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NEW TECHNIQUE FOR SOLVING UNIVARIATE

GLOBAL OPTIMIZATION

Djamel Aaid, Amel Noui, and Mohand Ouanes

Abstract. In this paper, a new global optimization method is proposed
for an optimization problem with twice differentiable objective function a
single variable with box constraint. The method employs a difference of linear
interpolant of the objective and a concave function, where the former is a
continuous piecewise convex quadratic function underestimator. The main
objectives of this research are to determine the value of the lower bound
that does not need an iterative local optimizer. The proposed method is
proven to have a finite convergence to locate the global optimum point. The
numerical experiments indicate that the proposed method competes with
another covering methods.

1. Introduction

In the convex optimization, we seek a local solution widely enough to determine
the optimal solution [1, 2, 22], while the objective of global optimization is to
find the globally best solution of possibly nonlinear models, in the possible or
known presence of multiple local optima. Formally, global optimization seeks
global solutions of a constrained optimization model [23]. Nonlinear models are
ubiquitous in many applications, e.g., in advanced engineering design, biotechnology,
data analysis, environmental management, financial planning, process control, risk
management, scientific modeling, and etc. Their solution often requires a global
search approach [3, 4, 13, 20, 21, 25, 24, 26].

A variety of adaptive partition strategies have been proposed to solve global
optimization models. These are based upon partition, sampling, and subsequent
lower and upper bounding procedures. These operations are applied iteratively to
the collection of active subsets within the feasible set. In this connection several
works have been proposed among others. Piyavskii [28] described a general algo-
rithm for finding the absolute minimum of a function to a given accuracy, and
illustrated a special aspects of its application by examples involving functions of one
or more variables, satisfying a Lipschitz condition. Shpak [32] proposed a sequential
deterministic algorithm with adaptive estimating of the Lipschitz constant for
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solving unconstrained one-dimensional global optimization problems. Sergeyev et
al [17, 19, 30, 31] proposed several efficient algorithms and improvements to solve
the unconstrained optimization problem where the objective function is univariate
and has Lipschitzean first derivatives. Cartis et al [10] presented branching and
bounding improvements for global optimization algorithms with Lipschitz conti-
nuity properties. Adjiman et al [5] presented the detailed implementation of the
alpha BB approach and computational studies in process design problems such
as heat exchanger networks, reactor-separator networks, and batch design under
uncertainty. Akrotirianakis and Floudas [6] presented computational results of the
new class of convex underestimators embedded in a branch-and-bound framework
for box-constrained NLPs. They also proposed a hybrid global optimization method
that includes the random-linkage stochastic approach with the aim of improving
the computational performance. Caratzoulas and Floudas [9] proposed novel convex
underestimators for trigonometric functions. Recently, years univariate global opti-
mization problems have attracted common attention because they arise in many
real-life applications and the obtained results can be easily generalized to the
multivariate case [7, 8, 11, 14, 15, 16, 27, 29].

In this paper, we propose an approach to find a global minimum of a univariate
objective function. In the following we will present our technique.

A piecewise quadratics underestimations (KBBm)

The main idea consists in constructing piecewise quadratic underestimation
functions closer to the given nonconvex f in a successive reduced intervals [ak, bk]
and their minima are explicitly given. Instead of using a single large quadratic
away from the objective function [19], the determination of its minimum implies a
local method [5]. We propose an explicit method of quadratic relaxation of building
global optimization problems with bounded variables. This construction is based
on the work of authors in [18], using the quadratic splines, the generated quadratic
programs have exactly explicit optimal solutions, In each interval, the target
underestimated by several quadratic splines reliable to calculate the lower bounds.
The structure of the rest of the paper is as follows: Section 2 presents the two
underestimators proposed in [5, 18]. Section 3 discusses the construction of a new
lower bound on the objective function, and describes a proposed algorithm (KBBm)
to solve the univariate global optimization problem with box constrained. Section 4
presents some numerical examples of different nonconvex objective functions while
we conclude the paper in Section 5.

