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BOUNDS FOR THE CHARACTERISTIC RANK AND
CUP-LENGTH OF ORIENTED GRASSMANN MANIFOLDS

Tomáš Rusin

Abstract. We estimate the characteristic rank of the canonical k–plane
bundle over the oriented Grassmann manifold G̃n,k. We then use it to compute
uniform upper bounds for the Z2–cup-length of G̃n,k for n belonging to certain
intervals.

1. Introduction and preliminaries

Let us denote Gn,k the Grassmann manifold of k–dimensional vector subspaces
in Rn, i.e. the space O(n)/(O(k) × O(n − k)). Next, denote G̃n,k the oriented
Grassmann manifold of oriented k–dimensional vector subspaces in Rn, the space
SO(n)/(SO(k)× SO(n− k)). We may suppose that k ≤ n− k for both of them.

For a topological space X we can define its Z2-cup-length cupZ2(X) as the
greatest number r such that there exist x1, . . . , xr ∈ H̃∗(X; Z2) with cup-product
x1 · · ·xr 6= 0. For a path connected space X, the condition is equivalent to the
existence of cohomology classes x1, . . . , xr ∈ H∗(X; Z2) in positive dimensions such
that x1 · · ·xr 6= 0.

In this paper we will be considering only cohomology with Z2 coefficients, thus
we will abbreviate Hj(X; Z2) to Hj(X) and cupZ2(X) to cup(X) henceforth.

The cohomology ring of the Grassmann manifold Gn,k is (see [1])

(1.1) H∗(Gn,k) = Z2[w1, w2, . . . , wk]/In,k ,

where dim(wi) = i and the ideal In,k is generated by k homogeneous polynomials
w̄n−k+1, w̄n−k+2, . . . , w̄n, where each w̄i denotes the i–dimensional component of
the formal power series

1 + (w1 + w2 + · · ·+ wk) + (w1 + w2 + · · ·+ wk)2 + (w1 + w2 + · · ·+ wk)3 + · · · .

Each indeterminate wi is a representative of the ith Stiefel-Whitney class wi(γn,k)
of the canonical k-plane bundle γn,k over Gn,k.
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On the other hand, the cohomology ring of the oriented Grassmann manifold
G̃n,k is fully known for spheres G̃n,1 ∼= Sn−1, complex quadrics G̃n,2 and some
other cases (see e.g. [6]), but there is no general formula similar to (1.1).

There has been some work done to compute cup-length of some families of
oriented Grassmann manifolds G̃n,3. In particular, the paper by Fukaya [2] (where
a slightly different notation for Grassmann manifolds is used; G̃n,3 corresponds to
G̃n+3,3 in this paper) contains the proof, that cup(G̃2t−1,3) = 2t − 3 for t ≥ 3, and
the following interesting conjecture [2, Conjecture 1.2] (adjusted to our notation
and replacing the letter k with a to avoid ambiguity)

cup(G̃n,3) =


2t − 3, when 2t − 1 ≤ n ≤ 2t + 2t−1 − 3 ,
2t − 3 + a, when n = 2t + 2t−1 − 2 + a, 0 ≤ a ≤ 2 ,
2t + 2t−1 + · · · when n = 2t + 2t−1 + · · ·+ 2j + 1 + a,

+2j+1 + 2j−1 + a, 0 ≤ a ≤ 2j−1 − 1.

The value cup(G̃2t−1,3) = 2t − 3 has been obtained independently by Korbaš [4]
employing an approach using the notion of characteristic rank. Making use of refined
version of this idea, some other parts of the conjecture have been proved in papers
[10], [11]. Namely, the cases corresponding to n in the interval 2t−1 ≤ n < 2t−1+ 2t

3
for t ≥ 3 and n = 2t + 2t−1 + a for a = 1, 2 and t ≥ 3.

The characteristic rank of a manifold was introduced by Korbaš [4] and later
generalized by Naolekar and Thakur [9] to the characteristic rank of a vector
bundle.
Definition 1.1. Let X be a connected, finite CW-complex and ξ a real vector
bundle over X. The characteristic rank of the vector bundle ξ, charrank(ξ), is the
greatest integer q, 0 ≤ q ≤ dim(X), such that every cohomology class in Hj(X) for
0 ≤ j ≤ q can be expressed as a polynomial in the Stiefel–Whitney classes wi(ξ) of
ξ.

Following theorem illustrates how characteristic rank can be used to obtain
upper bounds for the cup-length of a manifold.
Theorem 1.2 ([9, Theorem 1.2]). Let X be a connected closed smooth d-manifold
and let ξ be a vector bundle over X, such that there exists j, j ≤ charrank(ξ), such
that every monomial wi1(ξ) . . . wir (ξ) for 0 ≤ it ≤ j of degree d is zero. Then

cup(X) ≤ 1 + d− j − 1
rX

,

where rX is the smallest positive integer, such that H̃rX (X; Z2) 6= 0.
The main result of this paper is the following theorem, listed as Theorem 4.1,

providing a lower bound for the characteristic rank of the canonical k–plane bundle
γ̃n,k over G̃n,k.
Theorem A. Let k ≥ 3 and t ≥ max {3, log2(k − 1)}. For any x ≥ 0 and n such
that

(k − 1) · 2t−1 + k − 3
k − 1 · 2

t−1 + x

k − 1 − 1 < n ≤ k · 2t−1 − 1− x
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we have
charrank(γ̃n,k) ≥ n− k + x .

