be a (J2 = ±1)-metric manifold and let ∇y be
the covariant derivative of the Yano connection. For all vector fields X, Y , Z on
M the following relations hold:

i) ∇kn
X Y −∇

y
XY = (−α)

4 NJ(X,Y ).
ii) Ty(X,Y ) = α

4NJ(X,Y ), where Ty denotes the torsion tensor of ∇y.
iii) ∇kn

X Y = ∇y
XY − Ty(X,Y ).

iv) JSy(X,Y )− Sy(X,JY )− (∇g
XJ)Y = (−α)

2 NJ(JX, Y ).

v) g(Sy(X,Y ), Z) + g(Sy(X,Z), Y ) = (−α)
2 (αεg((∇g

Y J)Z, JX)
+g((∇g

ZJ)JX, Y )) + α(1+αε)
4 g((∇g

JXJ)Y,Z).

Proof. The first four items are a direct consequence of Lemma 2.17 applied to
the torsion-free covariant derivative ∇g. In order to prove item v), observe that,
according to formula (28) and Lemma 3.8, one has

g(Sy(X,Y ), Z) + g(Sy(X,Z), Y ) = (−α)
2 g((∇g

Y J)JX,Z)

+ (−α)
4 (g((∇g

XJ)JY, Z)− g((∇g
JXJ)Y, Z))

+ (−α)
2 g((∇g

ZJ)JX, Y ) + (−α)
4 (g((∇g

XJ)JZ, Y )− g((∇g
JXJ)Z, Y ))

= (−α)
2 (αεg((∇g

Y J)Z, JX) + g((∇g
ZJ)JX, Y ))

+ α(1 + αε)
4 g((∇g

JXJ)Y, Z) , ∀X,Y, Z ∈ X(M) .

�

The following results are direct consequences of the above one.

Corollary 5.16. Let (M,J, g) be a (J2 = ±1)-metric manifold.
i) The Kobayashi-Nomizu and the Yano connections coincide if and only if

the α-structure J es integrable.
ii) The Yano connection is torsion-free if and only if J is integrable.
iii) The Yano connection is adapted to the α-structure J if and only if J is

integrable.

Proof. This is a direct consequence of items i), ii) and iv) of Proposition 5.15. �

Corollary 5.17. Let (M,J, g) be a (J2 = ±1)-metric manifold. Then the following
relations hold:
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i) Assuming αε = 1, the Yano connection is a metric connection if and only
if (M,J, g) is a Kähler type manifold.

ii) Assuming αε = −1, the Yano connection is a metric connection if and only
if (M,J, g) is a nearly Kähler type manifold.

Proof. i) Let us assume αε = 1. Then by item v) of Lemma 5.15 and by Lemma
3.4 one knows that ∇yg = 0 if and only if

g((∇g
XJ)Y, Z) = g((∇g

Y J)Z,X) + g((∇g
ZJ)X,Y ) , ∀X,Y, Z ∈ X(M) ,

which is equivalent, according to Lemma 4.6, to the condition (M,J, g) is a Kähler
type manifold.

ii) Now let us assume αε = −1. Then by item v) of Lemma 5.15 and by Lemma
3.4 one knows that ∇yg = 0 if and only if

g((∇g
Y J)Z, JX)− g((∇g

ZJ)JX, Y ) = 0 , ∀X,Y, Z ∈ X(M) ,
and according to formula (9) one has

g((∇g
Y J)Z, JX) + g((∇g

ZJ)Y, JX) = 0 , ∀X,Y, Z ∈ X(M) ,
thus concluding

(∇g
Y J)Z + (∇g

ZJ)Y = 0 , ∀Y,Z ∈ X(M) ,
which is an equivalent condition to that of (M,J, g) being a nearly Kähler type
manifold, because of Lemma 4.22. �

Corollary 5.18. Let (M,J, g) be a (J2 = ±1)-metric manifold. If the Yano
connection is reducible to the (α, ε)-structure (J, g) then (M,J, g) is a Kähler type
manifold.

Proof. As the Yano connection is reducible one has ∇yJ = 0 and ∇yg = 0. As
usual, we distinguish two cases:

If αε = 1 then the result follows from the above one.
Let us assume αε = −1. Then by condition ∇yJ = 0 one has J is integrable.