2. Background

Consider the following global minimization problem:

(1) (P )
{
α = min f(x)
x ∈ X = [a, b] ,

with f is a nonconvex twice differentiable function on X.
In what follows we give two underestimators developed by the authors, respecti-

vely in [5, 18].
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2.1. Underestimator in (αBB) method [5]. The underestimator in αBB me-
thod on the interval [a, b] is as follows

(2) L(x) = f(x)− α

2 (x− a)(b− x) ,

where α ≥ max{0,−f ′′(x)}, for all x ∈ [a, b].
This underestimator satisfies the following properties:

(1) It is convex (i.e. L′′(x) = f
′′(x) + α ≥ f

′′(x) + max{0,−f ′′(x)} ≥ 0, for
all x ∈ [a, b]).

(2) It coincides with the function f(x) at the endpoint of the interval [a, b].
(3) It is an underestimator of the objective function f(x).
(4) Requires solving the convex problem minL(x), for all x ∈ [a, b] to determine

the values of the lower bound of the objective function f(x). For more
details, see [5].

2.2. Quadratic underestimator in (KBB) method [18]. The quadratic un-
derestimator developed in [18] on the interval [a, b] is :

(3) q(x) = f(a)b− x
b− a

+ f(b)x− a
b− a

− K

2 (x− a)(b− x) ,

where |f ′′(x)| ≤ K, for all x ∈ [a, b].
This quadratic underestimator satisfies the following properties:

(1) It is convex (i.e. q′′(x) = K ≥ 0, for all x ∈ [a, b].
(2) It coincides with the function f(x) at the endpoint of the interval [a, b].
(3) It is an underestimator of the objective function f(x).
(4) The values of the lower bound are given explicitly. For more details, see

[18].

2.3. Advantages and disadvantages of two methods.
(1) The advantage of αBB is that the best initial lower bound is obtained,

also the underestimator is close to the objective function see Table (2), and
Table (3).

(2) The disadvantage of (αBB) is in a local method for determining the values
of the lower bounds.

(3) The advantage of KBB is that values of the lower bounds are given
explicitly.

(4) The disadvantage of (KBB) is that initial lower bound is very far from
the optimal solution, also the underestimator is far away from objective
function see Figure (1), and Figure (3).
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Fig. 1: The graph of a multi extremal function f(x) =
cos(x)− sin(5x) + 1 on [0.2, 7] where min f(x) = −0.952896

Fig. 2: The underestimator αBB for f(x) where minL(x) =
−149.71371

3. The proposed underestimator (KBBm)

In this section we present a new lower bound. In this lower bound we merge the
advantages of KBB and αBB.
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Fig. 3: The underestimator KBB for f(x) where min q(x) =
−148.620102

Fig. 4: The underestimator KBBm for f(x) where n = 2,
and min p(x) = −28.626255

Let X = [a, b] be a bounded closed interval in R. Let f be a continuously twice
differentiable function on X. Let x0and x1 be two real numbers in [a, b] such that
x0 ≤ x1. Let l0 and l1 be real valued functions defined in [13,15,29] by

(4) l0(x) = x1 − x
x1 − x0 if x0 ≤ x ≤ x1, l1(x) = x− x0

x1 − x0 if x0 ≤ x ≤ x1 .

For all x in the interval [x0, x1], we have l0(x) + l1(x) = 1. We have also that
li(xj) is equal to 0 if i 6= j, and 1 otherwise, i, j = 0, 1. Let h = x1 − x0 and
Lhf be the linear interpolant to f at points x0, x1, such that

(5) Lhf(x) =
1∑
i=0

li(x)f(xi) .
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Let f(x) be a univariate function that needs to be underestimated in the interval
[a, b]. Suppose that the nodes are chosen to be equally spaced in [a, b], so that
xi = a+ ih, h = b−a

n , i = 0, . . . , n.
On each interval [xi, xi+1] we construct the corresponding local quadratic unde-

restimator as follows
(6) pi(x) = Lhif(x)−Qi(x) , i = 0, . . . , n− 1 ,
where Qi(x) = 1

2Ki(x− xi)(xi+1 − x), where Ki is an upper bound of the second
derivative which is valid for [xi, xi+1]. Instead of considering one quadratic lower
bound over [a, b], we construct a piecewise quadratic lower bound.

