RECOGNIZABILITY OF FINITE GROUPS BY SUZUKI GROUP

Alireza Khalili Asboei and Seyed Sadegh Salehi Amiri

ABSTRACT. Let G be a finite group. The main supergraph $\mathcal{S}(G)$ is a graph with vertex set G in which two vertices x and y are adjacent if and only if $o(x) \mid o(y)$ or $o(y) \mid o(x)$. In this paper, we will show that $G \cong Sz(q)$ if and only if $\mathcal{S}(G) \cong \mathcal{S}(Sz(q))$, where $q = 2^{2m+1} \ge 8$.

1. INTRODUCTION

Let G be a finite group and $x \in G$. The order of x is denoted by o(x). The set of all element orders of G is denoted by $\pi_e(G)$ and the set of all prime factors of |G| is denoted by $\pi(G)$. It is clear that $\pi_e(G)$ is determined by the subset $\mu(G)$ of maximal element orders with respect to divisibility. We set $m_i = m_i(G) = |\{g \in G | o(g) = i\}|$.

The main supergraph $\mathcal{S}(G)$ is the graph whose vertices are the group elements and two elements x and y are connected if either o(x) | o(y) or o(y) | o(x). We also denote the subgraph of $\mathcal{S}(G)$ with the identity removed by $\mathcal{S}^*(G)$ [4]. We write $x \sim y$ when two vertices x and y are adjacent.

For each finite group G and each integer $d \ge 1$, let $G(d) = \{x \in G | x^d = 1\}$. We say that the groups G_1 and G_2 are of the same order type if $|G_1(d)| = |G_2(d)|$, for all $d \in \mathbb{N}$. By the definition of the main supergraph, it is clear that if G_1 and G_2 are groups with the same order type, then $\mathcal{S}(G_1) \cong \mathcal{S}(G_2)$. The example $G_1 = Z_4 \times Z_4$ and $G_2 = Z_4 \times Z_2 \times Z_2$ shows that the converse statement is not true in general. In 1987, J.G. Thompson [9, Problem 12.37] posed the following Problem:

Thompson's Problem. Suppose that G_1 and G_2 are two groups of the same order type. If G_1 is solvable, is it true that G_2 is also necessarily solvable?

In [5], the set of m_i (also known as nse) was used to prove no solvable group has the same order type as $Sz(2^{2m+1})$, where $2^{2m+1} - 1$ is a prime power. In this paper we use instead the supergraph to remove the requirement that $2^{2m+1} - 1$ is a prime power. As two groups having the same order type implies their supergraphs coincide, if a solvable group is uniquely determined by S(G), then Thompson's conjecture holds for G. In [7, 8, 10], the authors proved that alternating groups of degree p, p + 1 and p + 2, the symmetric groups of degree p, the small Ree groups ${}^{2}G_{2}(3^{2n+1})$ and $PSL_{2}(q)$, where q is a prime power are uniquely determined by

²⁰¹⁰ Mathematics Subject Classification: primary 20D08; secondary 05C25.

Key words and phrases: main supergraph, Suzuki group.

Received November 10, 2018, revised February 2019. Editor C. Greither.

DOI: 10.5817/AM2019-4-225

their main supergraph. Furthermore, in [6], it was also proven for sporadic simple groups and for $PSL_2(q)$ and $PGL_2(p)$, where p is a prime. Our main theorem is as follows:

Main Theorem. Let $\mathcal{S}(G) \cong \mathcal{S}(Sz(q))$, where $q = 2^{2m+1} \ge 8$. Then $G \cong Sz(q)$.

We construct the prime graph of G, which is denoted by $\Gamma(G)$, as follows: the vertex set is $\pi(G)$ and two distinct vertices p and q are joined by an edge if and only if G has an element of order pq. Let t(G) be the number of connected components of $\Gamma(G)$ and let $\pi_1, \pi_2, \ldots, \pi_{t(G)}$ be the connected components of $\Gamma(G)$. If $2 \in \pi(G)$, then we always suppose $2 \in \pi_1$. Throughout this paper, we denote by ϕ the Euler's totient function.

2. Preliminary results

In this section, we present some preliminary results which will turn out to be useful in what follows. First, we quote some known results about Frobenius group and 2-Frobenius group, which are useful in the sequel.

Lemma 2.1 ([2]). Let G be a 2-Frobenius group of even order, i.e., G is a finite group and has a normal series $1 \leq H \leq K \leq G$ such that K and G/H are Frobenius groups with kernels H and K/H, respectively. Then: (a) t(G) = 2, $\pi_1 = \pi(G/K) \cup \pi(H)$ and $\pi_2 = \pi(K/H)$; (b) G/K and K/H are cyclic, $|G/K| \mid (|K/H| - 1), (|G/K|, |K/H|) = 1$ and $G/K \leq \operatorname{Aut}(K/H)$.

