ARCHIVUM MATHEMATICUM (BRNO)
Tomus 52 (2016), 221-231

PARALLEL AND TOTALLY GEODESIC HYPERSURFACES
OF SOLVABLE LIE GROUPS

MEHRI NASEHI

ABSTRACT. In this paper we consider special examples of homogeneous spaces
of arbitrary odd dimension which are given in [5] and [I6]. We obtain the
complete classification and explicitly describe parallel and totally geodesic
hypersurfaces of these spaces in both Riemannian and Lorentzian cases.

1. INTRODUCTION

Parallel submanifolds are the first important class of submanifolds to study [13].
They play an important role in geometry and general relativity and the study of
these submanifolds helps us to enrich our knowledge of the geometry of the ambient
spaces.

A submanifold is called parallel if its second fundamental form is covariantly
constant and it is called totally geodesic if its second fundamental form vanishes
identically. Hence, the extrinsic invariants of parallel submanifolds do not vary
from point to point and these submanifold can be considered as a natural extension
of totally geodesic submanifolds.

Parallel and totally geodesic surfaces in four dimensional Lorentzian space forms
and in pseudo-Riemannian space forms with an arbitrary index and dimension
have been classified respectively in [I0] and [IT]. Also the classification of parallel
and totally geodesic hypersurfaces in real space forms of any dimension can be
found in [I7] and [19].

A natural generalization of spaces of constant curvature are homogeneous spaces.
Thus it is interesting to choose these spaces as ambient spaces and classify their
parallel and totally geodesic hypersurfaces. Up to our knowledge, this study has been
done for the homogeneous spaces with dimension less than 6. In fact the complete
classification of parallel and totally geodesic surfaces in all three dimensional
Riemannian and Lorentzian homogeneous spaces is given in [4, [7, 8, [14] [T5]. Also,
parallel hypersurfaces of four dimensional oscillator groups and totally geodesic
hypersurfaces of four dimensional generalized symmetric spaces are classified in [9]
and [12], respectively. Moreover, the complete classification of parallel and totally
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geodesic hypersurfaces of two-step homogeneous nilmanifolds of dimension five is
given in [I§].

In the present paper, we deal with the problem of classifying parallel and totally
geodesic hypersurfaces for a class of solvable Lie groups of arbitrary odd dimension.
These Lie groups consist of all matrices of the form

e 0 - 0
0 e .- 0 =
(1) S
0 0 . eun Tn
0 o --- 0 1
where (zo,Z1,...,Tn,U1,...,Uy) € Ry = —(u1 + -+ + uy,) and n is any

integer n > 1. Following the works [5] [6] [16] to which we may refer for more details,
in [I] we investigated some geometrical properties of these spaces with dimension
five in both Riemannian and Lorentzian cases. Then in [3] we generalized this study
for an arbitrary odd dimension and in [2] we investigated the Randers metrics of
Douglas type on these spaces. Our aim in the present paper is to give the complete
classification and explicitly describe parallel and totally geodesic hypersurfaces of
these spaces in both Riemannian and Lorentzian cases. Moreover we describe some
results of this classification which are related to the number of these hypersurfaces.

2. CURVATURE PROPERTIES OF THE CLASS OF SOLVABLE LIE GROUPS G,

Let us denote this class of solvable Lie groups by G,, and consider the following
left-invariant vector fields on G,,,

Xi:e“iaii, 1=0,1,...,n, Ua:%azl,...,n.