Remark 1. The upper bounds Ki are computed with interval analysis see [32].

In the following theorem we will show that the new lower bound is tighter than
the lower bound constructed in [18] see Figure (5).

Theorem 1. We have
(7) q(x) ≤ p(x) ≤ f(x) , ∀x ∈ [a, b] ,
where p(x) = pi(x), ∀x ∈ [ xi, xi+1], i = 0, . . . , n− 1.

The function p(x) is a continuous piecewise convex valid underestimator of
f(x) for all x in [a, b], and it is tighter than the underestimator q(x) introduced in
[18].

Proof. For every interval [xi, xi+1], i = 0, . . . , n− 1

(8) E(x) = q(x)− pi(x) = 1
2(Ki −K)(x− xi)(xi+1 − x) .

On the other hand E′′(x) = K −Ki ≥ 0 for all x ∈ [xi, xi+1], hence E is a convex
function, and therefore for all x ∈ [xi, xi+1] we have:
(9) E(x) ≤ max

{
E(x), x ∈ [xi, xi+1]

}
= E(xi) = E(xi+1) = 0

and the first inequality of (7) is verified. To justify the second inequality, consider
now the function φ defined on [xi, xi+1] by

(10) φ(x) = f(x)− pi(x) = f(x)− Lhif(x) + 1
2Ki(x− xi)(xi+1 − x) .

Clearly, that φ′′(x) = f ′′(x) −Ki ≤ 0 for all x in [xi, xi+1] hence φ is a concave
function, and therefore we have
(11) φ(x) ≥ min{φ(x), x ∈ [xi, xi+1]} = φ(xi) = φ(xi+1) = 0 .

The second inequality of (7) is also proved. �

In each sub-interval [xi, xi+1], one has to compute a lower bound of the objective
function f .

(12) x∗i =


1
2(xi + xi+1)− 1

Ki

f(xi+1)−f(xi)
xi+1−xi if x ∈ [xi, xi+1]

xi if x ≤ xi
xi+1 if x ≥ xi+1
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Fig. 5: The tightness of our underestimator p(x) than the
q(x) for f(x) = sin(x) where n = 2

Now, we compute the values of pi(x∗i ) to select the best as follows:
(13) LBi = min pi(x∗i ) .
The objective function is evaluated at the different trials points to determine the
upper bound.
(14) UBi = min

{
f(x∗i ), f(xi)

}
Remark 2. The proposed underestimator KBBm verifies the following properties:

(1) It is continues piecewise convex on [a, b].
(2) It coincides with the function f(x) at the endpoint of the interval [xi, xi+1]

for all i = 0, . . . , n− 1.
(3) It is an underestimator of the objective function f(x).
(4) The values of the lower bound are given explicitly.
(5) When we double the quadratic, we obtained good lower bounds see

Table (5).

To solve the problem (P ), we use an iterative process that converts the set X = [a, b]
into several smaller and smaller subsets. To each subset of X we construct a lower
bound of the objective function in order to eliminate the parts which do not contain
the global optimum and to select the subset that must be expressed. Our algorithm
consists in generating two convergent sequences {UBk}and {LBk} of the upper
and lower bounds respectively, of the minimum value of the objective function of
the problem (P ).

An initial subdivision of X = [a, b] into n > 1 subinterval of the same length
will be made such that, Mk =

⋃n−1
i=0 {[xi, xi+1]} the set of subintervals not explored.

At each iteration k and on each subinterval Xki = [xi, xi+1] the lower and upper
bounds LBki and UBki will be computed respectively by:

(15)
{
LBki = pi(x∗i )

UBki = min{f(xi), f(x∗i )}
Our method uses the “best first” strategy.
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In effect, the final upper and lower bound for the iteration k will be given
respectively by:

(16)
{
UBk = min{UBk−1,minUBki }

LBk = minLBkj , j = 1, . . . ,m
,

with m is the cardinal of Mk, and any subset on which the lower bound exceeds
UBk will be eliminated from Mk+1, since min f will not be reached on such a
subset.