Besides, condition ∇yg = 0 implies (M,J, g) is a nearly Kähler type manifold,
and by Corollary 4.23 it is a quasi- Kähler type manifold. Finally, according to
Proposition 4.20, (M,J, g) is a Kähler type manifold. �

In the almost Norden case, i.e., in the case of manifolds endowed with a
(−1,−1)-structure, Yano connections are defined in [27] and [28]. As in those
papers the structure J is assumed to be integrable, Yano and Kobayashi-Nomizu
connections coincide.

5.5. Connections with totally skew-symmetric torsion. Connections with
totally skew-symmetric torsion have been studied on the different types of (J2 =
±1)-metric manifolds (see, e.g., [1], [8], [18], [22], [23] and [28]). As in the rest of
the paper, we are looking for a unified treatment of the topic. In the present case,
our emphasis is focused on the characterization of the existence of a connection
with totally skew-symmetric torsion adapted to the G(α,ε)-structure. We will obtain
the following facts:
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1. Such a characterization.
2. Assuming αε = −1, a different characterization and the uniqueness of a

natural connection with totally skew-symmetric torsion.
3. Assuming αε = 1, the equivalence between the existence of a natural

connection with totally skew-symmetric torsion and a global property of
the manifold: it is quasi-Kähler.

First, let us remember:

Definition 5.19. Let (M,J, g) be a (J2 = ±1)-metric manifold. A connection is
said to be a connection with totally skew-symmetric torsion if the operator defined
as

g(Tsk(X,Y ), Z) , ∀X,Y, Z ∈ X(M) ,
is a 3-form on M , where Tsk denotes the torsion tensor of ∇sk, this being the
covariant derivative of the connection.

As Tsk is a skew-symmetric tensor, i.e., Tsk(X,Y ) = −Tsk(Y,X), for all X,Y
vector fields on M , the above condition is equivalent to the following one

g(Tsk(X,Y ), Z) = −g(Tsk(Z, Y ), X) , ∀X,Y, Z ∈ X(M) .
We are interested in natural connections with totally skew-symmetric torsion. In the
following result, which follows directly from formula (7), we obtain a relationship
between the torsion and the potential tensors of such a connection.

Lemma 5.20. Let (M,J, g) be a (J2 = ±1)-metric manifold and let ∇sk be a
natural covariant derivative with totally skew-symmetric torsion. Then the potencial
tensor Ssk of ∇sk satisfies

Ssk(X,Y ) = 1
2Tsk(X,Y ) , ∀X,Y ∈ X(M) .

Then, we have:

Theorem 5.21. Let (M,J, g) be a (J2 = ±1)-metric manifold. Then the following
conditions are equivalent:

i) There exists a natural covariant derivative ∇sk with tollay skew-symmetric
torsion.

ii) The Nijenhuis tensor is
(29) NJ(X,Y ) = 2((∇g

XJ)JY + (∇g
JXJ)Y ) , ∀X,Y ∈ X(M) .

iii) The following relation holds:
(30) (∇g

XJ)JY + (∇g
JXJ)Y + (∇g

Y J)JX + (∇g
JY J)X = 0 , ∀X,Y ∈ X(M) .

Proof. i) ⇒ ii) According to the above lemma and Lemma 3.5 one has
(JTsk(JX, Y )− αTsk(X,Y )) + (JTsk(X,JY )− Tsk(JX, JY ))

= 2((∇g
XJ)JY + (∇g

JXJ)Y ) ,
and by Lemma 4.10 one obtains the expression of the Nijenhuis tensor.
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ii) ⇒ iii) Let us consider the expression of the Nijenuis tensor given in ii) and
that given in formula (3). Subtracting both expressions one has

(∇g
XJ)JY + (∇g

JXJ)Y + (∇g
Y J)JX + (∇g

JY J)X = 0, ∀X,Y ∈ X(M),

as we wanted.
iii)⇒ i) We should define a natural covariant derivative with totally skew-symmetric

torsion. Let us consider separately both cases αε = ±1.
In the case αε = −1 let ∇ be the covariant derivative defined as follows

g(∇XY, Z) = g(∇0
XY,Z) + (−α)

2 (g((∇g
Y J)JZ,X) + g((∇g

JZJ)Y,X)) ,(31)

∀X,Y, Z ∈ X(M) .