Following [2], we can equip these spaces by the left-invariant Riemannian metric

n

g:Z ~2Ui (day) Jerua ,

i=0
and the left-invariant Lorentzian metric
n n
g = —e 2" (dxg)? + Z e (day)? Z (dug)?
i=1 a=1
Then the set {Xo, ..., Xn,Us,...,U,} with respect to the inner product (, ) which

is induced by the Riemannian metric g (Lorentzian metric g) is an orthonormal
(pseudo-orthonormal) frame field for the Lie algebra G,, of G,, and we have

[)(07 Ua] = Xo, [Xa, U,@} = —(SQBXQ and [Xi,Xj] = [Ua,Ug] =0.
where o, 3=1,...,nandi,j =0,1,...,n. Also the non-zero Levi-Civita connection

components in the Riemannian case are given by

(2) VxoUa=Xo, Vx,Xo=—-(D_Ua), Vx.Ua = =6iaXi, Vx, X; = 60U ,
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and in the Lorentzian case are given by

(3)  VxoUa=Xo, VxoXo=> Ua, Vx,Uo = —6iaXi, Vx,Xi = 6ialUs ,
a=1

where a, i = 1,...,n. If we adopt the following sign conventions for the curvature

tensor field R,

R(X,Y) = V[X’y] - [VX,Vy] and RXYZW = <R(X, Y)Z, W>,

where X, Y, Z and W are left-invariant vector fields on G,,, then the non-zero
curvature components in the Riemannian case are

RX[)UiX()Uj = _RXlUlUle - RX()XiXiXo = _17 Zh? = 17 e, n

and the ones obtained by these components using the symmetries of the curvature
tensor. Also the non-zero curvature components in the Lorentzian case are

Rx,u,x,u; = Rx,u,u,x, = Bxox;x;xo =1, 4,j=1,...,n

and the ones implied by them using the symmetries of the curvature tensor.

3. PARALLEL AND TOTALLY GEODESIC HYPERSURFACES OF G,

Let F: M?" — N?"*! be an isometric immersion of pseudo-Riemannian mani-
folds (M, {, )) and (N, (, )). Denote by VM and V the Levi-Civita connections
of M and N and by £ a normal vector field on the hypersurface M with (£,&) = e,
where e = {1, —1}. Let us define the shape operator S by SX = —V x¢ and identify
vector fields tangent to M with their images under dF'. Then the formula of Gauss
is given by

(4) VxY =VYY + (X, V),

where X and Y are vector fields tangent to M and h is the second fundamental
form which is defined by h(X,Y) =e(SX,Y). If R is the curvature tensor of the
ambient space N, then the equation of Codazzi can be described by

(5) (R(X,Y)Z,6) =(VMR)(Y, X, Z) = (VMh)(X,Y,2)),
where X, Y, Z and W are vector fields tangent to M and (VM) is defined by
(V¥h)(X,Y, Z) = X (MY, Z)) = W(VXY, Z) = h(Y, VX Z).

The hypersurface M is said to be a totally geodesic hypersurface in N, if h = 0
and it is said to be a parallel hypersurface in N, if VMh = 0.

In order to classify parallel hypersurfaces of the class of solvable Lie groups G,,, we
prove the following result.

Theorem 3.1. Let F: M?" — G, be a parallel hypersurface of the class of solvable
Riemannian Lie groups (G, g) (Lorentzian Lie groups (G,,q)). Also let & be a unit
(e-unit) normal vector field on M and {Xo,...,U,} be an (pseudo-)orthonormal
frame field on G,,. Then & has one of the following forms

Case (a): &= £Xo,

Case (b):  &==£X,, wherer € {1,...,n},

Case (¢): & ==U,, wherer € {1,...,n}.
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Proof. First we suppose that, M is a parallel hypersurface in G,, and assume that

n n
&= Z K; X; + Z K, +;U;, where K;: U C M — R are some functions. Then the
i=0 i=1
following vector fields, with respect to the Riemannian metric g (Lorentzian metric
g) are tangent to the hypersurface:

(6)

Riemannian Lorentzian
Xio = K; Xog — Ko X, Xio = Ki Xo+ KoX;, i=1,...,n,
X = K X, — K X5, X = K X1 — K1 X5, 1=2,...,m,