This result, combined with Theorem 1.2, leads to an upper bound for the
cup-length of the oriented Grassmann manifold G̃n,k.

Denoting xk,t the smallest positive integer such that 2t − xk,t is divisible by
k − 1 and

nk,t = k · 2t−1 − 2t − xk,t
k − 1 − 1,

we obtain the associated result on cup-length, listed as Theorem 4.3.

Theorem B. For any k ≥ 3, t ≥ max {3, log2(k − 1)} and a ≥ 0, such that a
satisfies ka+ xk,t − 1 ≤ 2t−xk,t

k−1 we have

cup(G̃nk,t+a,k) ≤ 1 + k(nk,t − k)− (nk,t − k + xk,t)
2 .

The interesting feature of this upper bound is that it is uniform. For each k
and t satisfying the conditions there is a certain interval starting at nk,t, such that
for any n = nk,t + a in this interval the cup-length of G̃n,k is bounded by the
right-hand side, which does not depend on a. As we will discuss in Section 4, if
this upper bound for some nk,t happens to be the exact value of the cup-length
of G̃nk,t,k, due to uniformity it becomes the exact value of the cup-length of all
G̃nk,t+a,k in the interval.

The paper is organized as follows.
In Section 2 of this paper a review of the method to obtain lower bounds for the

characteristic rank of γ̃n,k is presented. It concludes with Proposition 2.1, which is
the foundation for the rest of the paper.

Section 3 consists of additional observations and further analysis. It also contains
all technical lemmas.

Finally, proofs of the results are the content of Section 4.

2. Estimating the characteristic rank of γ̃n,k

For our purposes, the cohomology of the oriented Grassmann manifold G̃n,k is
best described through its relation to the cohomology of the (unoriented) Grassmann
manifold Gn,k; the following approach is the same as utilized in papers [5, 6, 7, 11].

There is a covering projection p : G̃n,k → Gn,k, which is universal for (n, k) 6=
(2, 1). To this 2-fold covering, there is an associated line bundle ξ over Gn,k, such
that w1(ξ) = w1(γn,k), to which we have Gysin exact sequence ([8, Corollary 12.3])

(2.1) ψ−→ Hj−1(Gn,k) w1−→ Hj(Gn,k) p∗−→ Hj(G̃n,k) ψ−→ Hj(Gn,k) w1−→

where Hj−1(Gn,k) w1−→ Hj(Gn,k) is the homomorphism given by the cup product
with the first Stiefel–Whitney class w1(ξ) = w1(γn,k).

Since the pullback p∗γn,k is isomorphic to γ̃n,k, the covering projection p : G̃n,k →
Gn,k induces the ring homomorphism p∗ : H∗(Gn,k) −→ H∗(G̃n,k), which maps
each Stiefel–Whitney class wi(γn,k) to wi(γ̃n,k).
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Consequently, the image Im(p∗ : Hj(Gn,k) → Hj(G̃n,k)) is a subspace of the
Z2–vector space Hj(G̃n,k) consisting only of cohomology classes, which can be
expressed as polynomials in the Stiefel–Whitney characteristic classes of γ̃n,k. We
shall call it the characteristic subspace and denote it C(j;n, k). Moreover (see
[12]), the image Im(p∗) of the ring homomorphism p∗ : H∗(Gn,k) −→ H∗(G̃n,k)
is a self-annihilating subspace of H∗(G̃n,k) (that is, for any x ∈ C(j;n, k) and
y ∈ C(j′;n, k) we have xy = 0 if j + j′ = k(n− k) = dim(G̃n,k)).

This implies that the characteristic rank of γ̃n,k is equal to the greatest integer
q, such that the homomorphism p∗ : Hj(Gn,k)→ Hj(G̃n,k) is surjective for all j,
0 ≤ j ≤ q, or equivalently, by (2.1), that the homomorphism w1 : Hj(Gn,k) −→
Hj+1(Gn,k) is injective for all j, 0 ≤ j ≤ q.

Hence, in order to compute the characteristic rank of γ̃n,k, it is necessary to study
the kernel of w1 : Hj(Gn,k) −→ Hj+1(Gn,k). The following is a brief summary of
the approach employed in the work of Korbaš and Rusin [7].

For the Z2-vector space Hj(Gn,k) the set

{
w1(γn,k)a1w2(γn,k)a2 . . . wk(γn,k)ak :

k∑
i=1

iai = j,

k∑
i=1

ai ≤ n− k
}

is an additive basis ([3]). We will call it the standard basis for Hj(Gn,k). An
element of the standard basis for Hj(Gn,k) is called regular, if its image under the
homomorphism w1 : Hj(Gn,k) −→ Hj+1(Gn,k) is an element of the standard basis
for Hj+1(Gn,k). Otherwise it is called singular.