As we have defined ∇ from the first canonical connection ∇0, in order to prove ∇ is
natural we must check we are in the conditions of Lemma 3.12. For this, we should
consider the tensor Q = ∇ − ∇0. We must prove the following two conditions,
according to Lemma 3.12:

1. Q ∈ Lα, i.e., Q(X,JY ) = JQ(X,Y ),
2. g(Q(X,Y ), Z) + g(Q(X,Z), Y ) = 0,

for any vector fields X, Y ∈ X(M). Taking into account the hypothesis iii), one has

g(Q(X, JY )−JQ(X,Y ), Z) = g(Q(X, JY ), Z)− g(JQ(X,Y ), Z)

= (−α)
2 g(α(∇g

Y J)Z + (∇g
JY J)JZ + (∇g

JZJ)JY

+ α(∇g
ZJ)Y,X) = 0 ,

g(Q(X,Y ), Z) + g(Q(X,Z), Y ) = (−α)
2 g((∇g

Y J)JZ + (∇g
JY J)Z

+ (∇g
ZJ)JY + (∇g

JZJ)Y,X) = 0 ,

for all X, Y , Z ∈ X(M), thus proving ∇ is a natural covariant derivative.
In order to prove the torsion tensor T of ∇ is totally skew-symmetric, observe

that, according to Lemma 3.8 one has

g(T(X,Y ), Z) = (−α)(g((∇g
XJ)JY, Z)− g((∇g

Y J)JX,Z) + g((∇g
JZJ)Y,X)) ,

for all X, Y , Z ∈ X(M), and then

g(T(X,Y ), Z) + g(T(Z, Y ), X) = αg((∇g
XJ)JZ + (∇g

JXJ)Z + (∇g
ZJ)JX

+ (∇g
JZJ)X,Y ) = 0 ,

for all vector fields X, Y , Z on M , thus proving T is totally skew-symmetric.

In the case αε = 1 we use a similar idea, defining ∇ as the covariant derivative
given by

(32) ∇XY = ∇0
XY + α

4 ((∇g
Y J)JX − (∇g

JY J)X) , ∀X,Y ∈ X(M) .
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In order to prove ∇ is natural we must check the same properties for the tensor
Q = ∇−∇0, according to the same Lemma 3.12. One has

Q(X, JY )− JQ(X,Y ) = α

4 (∇g
JY J)JX − 1

4(∇g
Y J)X

−
(
− 1

4(∇g
Y J)X + α

4 (∇g
JY J)JX

)
= 0 ,

g(Q(X,Y ), Z) + g(Q(X,Z), Y ) = (−α)
4 g((∇g

Y J)JZ

+ (∇g
JY J)Z + (∇g

ZJ)JY + (∇g
JZJ)Y,X) = 0 ,

for all X, Y , Z ∈ X(M), thus proving ∇ is a natural covariant derivative.
About the torsion, from hypothesis iii) one obtains

T(X,Y ) = 3α
2 (∇g

Y J)JX + α(∇g
JXJ)Y + α

2 (∇g
JY J)X , ∀X,Y ∈ X(M) ,

and then
g(T(X,Y ), Z) + g(T(Z, Y ), X) = α(g((∇g

JXJ)Y,Z) + g((∇g
JY J)X,Z)

+ g((∇g
JZJ)X,Y )) , ∀X,Y, Z ∈ X(M) .

We must prove the torsion is totally skew-symmetric, i.e., g(T(X,Y ), Z) +
g(T(Z, Y ), X) = 0, for all vector fields on M . In this case αε = 1, condition iii)
means the second Nijenhuis tensor vanishes, according to formula (14). Then, by
Proposition 4.15 one has (M,J, g) is a quasi-Kähler type manifold. Evaluating the
condition of a quasi-Kähler type manifold of Definition 4.14 in (JX, JY, JZ), and
taking into account formula (10), one obtains
α(g((∇g

JXJ)Y, Z) + g((∇g
JY J)X,Z) + g((∇g

JZJ)X,Y )) = 0 , ∀X,Y, Z ∈ X(M) ,
thus proving T is totally skew-symmetric. �

This theorem provides a common characterization of the existence of a natural
connection with totally skew-symmetric torsion for all the four geometries, which
we classify by two conditions: αε = −1 and αε = 1. One can recover the specific
results for each geometry, as we show in the following Propositions:

Proposition 5.22 ([8, Theor. 10.1], [18, Corol. 3.3]). Let (M,J, g) be a (J2 =
±1)-metric manifold with αε = −1. There exists a natural connection with totally
skew-symmetric torsion if and only if the (0, 3) type tensor defined as
(33) g(NJ(X,Y ), Z) , ∀X,Y, Z ∈ X(M) ,
is a 3-form on M . Besides, this connection is uniquely determined.