Xin—1) = KiXn1— Kp1Xi,  Xino1) = KiXp1— KnaX;, i=n

Yio = KpttXo— KoUs, Yio = Kn4tXo + KoUt, t=1,...,m,

Y = Kny e Xi— K1 U, Y = Kny e X1 — K© U, t=1,...,n,

Yin = Kn—&—tXn* KnUta Yin = Kn—i—tXn* KnUta t=1,---,n,
p=n+1

Zj1 = KpyjUr— KUy, Zj1 = KpjUr— KpUiyg, = 1,...,n — 1,
g=n+2

Zjz = Kq1jUs— KUz, Zjs = Kq1jUs— KU j,j = 1,...,n =2,

Zj(n—l) = KopUp—1— Kn-1Up, Zj(n—l) = Ko Up-1— Ky 1Up, Jj=1L
Since M is parallel in G,,, we have VMh = 0. Thus by the equation we have
(7) (R(Xik, Yu) Zjm, €) =0,

where X, Yy and Z;, are among the vector fields which are given in the system
@. Here we apply to obtain the acceptable forms of ¢ for the Riemannian and
Lorentzian cases as follows

In the Riemannian case

We will consider the following two cases, namely Ky = 0 and Ky # 0.
Case 1: Ky # 0. In this case from 0 = (R(X10, X;0)X10,£) = KSK; where
j = 2,...,TL we have K2 = = Kn = 0. Thus by 0= <R(X10,X20)X21,£> =
—K2(K? + K2) we obtain that KZK? = 0 which gives us K; = 0. Also since the
condition

0 = (R(Xio, Yi0) Xi0, &) = KEKO(ZKn-H’ + Kn-i—i) + 2K Kt
i=1

where 1 =t =1,...,n is equivalent to ZKSK,LH =0, we have K11 =--- = Ky,
= 0. Thus the condition (£,£) = 1 gives us £ = +£X.
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Case 2: Ky = 0. In this case we will consider the following two subcases K; =0
and K3 # 0.

Case 2.1: K; # 0. In this case from 0 = (R(X;1,Y:1)X;1,&) = K} K, and
0= <R(Xi17Y11)Y11,§> = KiKl(Kr?H-l + Kf), where i =t = 2, oo, We obtain
that Ko =--- = K, = K412 = ... = Ky, = 0. Also by considering these solutions
and using

0 = (R(Y10,Y11)Y10,&) = K2 4 (KlKn—i-l + K ZKn+z‘) )
i=1

we have 2K; K3, = 0 which gives us K,4+1 = 0. Thus by (£,£) = 1 we have
E=+X;.

Case 2.2: K1 = 0. In this case we will consider the following two subcases Ko # 0
and KQ =0.

Case 2.2.1: Ky # 0. In this case from 0 = (R(X;2, Yi2)Xi2,&) = K3K,,1; and
0= <R(Xi2,}/22)Y22,€> = KlKQ(K2+2 + K22), where i =t = 3, ...y, we obtain

n

that Kg =+ = K, = Kj,43 = -+ = Kg, = 0. Also from

0 = (R(Yy, Yi2)Y10,&) = KoK, (Kn+t + ZKn+7:> , t=1,2,
i=1

we obtain that K, 1; = K, 12 = 0. Thus by (£,£) =1 we have £ = +X.
Case 2.2.2: K3 = 0. In this case we will distinguish between the cases K3 # 0
and K3 = 0.
Case 2.2.2.1: K3 # 0. In this case from 0 = (R(X;3,Y3)Xi3,&) = —K3 K, and
0 = (R(X;3,Y33)Y33,&) = KiKg(K,2L+3 + K2), where i =t = 4,...,n we obtain
that Ky ==K, = K14 = ... = Kg, = 0. Also from

0 = (R(Yio, Yia)Vio, &) = Ks K2 o (Kust + 3 Kt )
i=1
where t = 1,2,3 we have K11 = K,y2 = Kpi3 = 0. Thus (§,£) = 1 gives us
& =+X;.
Case 2.2.2.2: K3 = 0. In this case we will consider the two subcases K, # 0 and
Ky =0.