In fact, our method can be represented schematically by a tree structure whose
root X = [a, b], and for the vertex the subset Xki which are obtained by the
successive subdivisions, and two or more vertices will be connected if the second
subset is obtained by the direct partitioning from the first. And at each level of the
tree created the lower and upper bounds will be obtained by applying the relations
(15), (16). Let x∗ be the optimal solution of the problem (P ) for the following:
The different steps for solving the problem (P ) are summarized in the following
proposed algorithm:
Algorithm
Input:

– [a, b] : A real interval.
– ε : The accuracy.
– f : The objective function.
– n : The number of quadratic.

Output:
– x∗ : The global minimum of f .

(1) Initialization step k = 0

(a) for all i = 0, . . . , n
compute xi = a+ b−a

n i, and set M0 =
⋃n−1
i=0 {[xi, xi+1]}

(b) Compute Ki such that |f ′′(x)| ≤ Ki on each [xi, xi+1]
for all i = 0, . . . , n− 1

(c) Compute x∗i by using (12) for all i = 0, . . . , n− 1
(d) Compute UBk = min{min f(x∗i ), min f(xi)}
(e) Set LBk = minLBki with LBki = pi(x∗i )
(f) i←− the index corresponding to minLBki

(2) Iteration step
While (UBk − LBk > ε and Mk 6= ∅) do

(a) a←− xi, b←− xi+1 and apply step (a), (b), (c), and (d)

(b) Update UBk

(c) For all i = 1, . . . ,m; (m = card(Mk))
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– Elimination step:
if (UBk − LBki < ε) then remove [xi, xi+1] from M

– Selection step:
if (UBk − LBki ≥ ε) then minLBki ; i←− the index
corresponding to minLBki

(d) k = k + 1

end While

(3) x∗ = xk ∈
{
x : f(x) = UBk, x ∈ X = [a, b]

}
is the optimal solution

corresponding to the best UBk found.
end algorithm

Theorem 2 (Convergence of the algorithm). Either the algorithm is finite or it
generates a bounded sequence {xk}. Any accumulation point of the sequence is a
global optimal solution of (P ). We have: UBk ↘ α, LBk ↗ α.

Proof. Let us consider an infinite sequence of intervals {T k} generated by our
algorithm, whose lengths hi with i = 1, . . . , n decreases to zero, then the whole
sequence {T k} shrinks to a singleton. Since the values of his UBk obtained by
evaluating f(x) at the different trials points of [a, b], then the sequence {UBk} is
bounded below by α = min f(x). On the other hand, the values of LBk are the
lower bounds of the objective function, which can not exceed α = min f(x), then
the sequence {LBk} is bounded above by α. Subsequently LBk ≤ α ≤ UBk. It
suffices to prove that {UBk} is a decreasing sequence, and {LBk} is a increasing
sequence.

First, from the description of the algorithm we see that, at each iteration k + 1,
k ≥ 0 the value of UBk+1 will be selected as the lesser between the current UBk
and the new value to be determined see (16), which always results UBk+1 ≤ UBk,
∀k ≥ 0, so, {UBk} is a decreasing sequence. Similarly, at each iteration k + 1,
k ≥ 0 the value of the lower bound LBk+1 will be selected as the minimum of
a certain quadratic located in the interior of a big quadratic underestimate the
objective on the current interval [ak+1, bk+1] see figure (5), which automatically
leads LBk+1 ≥ LBk, for all k ≥ 0, then the sequence {LBk} is increasing on [a, b].
The theorem is proved. �

4. Computational aspects and results

To measure the performances of our KBBm algorithm, we perform a comparative
study with KBB and αBB. These algorithms are implemented in C−programming
language with double precision floating point, and run on a computer with an Intel
(R) core (TM) i3-311MCP4 with CPU 2.40GHz. Numerical tests are performed
in tow parts on a set of test functions [12]. In the first experiment, we compare
the performances of the KBB, αBB and the KBBm algorithms on a set of 10
functions. Here, we include a method that computes the positive numbers α and
K [32]. The number of the quadratic functions used in KBBm at each iteration as
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Exp f(x) [xL, xU ] LM GM opt