Proof. By formula (3) and Lemma 3.8 one has
g(NJ(X,Y ), Z) =− g((∇g

XJ)JZ, Y )− g((∇g
JXJ)Z, Y )

− g((∇g
Y J)JX,Z)− g((∇g

JY J)X,Z) ,(34)

−g(NJ(Z, Y ), X) = g((∇g
ZJ)JX, Y ) + g((∇g

JZJ)X,Y )
− g((∇g

Y J)JX,Z)− g((∇g
JY J)X,Z) .(35)
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As the Nijenhuis tensor is skew-symmetric (by Lemma 4.7), then property (33) is
satisfied if and only if

g(NJ(X,Y ), Z) = −g(NJ(Z, Y ), X) , ∀X,Y, Z ∈ X(M) ,

which, according to formulas (34) and (35), is satisfied if and only if

(∇g
XJ)JZ + (∇g

JXJ)Z + (∇g
ZJ)JX + (∇g

JZJ)X = 0 , ∀X,Z ∈ X(M) ,

which is condition iii) of Theorem 5.21, and then this is equivalent to the existence
of a natural connection with totally skew-symmetric torsion.

Now, we are going to prove the uniqueness of such a connection. Let ∇sk be an
adapted covariant derivative with totally skew-symmetric torsion, and let Tsk (resp.
Ssk) denote its torsion tensor (resp. potential tensor). By Lemma 5.20 one has

Ssk(X,Y ) = 1
2Tsk(X,Y ) , ∀X,Y ∈ X(M) .

Besides, according to Lemmas 3.5 and 3.7, as αε = −1, one has

g((∇g
XJ)Y,Z) = 1

2g(JTsk(X,Y ), Z)− 1
2g(Tsk(X,JY ), Z)

= −1
2(g(Tsk(X,Y ), JZ) + g(Tsk(X,JY ), Z))

for all vector fields X, Y , Z on M . Then
(−α)

2 g((∇g
XJ)JY, Z) = α

4 (g(Tsk(X, JY ), JZ) + αg(Tsk(X,Y ), Z)) ,

(−α)
2 g((∇g

Y J)JZ,X) = α

4 (g(Tsk(Y, JZ), JX) + αg(Tsk(Y,Z), X)) ,

(−α)
2 g((∇g

JZJ)Y,X) = α

4 (g(Tsk(JZ, Y ), JX) + g(Tsk(JZ, JY ), X)) ,

for all X, Y , Z ∈ X(M). As the torsion tensor of ∇sk is skew-symmetric and totally
skew-symmetric, the following relations hold:

g(Tsk(X, JY ), JZ) + g(Tsk(JZ, JY ), X) = 0 ,
g(Tsk(Y, JZ), JX) + g(Tsk(JZ, Y ), JX) = 0 ,
g(Tsk(X,Y ), Z) + g(Tsk(Y,Z), X) = 2g(Tsk(X,Y ), Z) , ∀X,Y, Z ∈ X(M) .

Then one has
1
2g(Tsk(X,Y ), Z) = (−α)

2 g((∇g
XJ)JY, Z) + (−α)

2 (g((∇g
Y J)JZ,X)

+ g((∇g
JZJ)Y,X)) , ∀X,Y, Z ∈ X(M) ,

thus obtaining the following relation

g(Ssk(X,Y ), Z) = (−α)
2 g((∇g

XJ)JY, Z) + (−α)
2 (g((∇g

Y J)JZ,X)

+ g((∇g
JZJ)Y,X)) , ∀X,Y, Z ∈ X(M) .
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As the above relation is true for all Z ∈ X(M), then the potential tensor Ssk(X,Y )
is uniquely determined, and then, the covariant derivative ∇sk = ∇g + Ssk is also
uniquely determined, as we wanted.

The expression of this unique covariant derivative is that given in (31). �

Remark 5.23. According to Proposition 4.23 and Theorem 5.21, one can easily
deduce that a nearly Kähler type manifold has a natural connection with totally
skew-symmetric torsion. And, by (31), one obtains that this unique connection is
the first canonical connection

g(∇XY, Z) = g(∇0
XY,Z) + (−α)

2 (g((∇g
Y J)JZ,X) + g((∇g

JZJ)Y,X))

= g(∇0
XY,Z) , ∀X,Y, Z ∈ X(M) ,

taking into account property ii) of Lemma 4.22. One can see this result in, e.g.,
[18] and [29].