We can compute the number of singular elements of the standard basis for
Hj(Gn,k), which is an upper bound for the dimension of the kernel of the ho-
momorphism w1 : Hj(Gn,k) −→ Hj+1(Gn,k). For any j ≤ n − k − 1, all the
elements in the standard basis for Hj(Gn,k) are regular ([7, Proposition 2.1]), thus
w1 : Hj(Gn,k) −→ Hj+1(Gn,k) is injective, hence we recover the known inequality
([5, (2.5)])

charrank(γ̃n,k) ≥ n− k − 1 .

Further analysis shows that there is a better sufficient condition for the injectivity
of the homomorphism w1 : Hj(Gn,k) −→ Hj+1(Gn,k), which will provide sharper
lower bounds for the characteristic rank of γ̃n,k. First, let us take a closer look
at the description of the cohomology ring H∗(Gn,k) (see (1.1)). The ideal In,k is
generated by the polynomials w̄n−k+1, w̄n−k+2, . . . , w̄n. Thus cohomology classes
corresponding to these polynomials are zero classes. Hence by denoting gi the re-
duction of the polynomial w̄i modulo w1, the polynomials gn−k+1, gn−k+2, . . . , gn ∈
Z2[w2, . . . , wk] become representatives of w1(γn,k)-multiples of some cohomology
classes in H∗(Gn,k). Let us denote gi(γn,k) the cohomology class corresponding to
the polynomial gi. Then for i ∈ {n− k + 1, n− k + 2, . . . , n} the class gi(γn,k) lies
in the image of w1 : Hi−1(Gn,k) −→ Hi(Gn,k).

By estimating the dimension of the image of this homomorphism, we obtain
upper bound for the dimension of its kernel.



BOUNDS FOR THE CHARACTERISTIC RANK AND CUP-LENGTH 317

Proposition 2.1 ([7, Proposition 2.4. 3)]). For a non-negative integer x, we
associate with Hn−k+x+1(Gn,k) (2 ≤ k ≤ n− k) the set

Nx(Gn,k) :=
k−1⋃
i=0
{wb2

2 · · ·w
bk
k gn−k+1+i; 2b2 + 3b3 + · · ·+ kbk = x− i} .

If x ≤ n− k − 1 and the set Nx(Gn,k) is linearly independent, then

w1 : Hn−k+x(Gn,k) −→ Hn−k+x+1(Gn,k)

is a monomorphism.

3. The polynomials gi
The polynomial gi associated with Gn,k is a representative of the cohomo-

logy class gi(γn,k) in Hi(Gn,k). We can also consider arbitrary polynomial fi ∈
Z2[w2, . . . , wk] as a representative of some cohomology class.

Definition 3.1. If fi is of the form

fi =
∑

2aj,2+···+kaj,k=i
cjw

aj,2
2 · · ·waj,kk ; cj ∈ Z2,

we denote the corresponding cohomology class

fi(γn,k) =
∑

2aj,2+···+kaj,k=i
cjw2(γn,k)aj,2 · · ·wk(γn,k)aj,k ∈ Hi(Gn,k)

and we will say that the polynomial fi lies in the dimension i.

Note. The zero polynomial lies in the dimension i for any i.

Later, we will consider sums of such polynomials.

Definition 3.2. Let i ∈ N and f ∈ Z2[w2, . . . , wk] be a polynomial that is a sum
of polynomials each of which lies in dimension j ≤ i. We will say that such a
polynomial f is contained within dimension i.

We already know that for every i ≥ 1 the polynomial gi lies in the dimension i.
Now, of course, if we fix some k, the corresponding cohomology class gi(γn,k) ∈
Hi(Gn,k) depends on the n, but the polynomial itself does not. We will have this
in mind while we further explore properties of the polynomials gi.

For i− k ≥ 1 there is a recurrence formula implied by [5, (2.4)]

(3.1) gi =
k∑
j=2

wjgi−j = w2gi−2 + w3gi−3 + · · ·+ wkgi−k .

By applying the formula twice we obtain

gi =
k∑
j=2

wjgi−j =
k∑
j=2

wj

k∑
l=2

wlgi−j−l =
k∑

j,l=2
wjwlgi−j−l =

k∑
j=2

w2
j gi−2j ,
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and it is apparent that induction leads to the generalized formula

(3.2) gi =
k∑
j=2

w2s
j gi−j·2s ,

valid for all s such that i− k · 2s ≥ 1.
For convenience we introduce the following formalism expanding the definition

of polynomials gi associated with Gn,k.

Definition 3.3. For negative integers i we define formal Laurent series gi associated
with Gn,k in indeterminates w2, w3, . . . , wk recursively by the relation gi = w2gi−2 +
w3gi−3 + · · ·+ wkgi−k.