4 times n times

L. —N —N—
By a similar argument from the cases, case 2..... 2.1,...,case 2..... 2 .1, respec-
tively we obtain £ = +X4,...,{ = +X,.

n times

HH . . . . .
Case 2.....2.2: K,, = 0. In this case we will distinguish between the cases K, 11 # 0
and K,4+1 =0.

n+1 times

—
Case 2..... 2 .1: K,y1 # 0. In this case if we consider the condition 0 =
(R(Y11, Zj1))Y11,€) = —Kpy1Kpy145 (KT + K7 q), where j = 1,--- ,n — 1 (since
in this case K3 = ... = K,, = 0), then we obtain that K,,1o = ... = Ky, = 0. Thus
by (£,&) =1 we have £ = £+Uj.
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n+1 times

’_/H . . . .
Case 2..... 2 .2: K, 41 = 0. In this case we will consider the following two subcases
K2 =0and K, 2 #0.
n+2 times
—
Case 2..... 2 .1: K, 42 # 0. In this case if we consider the condition
0= (R(Yaz, Zj2)Y22,&) = —Kny2Knioyj (K2 o+ K3), where j =1,...,n—2 we
obtain that K, 43 = ... = Ky, = 0. Thus £ = +Us.
n+2 times
’—/\_\ . . .
Case 2..... 2 .2: Ku4o = 0. In this case we will consider the two subcases
Kn+3 =0 and Kn+3 7é 0.
n+3 times 2n times
—
By the same arguments from the cases, case 2..... 2 .1, ... case 2..... 2.1,
respectively we get £ = +Us, ..., £ = +U,,.
2n times
A . .
Case 2.....2.2: K5, = 0. In this case since Ky = ... = Ks, =0, we have £ =0

which yields the contradiction (£,£) =0 # 1.

In the Lorentzian case

If we use X;i,Yy and Zj,,, which are among the vector fields which are given
in the second column of the system @, then by a straightforward computation
similar to the Riemannian case we have the result. [l

By the Theorem we can obtain a complete classification of parallel hypersur-
faces of these homogeneous spaces in both Riemannian and Lorentzian cases as
follows.

Theorem 3.2. Let F': M?" — G, be a parallel hypersurface of the class of solvable
Riemannian Lie groups (G, g) (Lorentzian Lie groups (G, q)). Then there exist
local coordinates (wy, . .., way,) on M?", such that this immersion with respect to
these coordinates, up to isometrics, is given by one of the following expressions:

— w, w, w
F(wy,...,way) = (0,e""lwy, e 2wy ... e Wy, Wyi1, ..., Wap) ,
— —( n Wnts) w w
F(wl,...,wgn) = (e Zz:l e wl,O,e "2g ..., 2"wn,wn+1,wn+g...,w2n),
n
F(’U.)l, . ’w2n) — (67(21:1 Wn+1)w1’e’lUn+lw2’ e e“’"*”lwr, O,
Wp+r+1 Wan
e Wyr41y---,€ nwnawn+17"'7w2n)a

— (om0 wnya) w Won—
F(wy,...,way,) = (e D Py, et g, . e g, 0, W, - - -, Wan )



PARALLEL AND TOTALLY GEODESIC HYPERSURFACES 227

_ —( n w ) W, W2n
F(wla---7w2n) - (6 Zl:l e wy, € n+1w27"'ae 2nwn+l7wn+27"'awn+r7
0, Wyrg - - -, Wa)
n
F(wy,...,wa,) = (e (o, wnt )wl,e g, ..., e"? wn+1,wn+2...,w2n,0).

Conwversely, all these hypersurfaces are parallel.

Proof. Assume that M is a parallel hypersurface in G,,. Then in both Riemannian
and Lorentzian cases, £ has one of the forms which are given in the cases (a), (b)
and (c) of the Theorem [3.1] Let us start with the case (a), i.e. £ = £Xg. Then the
following vector fields span the tangent space to M at each point

(8) Y1:X17 "'7Yn:X’n)Y’n+1:U17 "'7Y2n:Un~

Also, by using the equations and , we see that the non-zero connection
components are

9) Vv,Yi=Yuyi, Vy Yo =-Y, i=1...,n.