In the case αε = 1 one has:

Proposition 5.24 ([22, Theor. 3.1], [23, Theor. 5, Theor. 6], [28, Corol. 2.4]).
Let (M,J, g) be a (J2 = ±1)-metric manifold with αε = 1. There exists a natu-
ral connection with totally skew-symmetric torsion if and only if (M,J, g) is a
quasi-Kähler type manifold.

Proof. As we have said in the proof iii) ⇒ i) of Theorem 5.21, in the case αε = 1,
condition (30) means the second Nijenhuis tensor vanishes, i.e., (M,J, g) is a
quasi-Kähler type manifold. �

The following table summarizes some of the main properties of the distinguished
connections on a (J2 = ±1)-metric manifold (M,J, g) studied through the present
paper.

Connection αε = −1 αε = 1

∇g Levi-Civita adapted if and only if (M,J, g) is Kähler type
∇0 first canonical always adapted

always adapted and
∇c Chern ∇0 = ∇c if and only if there is no

(M,J, g) is quasi-Kähler type
always adapted and always adapted and

∇w well-adapted ∇0 = ∇w if and only if ∇0 = ∇w if and only if
(M,J, g) is quasi-Kähler type J is integrable

∇kn Kobayashi-Nomizu adapted if and only if (M,J, g) is quasi-Kähler type
∇y Yano adapted if and only if (M,J, g) is Kähler type

∇sk totally skew- adapted if and only if (∇g
X
J)JY + (∇g

JX
J)Y + (∇g

Y
J)JX + (∇g

JY
J)X = 0

symmetric torsion

Tab. 1: Covariant derivatives on a (J2 = ±1)-metric manifold
studied in this section
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6. The one-parameter family of canonical connections

Canonical connections on a (J2 = ±1)-metric manifold (M,J, g) are a class
of significative connections adapted to such a structure. They were introduced
in the two geometries of the case αε = −1, in [13, Defin. 2] for the almost
Hermitian geometry and in [18, Defin. 3.4] for the almost para-Hermitian one. This
class of connections consists on a one-parameter family of adapted connections
which depends on the first canonical connection ∇0 and the differential of the
fundamental form Φ (see [13, Formula (2.5.4)] and [18, Formula (3.13)]). In the
case (α, ε) = (−1, 1), in [5, Formula (11)] it is shown another expression of this
family of canonical connections in terms of ∇g and ∇gJ .

A key point is that this family of canonical connections is the affine line de-
termined by the first canonical connection and the Chern connection, i.e., the
set
(36) ∇t = (1− t)∇0 + t∇c , ∀t ∈ R .

As the Chern connection can not be defined in the αε = 1 context, it does not
seem possible to define canonical connections in this case. But we will show a way
to do it. The idea is the following: in the case αε = −1, the well adapted connection
is also a canonical connection, i.e., is a connection in the line defined in (36). Then
this line can be parametrized as

∇s = (1− s)∇0 + s∇w , ∀s ∈ R .
As the first canonical connection and the well adapted connection can be also
defined in the case αε = 1, we are able to define canonical connections on any
(J2 = ±1)-metric manifold (M,J, g).

In the following result we obtain the one-parameter family of canonical connec-
tions. First of all, let us remember the expression of the tensor

F(∇0, X, Y, Z) = g(T0(X,Y ), Z)− g(T0(Z, Y ), X)
+ ε(g(T0(JX, Y ), JZ)− g(T0(JZ, Y ), JX)) ,

for all vector fields X, Y , Z on M , given in the proof of Theorem 5.6. Then we
have:
Theorem 6.1. Let (M,J, g) be a (J2 = ±1)-metric manifold with αε = −1.

i) The one-parameter family of covariant derivatives on (M,J, g) given by

g(∇s
XY,Z) = g(∇0

XY, Z) + αs

6 F(∇0, Y,X,Z)

= g(∇0
XY, Z) + αs

12 g(Ñ−1
J (Y, Z), X) , ∀s ∈ R ,(37)

for all X, Y , Z vector fields on M , is a family of natural covariant deri-
vatives which contains the covariant derivatives of the first canonical, the
Chern and the well adapted connections.

ii) The above family and that of canonical connections coincide. Besides, the
family can be parametrized as

∇s = (1− s)∇0 + s∇w , ∀s ∈ R .
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Proof. i) The second equality is direct by formula (22). Given X, Y , Z vector
fields on M , by Lemma 4.13 one obtains

g(Q(X, JY ), Z)− g(JQ(X,Y ), Z) = αs

12 g(Ñ−1
J (JY, Z), X)

+ αs

12 g(Ñ−1
J (Y, JZ), X) = 0 ,

g(Q(X,Y ), Z) + g(Q(X,Z), Y ) = αs

12 g(Ñ−1
J (Y,Z), X)

+ αs

12 g(Ñ−1
J (Z, Y ), X) = 0 ,

and then, according to Lemma 3.12, each covariant derivative ∇s, s ∈ R, is adapted
to (J, g).