This allows us to use (3.1) without restrictions on the integer i. And so, in the
system {gi}i∈Z of polynomials (for i ≥ 1) and formal Laurent series (for i ≤ 0) the
relation

(3.3) gi =
k∑
j=2

w2s
j gi−j·2s

is satisfied for all i ∈ Z and all s ≥ 0.
These formal Laurent series do not represent elements in H∗(Gn,k), but they

can be used to derive information about the polynomials gi, which do.
For example, the first few corresponding formal Laurent series gi associated with

Gn,3 are as follows

g−1 = 0
g−2 = 0
g−3 = w−1

3

g−4 = w2w
−2
3

g−5 = w2
2w
−3
3

g−6 = w3
2w
−4
3 + w−2

3

We wish to gather more information about these formal Laurent series. For any
k ≥ 2 we obtain a corresponding sequence {gi}i∈Z of formal Laurent series. Until
now, it was sufficient to consider each sequence {gi}i∈Z separately, but to study
their properties, we will make use of some interplay between them.

Lemma 3.4. Let us denote gi,k the polynomials associated with Gn,k. For all k ≥ 2
we have the following relations :

i) We have g0,k = 1.

ii) Reduction of the polynomial gi,k modulo wk is exactly gi,k−1.

iii) For 0 ≤ i < k we have gi,k = gi,k−1
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iv) We have

g−1,k = 0
g−2,k = 0

...
g−(k−1),k = 0

g−k,k = w−1
k

Proof. The first two parts are immediate consequences of the definition of the
polynomials gi,k.

Part iii) is directly implied by the second part, since gi,k lies in dimension i < k
and thus it cannot contain any terms divisible by wk.

For part iv), it is easy to check that for k = 2 we indeed have g−1,2 = 0 and
g−2,2 = w−1

2 . Now we proceed by induction on k.
Suppose that for some k ≥ 3 we have

g−i,k−1 = 0 for i = 1, 2, . . . , k − 2(3.4)
g−(k−1),k−1 = w−1

k−1 .(3.5)

First, we will prove, by induction on i, that g−i,k = 0 for i = 1, . . . , k− 1. We have,
by (3.3),

gk−1,k =
k∑
j=2

wjgk−j−1,k ,

gk−1,k =
k−1∑
j=2

(wjgk−j−1,k) + wkg−1,k ,

wkg−1,k = gk−1,k +
k−1∑
j=2

(wjgk−j−1,k) ,

and by part iii), also

wkg−1,k = gk−1,k−1 +
k−1∑
j=2

(wjgk−j−1,k−1) ,

but, by the recurrence relation for polynomials gi,k−1, the RHS is zero. Hence
g−1,k = 0.
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Now, suppose g−1,k = · · · = g−(i−1),k = 0 and i ≤ k − 1. By the recurrence
formula for gk−i,k we have

gk−i,k =
k∑
j=2

wjgk−i−j,k ,

gk−i,k =
k−1∑
j=2

(wjgk−i−j,k) + wkg−i,k ,

wkg−i,k = gk−i,k +
k−1∑
j=2

wjgk−i−j,k ,

wkg−i,k = gk−i,k +
k−i∑
j=2

wjgk−i−j,k +
k−1∑

j=k−i+1
wjgk−i−j,k .

The last sum is zero by the induction hypothesis and thus by part iii) we have

wkg−i,k = gk−i,k−1 +
k−i∑
j=2

wjgk−j−i,k−1 .

By substituting the recurrence relation for the polynomial gk−i,k−1, we obtain

wkg−i,k =
k−1∑

j=k−i+1
wjgk−j−i,k−1 ,

wkg−i,k = wk−i+1g−1,k−1 + · · ·+ wk−1g−(i−1),k−1 .

Since i ≤ k − 1 and therefore i− 1 ≤ k − 2, by (3.4) the RHS is zero and g−i,k = 0
as well.

Finally, we have
1 = g0,k ,

1 =
k∑
j=2

wjg−j,k ,

1 =
k−1∑
j=2

(wjg−j,k) + wkg−k,k .

And since g−j,k = 0 for j = 2, . . . , k − 1, this yields g−k,k = w−1
k . �

From now on fix some k and again write simply gi instead of gi,k. Examining
the occurrence of powers of wk in the formal Laurent series gi leads to discovering
a nice pattern in the form of polynomials gi for certain values of i.
Lemma 3.5. For i ≥ 1 the formal Laurent series g−i−k+1 is of the form

g−i−k+1 = w−ik hi ,

where hi ∈ Z2[w2, w3, . . . , wk] is a polynomial of the form
(3.6) hi = wi−1

k−1 + terms divisible by wk ,
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and hi lies in the dimension (k − 1)(i− 1).