Then by @D and the Gauss formula , the second fundamental form is determined
by h(Y,Y;) = 0, where k,1 € {1,...,2n}. Thus VMh = 0 and the hypersurface is
parallel. In order to obtain this hypersurface we put dw; = Y;, where i = 1,...,2n
and denote by F': M?" — G,,: (w1, ..., wa,) — (Fi(wy,...,w4),..., Foni1(wy,. ..,
way)) the immersion of the hypersurface. Thus by we obtain

(8w1Fl, .. .,8w1F2n+1) = (O,Gw"+l70, e 70),

n times

—N—
(8wn,Fla e ~,3wnF2n+l) = (Oa . 'aoaewzn,oa' . 70)7
(10) n+1 times n—1 times

—— ——
(awn+1F17"~,awn+1F2n+1):(O,...,O,l, 0,...,0)7

2n times
—
(Owoy F1y - vy Ows, Fong1) = (0,...,0,1).

Then the general solution of the system is given by

Fy=ay, Fy ="M w +ag, ..., Fhp = e wy + apy,
Fryo = wny1 + ang2,- .-, Fong1 = wan + aznq1,
where ay, ..., as,41 are real constants and give us the immersion which is isometric

with the first immersion of the theorem.
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Let us consider the case (b), i.e. £ = £X,., where r € {1,...,n}. Then the following
vector fields span the tangent space to M at each point.

Yo=Xo, V1=X1, Yo=Xo, ....Y, 1 =X,_4,

11
( ) 5/;“+1:Xr+la~-~YnZXn; Yn+1:Ula-~-a§/én:Un-

From the equations and we obtain

n

(12)  VyYo=—( D Yari)s VwYars = Yo, VyYors = Vi, VyYi=Yasi,
i=1

where i # r, i = 7 = 1,...,n and the remaining connection components are

zero. Therefore from and the Gauss formula , the second fundamental
form is given by h(Y%,Y;) =0, where k,l € {0,...,7 — 1,7+ 1,...,2n}. Then the
hypersurface is parallel and if we put Ow;41 = Y; where ¢ =0,...,r — 1 and put
Ow; =Y; where it =r+1,...,2n, then we obtain

(6w1F1, . ;8w1F2n+1) = (6_(21;1 “’”“),O, e ,0) 5

2n—1 times
——
(Ows Fr, . Oy Fongr) = (0,€*+1,0,...,0 ),

r—2 times 2n—r—+2 times
—— ——
(8wT71F1,...,8wT71F2n+1):( 0,...,0,6““”“”72, 0,...,0 ),
r—1 times 2n+1—r times
—— ——
(awrFla"'aawrF2n+l):( 07".,07€wn+,.,1’ 03"'70 )7
r+1 times 2n—r—1 times

—— —
Owyi i Fryo 0wy Fongr) = (1 0,...,0, e+ 0,...,0 ),

n times n times
—— ——
— w
(Ow, 1,y 0w, Fany1) = (0,...,0,€*>",0,...,0 ),
n+1 times n—1 times

—— ——
(Owpsr Frye o Owpis Fong1) = (10,...,0,1,0,...,0 ),

2n times
——
(Owsn F1, - Ouy Fon1) = (0,...,0,1) .
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From these equations we obtain the following solutions for Fi, ..., Fo,i1
F = 6_(21':1 wnH)’wl + by, Fy = eYnttwg +bo, ...,
F._1=e"+r2w,._1 +b._1, F, = e¥rtr—tw, + b'r‘a FTJrl = b'r‘+1 )
Frpo =€+ Hlwe g +bryo, ..oy Foy1 = e w, + by,
Fri2 = wpq1 +bpyo, ..., Fopi1 = wop + bapga,
where by, ..., ba,41 are real constants and give us the immersions which are isometric
with the immersions given in the cases (2), ... ,(n+1) of the theorem.