1 e−3x − sin3 x [0, 20] 4 1 −1
2 cosx− sin(5x) + 1 [0.2, 7] 6 1 −0.952897
3 x+ sin(5x) [0.2, 7] 7 1 −0.077590
4 e−x − sin(2πx) [0.2, 7] 7 1 −0.478362
5 ln(3x) ln(2x)− 0.1 [0.2, 7] 1 1 −0.141100
6

√
x sin2 x [0.2, 7] 3 2 0

7 2 sin xe−x [0.2, 7] 2 1 −0.027864
8 2 cosx+ cos (2x) + 5 [0.2, 7] 3 2 3.5
9 sin x [0, 20] 4 3 −1
10 sin x cosx− 1.5 sin2 x+ 1.2 [0.2, 7] 3 2 −0.451388
11

(
x− x2)2 + (x− 1)2 [−10, 10] 1 1 0

12 x2

20 − cosx+ 2 [−20, 20] 7 1 1
13 x2 − cos (18x) [−5, 5] 29 1 −1
14 ex

2 [−10, 10] 1 1 1
15 (x+ sin x) e−x2 [−10, 10] 1 1 −0.824239
16 x4 − 12x3 + 47x2 − 60x− 20e−x [−1, 7] 1 1 −32.78126
17 x6 − 15x4 + 27x2 + 250 [−4, 4] 2 2 7
18 x4 − 10x3 + 35x2 − 50x+ 24 [−10, 20] 2 2 −1
19 24x4 − 142x3 + 303x2 − 276x+ 3 [0, 3] 2 1 −89
20 cosx+ 2 cos (2x) e−x [0.2, 7] 2 1 −0.918397

Tab. 1: Test functions

fixed to n = 16. and the accuracy fixed to ε = 10−6. In the second experiment, we
were tested the KBBm algorithm according to the initial lower bound obtained for
different numbers of quadratic function used on a set of 20 functions see Table (1).

In our results, we consider the following notations as table anterior:
– f∗is the optimum obtained.
– LB0 is the initial lower bound.
– TCPU is the execution time in seconds.
– nIt is the number of iterations.
– m is the number of interval.
– me is the number of intervals eliminated.
– LM is the number of local minimum.
– GM is the number of global minimum.
– ∗ An asterisk denotes that the lower bound is equal to the known global

optimum f∗, within six decimal digits of accuracy.
To determine the lower bound, αBB uses a local method at each iteration,

making it is more expensive than it in KBB method in which the lower bounds are
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Exp αBB

nIt TCPU m me LB0 f∗

1 23 0 47 24 −273.76041 −0.99999
2 8 0 17 9 −65.9109 −0.95203
3 15 0 31 16 −118.96147 −0.07759
4 7 0 15 8 −121.60896 −0.47797
5 5 0 11 6 −527.67986 −0.14099
6 6 0 13 7 −2733.29510 0.00199
7 6 0 13 7 −18.57601 −0.02761
8 5 0 11 6 −28.84495 3.56245
9 6 0 13 7 −46.40909 −0.99997
10 8 0 17 9 −29.62761 −0.45138

Tab. 2: Computational results for 10 functions by αBB algorithm.