Proof. We have g−1 = g−2 = · · · = g−(k−1) = 0 and g−k = w−1
k . For all i ≥ 2− k

let us define formal Laurent series hi = wikg−i−k+1.
We have that h2−k = h3−k = · · · = h0 = 0 and h1 = 1. By the recurrence

formula (3.3), we have for all i ≥ 2

g−i+1 =
k∑
j=2

wjg−i−j+1

wi−1
k g−i+1 =

k∑
j=2

wjw
i−1
k g−i−j+1

wk−1
k wi−kk g−i+1 =

k∑
j=2

wjw
k−j−1
k w

i+(j−k)
k g−i−j+1

wk−1
k hi−k =

k∑
j=2

wjw
k−j−1
k hi+(j−k)

wk−1
k hi−k = hi + wk−1hi−1 +

k−2∑
j=2

wjw
k−j−1
k hi+(j−k)

hi = wk−1hi−1 +
k−2∑
j=2

(wjwk−j−1
k hi+(j−k)) + wk−1

k hi−k

and the statement follows from the obvious induction. �

Lemma 3.6. For t ≥ 1 and 1 ≤ a ≤ 2t−1 we have

g(k−1)·2t−1−k+a =
k−1∑
j=2

(w2t−1

j g(k−j−1)·2t−1−k+a) + w2t−1−a
k−1 wa−1

k +

+ terms divisible by wak .

Proof. By (3.3), we have

g(k−1)·2t−1−k+a =
k∑
j=2

w2t−1

j g(k−j−1)·2t−1−k+a,

=
k−1∑
j=2

(w2t−1

j g(k−j−1)·2t−1−k+a) + w2t−1

k g−2t−1−k+a,

=
k−1∑
j=2

(w2t−1

j g(k−j−1)·2t−1−k+a) + wa−1
k h2t−1+1−a

and applying Lemma 3.5 gives the desired result. �



322 T. RUSIN

In order to utilize Proposition 2.1 we need to consider linear combinations of
elements of

Nx(Gn,k) :=
k−1⋃
i=0
{wb2

2 · · ·w
bk
k gn−k+1+i; 2b2 + 3b3 + · · ·+ kbk = x− i} .

Any such linear combination is a polynomial

fxgn−k+1 + fx−1gn−k+2 + · · ·+ fx−k+1gn ,

where fx, fx−1, . . . , fx−k+1 ∈ Z2[w2, w3, . . . , wk] are some polynomials in dimen-
sions x, x− 1, . . . , x− k + 1 respectively.

We can think of this in the following way. Let us define an element g in the ring
of formal power series Z2[[w2, w3, . . . , wk]] by

g =
∞∑
i=0

gi = g0 + g1 + g2 · · · .

If we denote f = fx + fx−1 + · · ·+ fx−k+1, then in the formal series f · g the
sum of terms lying in the dimension n− k + 1 + x is exactly

fxgn−k+1 + fx−1gn−k+2 + · · ·+ fx−k+1gn .

Hence from the polynomial f we can recover the original polynomial fxgn−k+1 +
fx−1gn−k+2 + · · ·+ fx−k+1gn just by remembering in which dimension it lies.

Definition 3.7. For any polynomial f ∈ Z2[w2, w3, . . . , wk] let us denote [f · g]i
the sum of all terms of the formal power series f · g lying in the dimension i.

Lemma 3.8. For any i, k, a ∈ N, j ≤ k and f , f ′ ∈ Z2[w2, w3, . . . , wk] we have
equalities

[(f + f ′) · g]i = [f · g]i + [f ′ · g]i,(3.7)
waj [f · g]i = [waj f · g]i+ja .(3.8)

Whenever the polynomial f is divisible by 1 + w2 + · · · + wk and contained in
dimension i, we have

(3.9) [f · g]i = 0 .

Proof. The first two equalities are obvious from the definition. To prove the last
statement suppose that

f = (1 + w2 + · · ·+ wk)(f0 + · · ·+ fi−k)

for some polynomials in dimensions 0, . . . , i− k respectively.
For the sake of brevity, let us denote w1 = 0 and w0 = 1 as elements of

Z2[w2, w3, . . . , wk] until the rest of the proof. This allows us to write

f =
k∑
j=0

i−k∑
x=0

wjfx ,
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which, by (3.7), implies

[f · g]i =
k∑
j=0

i−k∑
x=0

[wjfx · g]i .

Each fx is a sum of monomials in the same dimension x, hence by (3.7) and
repeated use of (3.8) we have [wjfx · g]i = fx[wj · g]i−x and so

[f · g]i =
k∑
j=0

i−k∑
x=0

fx[wj · g]i−x ,

=
i−k∑
x=0

fx

k∑
j=0

[wj · g]i−x ,

=
i−k∑
x=0

fx[(1 + w2 + · · ·+ wk) · g]i−x ,

=
i−k∑
x=0

fx(gi−x + w2gi−x−2 + · · ·+ wkgi−x−k) ,

which, by the recurrence formula (3.1), is a sum of zeros. �

Definition 3.9. Suppose f ∈ Z2[w2, w3 . . . , wk]. Let us denote f̄ the polynomial
obtained from f by replacing each instance of wk with the sum 1 +w2 + · · ·+wk−1.
Corollary 3.10. Suppose i ∈ N and polynomial f ∈ Z2[w2, w3, . . . , wk] is contained
within dimension i. Then f̄ ∈ Z2[w2, w3 . . . , wk−1] is contained within dimension i
and we have

[f · g]i = [f̄ · g]i .
Proof. The polynomial f is some finite sum of monomials

f =
∑
j

w
aj,2
2 w

aj,3
3 . . . w

aj,k
k ,

where for each j we have 2aj,2 + 3aj,3 · · ·+ kaj,k ≤ i. Hence we have

f̄ =
∑
j

w
aj,2
2 w

aj,3
3 . . . w

aj,k−1
k−1 (1 + w2 + · · ·+ wk−1)aj,k .