Lemma 2.2 ([2]). Suppose that G is a Frobenius group of even order and H, K are the Frobenius kernel and the Frobenius complement of G, respectively. Then $t(G) = 2, T(G) = \{\pi(H), \pi(K)\}.$

Lemma 2.3 ([12]). If G is a finite group such that $t(G) \ge 2$, then G has one of the following structures:

(a) G is a Frobenius group or a 2-Frobenius group;

(b) G has a normal series $1 \leq H \leq K \leq G$ such that $\pi(H) \cup \pi(G/K) \subseteq \pi_1$ and K/H is a non-abelian simple group. In particular, H is nilpotent, $G/K \leq \text{Out}(K/H)$ and the odd order components of G are the odd order components of K/H.

Lemma 2.4 ([3]). The Suzuki groups are only non-abelian simple groups of order prime to 3.

Lemma 2.5 ([1, 11]). Let S = Sz(q) with $q = 2^{2m+1} \ge 8$, $m \ge 1$. Then $m_2(S) = (q-1)(q^2+1)$, $m_4(S) = (q^2-q)(q^2+1)$ and $m_{2^r} = 0$ for $r \ge 3$.

3. Proof of the Main Theorem

Now we are ready to prove the main theorem of this paper.

Proof of the main theorem. It is well known that Sz(q) has no elements of order 2r with r an odd number (see [11]). Therefore, by Lemma 2.5, $S^*(Sz(q))$ has a complete component consisting of the $(q^2 + 1)(q^2 - 1)$ elements whose order is

227

a power of 2. Let K_1 denote this component in $\mathcal{S}^*(G)$. Since K_1 is complete, it follows that K_1 contains only elements of prime power order for a fixed prime p. Moreover, as 2 divides the number of elements who order is a power of p (by pairing g and g^{-1}) but does not divide $(q^2 + 1)(q^2 - 1)$, it follows that p = 2. Therefore, 2 is an isolated vertex in the prime graph $\Gamma(G)$.

If G is a Frobenius group with complement H, then by Lemma 2.2 $|H| = q^2$ or $(q^2 + 1)(q - 1)$. However $|H| \mid |G|/|H| - 1$ which gives a contradiction. While, if G is a 2-Frobenius group with series $1 \leq H \leq K \leq G$ as in Lemma 2.1, then $(q^2 + 1)(q - 1) = |K/H| \mid |H| - 1 = 2^t - 1$ for some t which is a contradiction. Thus by Lemma 2.3 G has a normal series $1 \leq H \leq K \leq G$, with $K/H \cong Sz(q')$ for some q' < q as $3 \nmid |G|$ by Lemma 2.4. Furthermore, Lemma 2.3 implies H and G/K are 2-groups and therefore $(q^2 + 1)(q - 1) \mid (q'^2 + 1)(q' - 1)$ showing that q' = q, K = G and H = 1. In particular, $G \cong Sz(q)$.

Acknowledgement. The authors would like to thank the referee for his/her valuable comments which helped to improve the manuscript.

References

- Alavi, H., Daneshkhah, A., Parvizi, H., Groups of the same type as Suzuki groups, Int. J. Group Theory 8 (1) (2019), 35–42.
- [2] Chen, G.Y., On Frobenius and 2-Frobenius group, J. Southwest China Normal Univ. 20 (1995), 485–487, in Chinese.
- [3] Glauberman, G., Factorizations in local subgroups of finite groups, Regional Conference Series in Mathematics, no. 33, American Mathematical Society, Providence, R.I., 1977.
- [4] Hamzeh, A., Ashrafi, A.R., Automorphism groups of supergraphs of the power graph of a finite group, European J. Combin. 60 (2017), 82–88.
- [5] Iranmanesh, A., Parvizi, H., Tehranian, A., Characterization of Suzuki group by NSE and order of group, Bull. Korean Math. Soc. 53 (3) (2016), 651–656.
- [6] Khalili, A., Salehi, S.S., Some results on the main supergraph of finite groups, Accepted in Algebra Discrete Math.
- [7] Khalili, A., Salehi, S.S., Some alternating and symmetric groups and related graphs, Beitr. Algebra Geom. 59 (2018), 21–24.
- [8] Khalili, A., Salehi, S.S., The small Ree group ²G₂(3²ⁿ⁺¹) and related graph, Comment. Math. Univ. Carolin. 59 (3) (2018), 271–276.
- Mazurov, V.D., Khukhro, E.I., Unsolved problems in group theory, The Kourovka Notebook, (English version), ArXiv e-prints, (18), January 2014. Available at http://arxiv.org/abs/ 1401.0300v6.
- [10] Salehi, S.S., Khalili, A., Recognition of $L_2(q)$ by the main supergraph, Accepted in Iran. J. Math. Sci. Inform.
- [11] Shi, W.J., A characterization of Suzuki's simple groups, Proc. Amer. Math. Soc. 114 (3) (1992), 589–591.
- [12] Williams, J.S., Prime graph components of finite groups, J. Algebra 69 (2) (1981), 487–513.

A.K. Asboei, Department of Mathematics, Farhangian University, Tehran, Iran *E-mail*: khaliliasbo@yahoo.com

S.S.S. AMIRI, DEPARTMENT OF MATHEMATICS, BABOL BRANCH, ISLAMIC AZAD UNIVERSITY, BABOL, IRAN *E-mail:* salehisss@baboliau.ac.ir