Exp KBB

nIt TCPU m me LB0 f∗

1 27 2.211 55 28 −564.01754 −1
2 12 10.645 25 13 −116.08120 −0.95289
3 12 4.604 25 13 −117.80163 −0.07758
4 28 3.576 57 29 −121.20354 −0.47834
5 9 3.312 19 10 −528.13263 −0.14110
6 14 2.854 29 15 −6664.14641 0
7 33 3.132 67 34 −5.50269 −0.02786
8 8 3.012 21 11 −14.03655 3.5
9 9 2.293 15 8 −45.19193 −1
10 13 3.460 27 14 −29.66644 −0.45139

Tab. 3: Computational results for 10 functions by KBB algorithm.

given explicitly. So our comparison will not be based on the number of iterations
required to achieve the optimum. The execution time required to achieve the
optimal value is considered as a reliable criterion to the algorithm’s performances.
According to the numerical results summarized in Table (3) and Table (4), the
performances of the proposed method is clearly better than the performance of
the KBB method. The best initial lower bound obtained remains an important
criterion for measuring the validity of the underestimator. In Table (2), Table (3)
and Table (4), the comparative study of the quality of the initial lower bound found
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Exp KBBm

nIt TCPU m me LB0 f∗

1 8 0 144 136 −2.26691 −1
2 1 0 32 31 −0.97784 −0.9529
3 2 0 48 46 −0.09467 −0.07759
4 10 0 176 166 −0.65053 −0.47820
5 2 0 48 46 −1.73375 −0.14110
6 2 0 48 46 −0.23383 0
7 6 0 112 106 −0.04618 −0.02786
8 2 0 48 46 3.49276 3.50001
9 3 0 64 61 −1.00563 −1
10 3 0 64 61 −0.45957 −0.45139

Tab. 4: Computational results for 10 functions by KBBm
algorithm with n = 16.

by the three algorithms show that our method is better than the two methods.
In Table 5 confirmes the competence of our method by doubling the number of
quadratics, we can notice that the values of the lower bound are improved.

5. Conclusion

We presented a method of underestimation of nonconvex objective based on
piecewise quadratic functions which have explicit minima. A comparison of the
lower bounds favors such quadratic against others guaranteeing the underestimation
of the objective. This approach is validated by considering a deterministic branch
and bound methods which is fully detailed and allows certifying still coaching
the value of the global minimum at the end of the performance. Many digital
exprements are performed, that confirm the effectiveness of this new acceleration
technique. The performance of the proposed procedure depends on the quality of
the chosen lower bound of f . Our piecewise quadratics lower bounding functions is
better than the two underestimators introduced in [5, 21].
Acknowledgement. We appreciate the time and efforts by the editor and referees
in reviewing this manuscript.
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n 2 4 8 16 32 64 128
1 −152.72 −45.16 −7.15 −2.26 ∗ ∗ ∗
2 −28.43 −7.92 −2.16 −0.97 ∗ ∗ ∗
3 −28.45 −6.17 −1.34 −0.094 ∗ ∗ ∗
4 −30.018 −8.85 −2.207 −0.65 −0.49 ∗ ∗
5 −121.3 −29.66 −7.17 −1.73 −0.40 −0.149 −0.1417
6 −448.19 −41.56 −3.542 −0.23 −0.0019 −0.0002 −0.00003
7 −1.307 −0.340 −0.104 −0.04 −0.03 −0.02 −0.028
8 0.33 2.54 3.394 3.49 ∗ ∗ ∗
9 −11.23 −3.751 −1.141 −1.005 ∗ ∗ ∗
10 −5.85 −1.98 −0.598 −0.459 −0.453 −0.452 −0.4515
11 −16118.1 −1297.05 −107.4 −9.34 −0.67 −0.09 −0.01113
12 1 ∗ ∗ ∗ ∗ ∗ ∗
13 −20.42 −2.2 ∗ ∗ ∗ ∗ ∗
14 ∗ ∗ ∗ ∗ ∗ ∗ ∗
15 −173493.6 −27703.7 −7855.9 −769.2 −575.3 −48.21 −46.4
16 −19351.54 −576.321 −45.152 −33.67 −32.84 −32.80 −32.789
17 −14875.91 −2957.18 −362.63 −21.88 4.71 6.82 6.98
18 −93572.1 −9016.69 −1032.09 −142.7 −27.31 −7.07 −2.4
19 −578.6 −141.98 −95.79 −89.8 −89.1 −89.01 −89.001
20 −6.906 −2.59 ∗ ∗ ∗ ∗ ∗

Tab. 5: LB0 values obtained by KBBm.
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