Each summand is now a polynomial, which is contained in dimension 2aj,2 +
3aj,3 · · ·+ (k − 1)aj,k−1 + (k − 1)aj,k ≤ i.

Also f + f̄ is the following sum∑
j

w
aj,2
2 w

aj,3
3 . . . w

aj,k−1
k−1

(
(1 + w2 + · · ·+ wk−1)aj,k + w

aj,k
k

)
.

Each summand is divisible by (1 + w2 + · · ·+ wk−1)aj,k + w
aj,k
k and consequently

the polynomial f + f̄ is divisible by the common divisor (1 +w2 + · · ·+wk−1) +wk.
Hence by the Lemma 3.8 we have [(f + f̄) · g]i = 0, which by (3.7) implies that

[f · g]i = [f̄ · g]i. �
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Corollary 3.11. Suppose f ∈ Z2[w2, w3 . . . , wk] is a nonzero polynomial of the
form f = fx + fx−1 + · · · fx−k+1 where fx, fx−1, . . . , fx−k+1 are polynomials lying
in dimensions x, x− 1, . . . , x− k + 1 respectively. Then f̄ is nonzero.

Proof. By the same argument as before, the polynomial f + f̄ is divisible by
1 + w2 + · · ·+ wk. But because of the range of dimensions in which the terms of
polynomial f lie, the polynomial f is not divisible by 1 +w2 + · · ·+wk. Hence the
difference, f̄ , is nonzero. �

Proposition 3.12. Let k ≥ 3 and t ≥ max {3, log2(k − 1)}. For any x ≥ 0 and n
such that

(k − 1) · 2t−1 + k − 3
k − 1 · 2

t−1 + x

k − 1 − 1 < n ≤ k · 2t−1 − 1− x

the set Nx(Gn,k) is linearly independent.

Remark. The lower bound for t is chosen just so that there exists an n ≥ 2k in
the given interval.

Proof. Suppose the converse is true. By the earlier discussion about the form
of linear combinations of elements of Nx(Gn,k) it means that there exists a non-
zero polynomial f = fx + fx−1 + · · · + fx−k+1, where fx, fx−1, . . . , fx−k+1 ∈
Z2[w2, w3, . . . , wk] are some polynomials in dimensions x, x − 1, . . . , x − k + 1
respectively, such that

fxgn−k+1 + fx−1gn−k+2 + · · ·+ fx−k+1gn = 0 ,
or equivalently, [f · g]n−k+1+x = 0.

Since f is nonzero, by Corollary 3.11, the polynomial f̄ is nonzero as well. By
Corollary 3.10 we have [f̄ · g]n−k+1+x = 0.

As f̄ is nonzero and contained in dimension x, there must exist y ≤ x such that
f̄ = f̄y + · · ·+ f̄0 ,

where each f̄i lies in dimension i and f̄y 6= 0. Hence

0 = [f̄ · g]n−k+1+x = f̄ygn−k+1+x−y + · · ·+ f̄0gn−k+1+x ,

or equivalently

(3.10) 0 =
y∑
i=0

f̄ign−k+1+x−i .

In preparation to expand the RHS of (3.10) using Lemma 3.6 let us denote
ai = (n− k + 1 + x− i)− ((k − 1) · 2t−1 − k) for i = 0, . . . , j, so that we can write

gn−k+1+x−i = g(k−1)·2t−1−k+ai .

Since i ≤ y ≤ x we have
ai = (n− k + 1 + x− i)− ((k − 1) · 2t−1 − k) ≥ n− (k − 1) · 2t−1 + 1 ≥ 1

and on the other hand from n ≤ k.2t−1 − 1− x we deduce
ai = (n− k + 1 + x− i)− ((k − 1) · 2t−1 − k) ≤ n− (k − 1) · 2t−1 + 1 + x ≤ 2t−1 .
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So the conditions of Lemma 3.6 are satisfied and we have

gn−k+1+x−i =
k−1∑
j=2

(w2t−1

j g(k−j−1)·2t−1−k+ai) + w2t−1−ai
k−1 wai−1

k

+ terms divisible by waik .

Hence we observe, noting that ai = a0 − i is a decreasing function of i ∈ {0, . . . , y},
that the RHS of (3.10) is a sum of three polynomials

A =
y∑
i=0

k−1∑
j=2

(f̄iw2t−1

j g(k−j−1)·2t−1−k+ai) ,

B =
y∑
i=0

f̄iw
2t−1−ai
k−1 wai−1

k ,

C = sum of terms divisible by w
ay
k .