Obviously ∇0 belongs to the family, taking s = 0. In order to prove the covariant
derivatives of the Chern and well adapted connections also belongs to the family
we must find other values of s which determine these covariant derivatives. Let
s ∈ R; then the torsion tensor Ts of ∇s satisfies

g(Ts(X,Y ), Z) = g(T0(X,Y ), Z) + αs

12 (g(Ñ−1
J (Y,Z), X)

− g(Ñ−1
J (X,Z), Y )) , ∀X,Y, Z ∈ X(M) .(38)

For all vector fields X, Y , Z on M , according to Lemma 4.13 one has

g(Ñ−1
J (Y,Z), X) + εg(Ñ−1

J (Y, JZ)JX)− (g(Ñ−1
J (Y,X), Z)

+ εg(Ñ−1
J (Y, JX), JZ)) = −2g(Ñ−1

J (X,Z), Y ) ,

then one obtains

g(Ts(X,Y ), Z)− g(Ts(Z, Y ), X) + ε(g(Ts(JX, Y ), JZ)

− g(Ts(JZ, Y ), JX)) = α

2 (1− s)g(Ñ−1
J (X,Z), Y ) .

Taking s = 1, the above expression reads as formula (21), thus proving, by Propo-
sition 5.5, that the corresponding covariant derivative is that of the well adapted
connection.

Now, we are going to prove that the Chern connection corresponds to s = 3. For
all vector fields X, Y , Z on M , according to Lemma 3.8 one obtains

g(Ñ−1
J (Y, Z), X)− g(Ñ−1

J (X,Z), Y ) = g(Ñ−1
J (X,Y ), Z) + 2(g((∇g

ZJ)JX, Y )
− g((∇g

JZJ)X,Y )) ,
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which together formula (38), formula (20) in the case αε = −1, and Lemma 4.13,
leads to the following two expressions

(39)

g(Ts(X,Y ), Z) = g(T0(X,Y ), Z) + αs

12 g(Ñ−1
J (X,Y ), Z)

+ αs

6 (g((∇g
ZJ)JX, Y )− g((∇g

JZJ)X,Y )) ,

g(Ts(JX, JY ), Z) = αg(T0(X,Y ), Z) + 1
12(6− s)g(Ñ−1

J (X,Y ), Z)

+ s

6(g((∇g
ZJ)JX, Y )− g((∇g

JZJ)X,Y )) .

According to Theorem 5.3, the covariant derivative ∇s is that of Chern connection
if and only if s = 3.

ii) Let X, Y , Z be vector fields on M and s ∈ R. Then, one has

g(∇s
XY, Z) = (1− s)g(∇0

XY, Z) + s(g(∇0
XY, Z) + α

6F(∇0, Y,X,Z))

= (1− s)g(∇0
XY, Z) + sg(∇1

XY,Z) ,

thus proving

∇s
XY = (1− s)∇0

XY + s∇w
XY , ∀X,Y ∈ X(M),∀s ∈ R ,

and then,

∇s = (1− s)∇0 + s∇w , ∀s ∈ R .

Then one has:
• the family of the canonical connections is the affine line {∇t = (1− t)∇0 +
t∇c : t ∈ R} determined by the first canonical and the Chern connections,

• the first canonical, the Chern and the well adapted connection belong to the
family given in the present theorem,

• the family of the present theorem is a line of adapted connections,
{∇s = (1− s)∇0 + s∇w : s ∈ R},

and thus one can conclude that both families of canonical connections and that of
the present theorem coincide. �

Remark 6.2. (1) The family of canonical connections has been parametrized in
two different forms. The relation between parameters is s = 3t. So, the Chern
connection corresponds to t = 1, as it is expressed in [13], and to s = 3.

(2) In the case of a manifold endowed with an α-structure J we had obtained a
family of adapted connections respect to that structure in Proposition 2.6. That
family does not have to do with the present one. In Example 6.8 we will be more
accurate about this point.