Finally we consider the case (c), where £ = £U,, with r € {1,...,n}. Then the
following vector fields span the tangent space to M at each point
YO :X07 }/1 :X17'-'7Yn = Xn7 Yn+1 = U17-~-3Yn+r71 = U’r‘fla

13
( ) Yn+r+1:Ur+17~~~7Y2n:Un7

By a direct computation, using and (I3)), we obtain the following non-zero
connection components

n

Vy, Yo = —( > Yn-l—i) -¢, Vyo Ynti = Yo, Vy Yoy = =Y,
i=1,ir
(14) Yy Y; = Yiis, VyY, =€, r i i=1,....n.

Thus from and the Gauss formula we can see that the second fundamental
form is determined by h(Yy,Y;) = C, where k, 1 € {0,...,n+r—1,n+r+1,...,2n}
and C is a real constant. Hence, the hypersurface is parallel and if we put d,,,, =Y;
where i = 0,...,n+7r —1 and put 0,, =Y; where it =n+r+1,...,n, then by
some computations similar to the cases (a) and (b) we obtain

F1 :ei(zizlw"Jri)wl-l-Cl, F2 :e“’"“wQ—i—cQ,... s

Fri1 =e""wpi1 + cpyr s Foto = wni2+ cnga,.- -,

Fn+'r = Wn+4r + Cntr, Fn+r+1 = Cn+tn+1,

Frotri2 = Wnirt1 + Cagrt2s - s Fopt1 = wap + con -
where cq,...,c, are real constants and give us the immersions which are isometric
with the immersions given in the cases (n + 2),...,(2n + 1) of the theorem.
The converse of theorem can be obtained by a straightforward computation. A si-
milar argument holds for the Lorentzian case. O

Since every totally geodesic hypersurface is parallel, Theorem [3.2] gives us the
following result.

Theorem 3.3. Let F': M?" — G,, be a totally geodesic hypersurface of the class
of solvable Riemannian Lie groups (Gn,g) (Lorentzian Lie groups (Gn,q)). Then
there exist local coordinates (wi, ..., way,) on M?™ such that this immersion with
respect to these coordinates, up to isometries, is given by one of the following
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exTpPressions:
w w w
F(w1, te 7w27l) = (07 e rtlwy, e P wa L., e Wy, Wi, - aw2n) )
n
F(wy,...,wep,) = (e_(zizl w"“)wl, 0,e“"* 2wq ..., 2" Wy, Wp1,
wn+27 e 7w2n) )
n
F(wy,...,wey) = (e_(zz:l w"+”)w1, eVrtlwg, ..., et 1w, 0,
wy+r+1 w
e Wr41,---,€ 2"wn7wn+17°"7w2n)7
F(wl,...,wzn = ( _(21 y W) w1, e“’"“wg 6“12"717“0“,07
wn-‘rla s aw2n) 9

Conversely, these hypersurfaces are totally geodesic.

Proof. Assume that M is a totally geodesic hypersurface in G,,. Then it is sufficient
to choose the hypersurfaces which are obtained in the Theorem [3.2] such that for
them the second fundamental form vanishes identically. Since in the case that
¢ = £U,, where r € {1,...,n} we obtain that h(Y,,Y;) = 1 # 0, where Y, is
given in . Then the acceptable immersions are the ones which are given in
the cases (1),...,(n + 1) of the Theorem The converse can be verified by
a straightforward computation. The Lorentzian case can be proved by a similar
argument. O

As a consequence of Theorems [3.2] and [3.3] we have the following result.

Corollary 3.4. Let (G, g) ((Gn,9)) be the class of solvable Riemannian (Lorentzi-
an) Lie groups. If we denote by dim G,, the dimension of G,,, then up to isometries
we obtain the following results.

(I) These spaces always admit an odd number of parallel hypersurfaces which is
equal to the dim G,,.

(IT) These spaces can admit an even or odd number of totally geodesic hypersurfaces
which is equal to %.

Proof. Assume that F: M?" — G,, is an isometric immersion of the class of
solvable Lie groups. Then up to isometries parallel hypersurfaces can be expressed
by 2n + 1 = dim G,, cases which are given in the Theorem Also from the
Theorem it follows that n + 1 = % of them are totally geodesic. These
give us the results given in (I) and (II). O
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