But the polynomial B also contains some terms divisible by wayk , since

B = f̄yw
2t−1−ay
k−1 w

ay−1
k +

y−1∑
i=0

f̄iw
2t−1−ai
k−1 wai−1

k

and ai − 1 ≥ ay−1 − 1 = ay. So let us denote B′ = f̄yw
2t−1−ay
k−1 w

ay−1
k to write

B + C = B′ + C ′

where C ′ is some polynomial divisible by wayk .
Substituting into (3.10) yields

0 = A+B′ + C ′,

or more explicitly

(3.11)
y∑
i=0

k−1∑
j=2

(f̄iw2t−1

j g(k−j−1)·2t−1−k+ai) = f̄yw
2t−1−ay
k−1 w

ay−1
k + C ′.

Since f̄y 6= 0, it is sufficient to show that in the LHS the indeterminate wk never
appears in a power of ay − 1 or higher in order to reach a contradiction. Let us
consider the summand

f̄iw
2t−1

j g(k−j−1)·2t−1−k+ai .

Every f̄i is a polynomial in indeterminates w2, . . . , wk−1 and j is always distinct
from k, so the only way for any power of wk to appear in this summand is by that
power occuring in the polynomial g(k−j−1)·2t−1−k+ai .

By our assumptions n satisfies

(k − 1) · 2t−1 + k − 3
k − 1 · 2

t−1 + x

k − 1 − 1 < n .
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With a series of implications utilizing the facts that j ≥ 2, ai ≤ a0, y ≤ x and
ay = a0 − y we conclude

(k − 1) · 2t−1 + k − 3
k − 1 · 2

t−1 + x

k − 1 − 1 < n ,

k − 3
k − 1 · 2

t−1 + x

k − 1 − 1 < n− (k − 1) · 2t−1 ,

k − 3
k − 1 · 2

t−1 + x

k − 1 + x < n− (k − 1) · 2t−1 + 1 + x ,

k − 3
k − 1 · 2

t−1 + x

k − 1 + x < a0 ,

(k − 3) · 2t−1 + x < (k − 1)(a0 − x) ,
(k − 3) · 2t−1 + a0 < k(a0 − x) ,
(k − 3) · 2t−1 − k + a0 < k(a0 − x− 1) ,

(k − j − 1) · 2t−1 − k + ai < k(ay − 1) .
Therefore the polynomial g(k−j−1)·2t−1−k+ai lies in a dimension lower than k(ay−1)
and consequently none of its terms may contain w

ay−1
k . With that we have shown

that (3.11) is impossible. �

4. The results

We are now ready to prove our main result. Our aim is to extend the statement of
[7, Theorem 3.1 (2)], which can be reformulated (by shifting t by one, substitution
x = s+ 1 and including cases x = 0 and x = 1 corresponding to [5, Theorem 2.1])
as follows

For any non-negative x ≤ 7 and n ≥ 6 such that there exists t sufficing
2t + x

2 − 1 < n ≤ 2t+1 − 1− x we have charrank(γ̃n,3) ≥ n− 3 + x.

Combining Proposition 3.12 and Proposition 2.1 we obtain following lower
bounds for characteristic rank of γ̃n,k.
Theorem 4.1. Let k ≥ 3 and t ≥ max {3, log2(k − 1)}. For any x ≥ 0 and n such
that

(4.1) (k − 1) · 2t−1 + k − 3
k − 1 · 2

t−1 + x

k − 1 − 1 < n ≤ k · 2t−1 − 1− x

we have
charrank(γ̃n,k) ≥ n− k + x.

Proof. The assumptions of the theorem are the same as in the Proposition 3.12.
Since the LHS of (4.1) is increasing function of x, while the RHS is decreasing, if
n satisfies this inequality for some x, it also satisfies it for all y ≤ x. Thus for all
y ≤ x, each set Ny(Gn,k) is linearly independent.

The LHS of (4.1) is at least (k − 1) · 2t−1, so y ≤ x < 2t−1 and also
(n− k − 1)− 2t−1 ≥ (k − 2) · 2t−1 − k − 1 = 2t−1 + (k − 3) · 2t−1 − k − 1 .
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Since k ≥ 3 and t ≥ 3 we have
(n− k − 1)− 2t−1 ≥ 2t−1 + (k − 3)− k − 1 = 2t−1 − 4 ≥ 0 .

Combining the inequalities, we obtain y < 2t−1 ≤ n− k − 1.
Proposition 2.1 now implies that for all y ≤ x the homomorphisms

w1 : Hn−k+y(Gn,k) −→ Hn−k+y+1(Gn,k)
are injective. Hence charrank(γ̃n,k) ≥ n− k + x. �

Now, let us explore the implications of Theorem 4.1. The oriented Grassmann
manifold G̃n,k is a connected closed smooth manifold of dimension k(n−k). We can
apply Theorem 1.2 with j = n− k + x, since all monomials wi1(γ̃n,k) . . . wir (γ̃n,k)
in the top cohomology group Hk(n−k)(G̃n,k) vanish due to the self-annihilating
property of the subring Im(p∗ : H∗(Gn,k) −→ H∗(G̃n,k)).

First, let us consider the case for k = 3. The inequality (4.1) simplifies to

(4.2) 2t + x

2 − 1 < n ≤ 2t + 2t−1 − 1− x .