(3) Taking into account the expression of the second Nijenhuis tensor of (J, g),
one obtains the following expression of the Chern connection

g(∇c
XY, Z) = g(∇0

XY,Z)+ 1
4g((∇g

ZJ)JY −(∇g
Y J)JZ−(∇g

JZJ)Y +(∇g
JY J)Z,X) ,
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for all X, Y , Z ∈ X(M). In the case (α, ε) = (−1, 1), this is the expression of the
Chern connection given in [5, Formula (10)].

Example 6.3. In [13] the author points out two other distinguished canonical
connections, which corresponds to the values t = −1 (or s = −3 in our notation) and
t = 1

3 (or s = 1). This second one is, as we already know, the well adapted connection
∇w. The first one is the so-called Bismut connection ∇b, firstly introduced in [2],
which can be characterized by the following fact: the tensor

B(X,Y ) = Tb(X,Y ) + α

4NJ(X,Y ) , ∀X,Y ∈ X(M) ,

is totally skew-symmetric, where Tb is the torsion tensor of ∇b. Indeed, let X,Y, Z
be vector fields on M , by formula (39) and Lemma 3.8 one has

g(T−3(X,Y ), Z) + α

4 g(NJ(X,Y ), Z) = (−α)
2 (g(Ñ−1

J (X,Y ), Z)

+ g((∇g
ZJ)JX, Y )− g((∇g

JZJ)X,Y )) ,

g(T−3(Z, Y ), X) + α

4 g(NJ(Z, Y ), X) = α

2 (g(Ñ−1
J (X,Y ), Z)

+ g((∇g
ZJ)JX, Y )− g((∇g

JZJ)X,Y )) .

Under the assumptions of Theorem 5.21, formula (30) implies the second Nijen-
huis tensor of (M,J, g) can be written as

Ñ−1
J (Y,Z) = 2((∇g

Y J)JZ + (∇g
JZJ)Y ) , ∀Y,Z ∈ X(M) .

Thus, if s = −3 one obtains the connection with totally skew-symmetric connection
∇sk introduced in (31),

g(∇−3
X Y,Z) = g(∇sk

XY, Z) = g(∇0
XY,Z)+(−α)

2 (g((∇g
Y J)JZ,X)+g((∇g

JZJ)Y,X)) ,

for all X, Y , Z ∈ X(M). If there exists a connection satisfying the previous
conditions then such connection belongs to the family of canonical connections.

Also one can conclude that the unique natural connection with totally skew-sym-
metric torsion in the case αε = −1, if there exists, is the Bismut connection
corresponding to the case s = −3 (see Proposition 5.22). For this reason in many
papers it is called the natural connection with totally skew-symmetric torsion.

Taking in mind the case αε = −1, we can go ahead with that of αε = 1:

Definition 6.4. Let (M,J, g) be a (J2 = ±1)-metric manifold with αε = 1. A cano-
nical connection of (M,J, g) will be any connection reducible to the G(α,ε)-structure
defined by (J, g) whose covariant derivative has the form

∇s
XY = (1− s)∇0

XY + s∇w
XY , ∀X,Y ∈ X(M),∀s ∈ R .

Now, we are looking for an expression of the one-parameter family of canonical
connections similar to that obtained in Theorem 6.1 i) for the case αε = −1.
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Proposition 6.5. Let (M,J, g) be a (J2 = ±1)-metric manifold with αε = 1. The
family of canonical connections of (M,J, g) is given by the expression

(40)

g(∇s
XY, Z) = g(∇0

XY,Z) + αs

4 F(∇0, Y,X,Z)

= g(∇0
XY,Z) + αs

8 g(NJ(Y, Z), X) , ∀s ∈ R ,

for all X, Y , Z vector fields on M .

Proof. The second equality is a direct consequence of formula (23). According to
Lemma 4.7, one obtains

g(Q(X, JY ), Z)−g(JQ(X,Y ), Z) = αs

8 g(NJ(JY, Z), X)

− αs

8 g(NJ(Y, JZ), X) = 0 ,

g(Q(X,Y ), Z)+g(Q(X,Z), Y ) = αs

8 g(NJ(Y,Z), X)

+ αs

8 g(NJ(Z, Y ), X) = 0 , ∀X,Y, Z ∈ X(M) ,

thus proving, by Lemma 3.12, each covariant derivative ∇s, s ∈ R, is adapted to
(J, g).