Although the characteristic rank of γ̃n,3 is already known [10], together with
the corresponding result on cup-length, we will explicitly derive the values implied
by Theorem 4.1 in this case. The intent is to allow us to discuss certain aspects of
the proof, which generalize to the case of arbitrary k.

Theorem 4.2 ([10, Theorem 2]). For any a ≥ 0 and t sufficiently large so that it
satisfies 2t−1 ≥ 3a+ 2 we have

cup(G̃2t+a,3) = 2t − 3 .

Proof. Denote n = 2t + a and set x = 2a + 1, so that 2t + x
2 − 1 < n. Since

2t−1 ≥ 3a+ 2 we have
a ≤ 2t−1 − 2a− 2 ,

2t + a ≤ 2t + 2t−1 − 2a− 2 ,
n ≤ 2t + 2t−1 − 1− x ,

hence the inequality (4.2) is satisfied.
By Theorem 4.1 we have charrank(γ̃n,3) ≥ n− 3 + x. As discussed before, we

can apply Theorem 1.2 to obtain

cup(G̃n,3) ≤ 1 + 3(n− 3)− (n− 3 + x)− 1
2 ,

cup(G̃n,3) ≤ 1 + 3(2t + a− 3)− (2t + a− 3 + 2a+ 1)− 1
2 ,

cup(G̃n,3) ≤ 1 + 2t+1 − 8
2 ,

cup(G̃n,3) ≤ 2t − 3 .

On the other hand, we know that w2t−4
2 (γ̃2t,3) 6= 0 [4, Theorem 1.2] and

there is an “inclusion” j̃ : G̃2t,3 −→ G̃2t+a,3, such that the canonical bundle γ̃2t,3
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is isomorphic to the pullback j̃∗(γ̃2t+a,3). Hence, in cohomology, the induced
homomorphism j̃∗ : H∗(G̃2t+a,3) −→ H∗(G̃2t,3) maps the class w2t−4

2 (γ̃2t+a,3) to
the non-zero class w2t−4

2 (γ̃2t,3). Thus the class w2t−4
2 (γ̃2t+a,3) itself is non-zero and

by Poincaré duality we have cup(G̃n,3) ≥ 2t − 3. �

Now, let us proceed with the general case. Since the LHS of (4.1) might not be an
integer, we need to handle it carefully. For any k ≥ 3 and t ≥ max {3, log2(k − 1)}
let us denote xk,t the smallest positive integer such that 2t − xk,t is divisible by
k − 1. We define an integer

(4.3) nk,t = k · 2t−1 − 2t − xk,t
k − 1 − 1 .

Theorem 4.3. For any k ≥ 3, t ≥ max {3, log2(k − 1)} and a ≥ 0, such that a
satisfies ka+ xk,t − 1 ≤ 2t−xk,t

k−1 we have

cup(G̃nk,t+a,k) ≤ 1 + k(nk,t − k)− (nk,t − k + xk,t)
2 .

Proof. Denote n = nk,t + a and set x = (k − 1)a+ xk,t − 1. For the LHS of (4.1)
we have

(k − 1) · 2t−1 + k − 3
k − 1 · 2

t−1 + x

k − 1 − 1 = k · 2t−1 − 2t − x
k − 1 − 1

and so by (4.3), the LHS of (4.1) is equal to

nk,t + a− 1
k − 1 = n− 1

k − 1 .

On the other hand, since ka+ xk,t − 1 ≤ 2t−xk,t
k−1 we have

a ≤ 2t − xk,t
k − 1 − (k − 1)a− xk,t + 1 ,

−2t − xk,t
k − 1 − 1 + a ≤ −(k − 1)a− xk,t ,

k · 2t − 2t − xk,t
k − 1 − 1 + a ≤ k · 2t − (k − 1)a− xk,t ,

n ≤ k · 2t − 1− x .

Hence the inequality (4.1) is satisfied and by Theorem 4.1 we have charrank(γ̃n,k) ≥
n− k + x. Theorem 1.2 now yields

cup(G̃n,k) ≤ 1 + k(n− k)− (n− k + x)− 1
2 ,

cup(G̃n,k) ≤ 1 + k(nk,t+a−k)− (nk,t+a−k +(k−1)a+ xk,t−1)−1
2 ,

cup(G̃n,k) ≤ 1 + k(nk,t − k)− (nk,t − k + xk,t)
2 .

since a appears k times in both parentheses. �
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As should be clear from juxtaposing the proofs of Theorem 4.2 and Theorem
4.3, the only difference is in having information about the height of the second
Stiefel-Whitney class of γ̃nk,t,k. For k = 3 we had x3,t+1 = 2 and n3,t+1 = 2t and
the height of w2(γ̃2t,3) was known. If we knew that the height of w2(γ̃nk,t,k) is
k(nk,t−k)−(nk,t−k+xk,t)

2 , we would be able to make inferences analogous to those
in the second part of the proof of Theorem 4.2 to reach a conclusion that the
cup-length of G̃n,k for n in the corresponding interval is actually equal to the upper
bound given by Theorem 4.3.
Acknowledgement. The author was supported by the grants APVV-16-0053 and
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