Given s ∈ R, the torsion of ∇s satisfies

g(Ts(X,Y ), Z) = g(T0(X,Y ), Z) + αs

8 (g(NJ(Y,Z), X)− g(NJ(X,Z), Y )),(41)

g(Ts(Z, Y ), X) = g(T0(Z, Y ), X) + αs

8 (g(NJ(Y,X), Z)− g(NJ(Z,X), Y )),(42)

for all vector fields X,Y, Z on M . Then, by Lemma 4.7, one has

αg(NJ(X,Y ), Z) + αεg(NJ(X, JY ), JZ) = 0 , ∀X,Y, Z ∈ X(M) .

Considering the above equalities, formula (23) and Lemma 4.7 one obtains

g(Ts(X,Y ), Z)− g(Ts(Z, Y ), X) + ε(g(Ts(JX, Y ), JZ)

− g(Ts(JZ, Y ), JX)) = α

2 (1− s)g(NJ(X,Z), Y ) ,

for all vector fields X, Y , Z on M . Taking s = 1, the above expression reads as
formula (21), thus proving, by Proposition 5.5, that the corresponding covariant
derivative is that of the well adapted connection.

The first canonical and the well adapted connections belongs to this one-parameter
family of natural connections of (M,J, g), because they correspond to the values
s = 0 and s = 1. By a similar argument to that used in the proof of item ii) of
Theorem 6.1, one can conclude that also in the present case one has

∇s
XY = (1− s)∇0

XY + s∇w
XY , ∀X,Y ∈ X(M) , ∀s ∈ R ,

thus proving both families, that of the statement and that of the canonical connec-
tions, coincide. �
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In the case ∇0 = ∇w the line of canonical connections reduces to a point. The
more geometric properties the manifold has, the less number of different distingui-
shed connections exist. We finish the paper with three examples of distinguished
connections on (J2 = ±1)-metric manifolds with additional properties.

Example 6.6. Assume αε = 1, J is non integrable and (M,J, g) is a quasi-Kähler
type manifold. Then ∇0 6= ∇w, and the well-adapted and the Kobayashi-Nomizu
coincide, by Proposition 5.13 and Corollary 5.14. Besides, there exists a covariant
derivative with totally skew-symmetric torsion (see Theorem 5.21). Taking into
account the expression (29) of the Nijenhuis tensor of J one obtains that the family
of connections in Proposition 6.5 can be written as

∇s
XY = ∇0

XY + (−α)s
4 ((∇g

Y J)JX − (∇g
JY J)X), ∀X,Y ∈ X(M),∀s ∈ R.

Taking s = −1 one obtains the connection with totally skew-symmetric connection
∇sk introduced in (32),

∇−1
X Y = ∇sk

XY = ∇0
XY + α

4 ((∇g
Y J)JX − (∇g

JY J)X) , ∀X,Y ∈ X(M) , ∀s ∈ R .

thus proving this connection belongs to the family of canonical connections. In fact,
it is the unique connection in the family with totally skew-symmetric torsion. We
prove this claim. Let X, Y , Z be vector fields on M . Then

g((∇g
JY J)X,Z) = −g((∇g

XJ)JY, Z)− g((∇g
ZJ)JY,X),

g(T0(X,Y ), Z) + g(T0(Z, Y ), X) = α

2 g((∇g
JY J)X,Z),

g(NJ(Y,Z), X) + g(NJ(Y,X), Z) = 4g((∇g
JY J)X,Z) .

Given s ∈ R, by (41) and (42) and taking into account the above identities, the
torsion of ∇s satisfies
g(Ts(X,Y ), Z) + g(Ts(Z, Y ), X) = α

2 (1 + s)g((∇g
JY J)X,Z) , ∀X,Y, Z ∈ X(M) .

Then the torsion tensor of ∇s is totally skew-symmetric if and only if s = −1.

Example 6.7. In [22, Theor. 3.1] and [23, Theor. 6] the authors study the torsion
of natural connections with totally skew-symmetric torsion defined on a (J2 =
±1)-metric manifold with αε = 1. They call such connections as KT-connections
and RPT-connections, respectively. They choose a distinguished connection, which
is the unique canonical connection with totally skew-symmetric torsion obtained in
(32).

Remark 6.8. Let (M,J, g) be a (J2 = ±1)-metric manifold. Recall that the
Kobayashi-Nomizu connection and the well-adapted connection coincide if and only
if (M,J, g) is a quasi-Kähler type manifold. In this case the families of canonical
connections obtained in Theorem 6.1 and Proposition 6.5 are the same that the
family of Proposition 2.6, introduced in manifolds having an α-structure J , assuming
the symmetric covariant derivative, choosen in the manifold, is that of the Levi
Civita connection of g.
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