
ARCHIVUM MATHEMATICUM (BRNO)
Tomus 56 (2020), 199–206

AN IMPROVEMENT OF THE NON-EXISTENCE REGION
FOR LIMIT CYCLES OF THE BOGDANOV-TAKENS SYSTEM

Makoto Hayashi

Dedicated to Professor Hiroshi Kokubu on the occasion of 60th birthday

Abstract. In this paper, an improvement of the global region for the
non-existence of limit cycles of the Bogdanov-Takens system, which is well-
-known in the Bifurcation Theory, is given by two ideas. The first is to apply the
existence of the algebraic invariant curve of the system to the Bendixson-Dulac
criterion, and the second is to consider a necessary condition in order that a
closed orbit of the system includes two equilibrium points. In virtue of these
methods, it shall be shown that our previous result and the result of Gasull
et al. are improved partially.

1. Introduction

We consider the following system called Bogdanov-Takens system (for instance
see [1, 5, 8, 10] or [12]) having a cups of order 2:

(1.1)
{
ẋ = y

ẏ = (x+ µ2)y + x2 + µ1 ,

where the dot ( ˙ ) denotes differentiation, µ1 and µ2 are real parameters.
The system is a classical Liénard system and has been well-known in the

Bifurcation Theory. Several local results for the orbits of the system have been
given in the bifurcation diagram (for instance see [7, 9, 11] or [12]) as follows.

Proposition 1. Let |µ1| and |µ2| are sufficient small. If the parameter pair (µ1, µ2)
belongs to the set

D =
{

(µ1, µ2)
∣∣ µ1 < −

49
25µ

2
2 or µ1 > −µ2

2

}
,

then system (1.1) has no limit cycles.

Remark that the above result has been given under the local condition for the
parameters.
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Our aim is to give a global condition for the non-existence of limit cycles of
system (1.1). Previously, we gave the following result in [5].

Proposition 2. If the parameter pair (µ1, µ2) belongs to the region

E =


(i) µ1 ≥ 0
(ii) µ1 < 0 and µ2 ≤ 0
(iii) µ1 ≥ −µ2

2
(iv) µ1 ≤ −(µ2 + 1)2 ,

then system (1.1) has no limit cycles.

E(i) and E(ii) are trivial conditions given by the criterion for the classification
of the equilibrium points (for instance see [4] or [13]).
E(iii) is a global condition given in [5]. It was proved by using the tool in [3]

that if some plane curve defined in the Liénard system has no intersecting points
itself, then the system has no limit cycles.

We in [4] proved that system (1.1) has the algebraic invariant curve of the
form y = −x+

√
−µ1 if µ1 = −(µ2 + 1)2. E(iv) is a significant condition given by

combinating the existence of the algebraic invariant curve with the Bendixson-Dulac
criterion (for the detail see [4]). This idea is also used in Lemma 5.

In this paper, we give the global result extended the region E. Our main result
is stated as follows.

Theorem 3. Let

F =
{

(µ1, µ2) | µ1 ≤ −(µ2 + ε)2 and ε ≥ 1
3

}
.

If the parameter pair (µ1, µ2) belongs to the set E ∪ F , then system (1.1) has no
limit cycles.

E E

EF

F
µ1 = −(µ2 + 1)2

µ1 = −(µ2 + 1 3)2 µ1 = − µ2
2

µ1

µ2

0

−1/3

−1

Non-existence region E ∪ F
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We note that the condition E(iv) is contained to F . From the above result, the
shaped region in the previous page expresses an improved global region for the
non-existence of limit cycles of system (1.1).

In the Section 2, we shall prepare several facts for the transformed system of
system (1.1) and prove Theorem 3 in the next section. In the final section, we
discuss on the relation of Theorem 3 and the result of Gasull et al. [1] improved the
Perko’s Conjectures [10]. It shall be shown that our result improves them partially
in Theorem 10.

2. Preliminaries

From Proposition 2, we assume µ1 < 0 and µ2 > 0 for the parameter pair
(µ1, µ2) to simplify the discussion.

By setting x = z −
√
−µ1, system (1.1) is transformed into the system

(2.1)
{
ż = y

ẏ = −(−z +
√
−µ1 − µ2)y − (−z2 + 2

√
−µ1z) .

For system (2.1), several facts have been given in [5].

Lemma 4. System (2.1) has exactly two equilibrium points O(0, 0) and
A(2
√
−µ1, 0), and these indices are +1 and −1, respectively.

Since the equilibrium point A is saddle, we note from the Poincaré index theorem
(for instance see [11], [13] or [14]) that if there exists a closed orbit C of system
(2.1), then it must contain the only one equilibrium point O in the inside of C.

Lemma 5. Let ε =
√
−µ1 − µ2 and the set

D1 =
{

(z, y) | y < −ε(z − 2
√
−µ1)

}
.

Then system (2.1) has no limit cycles on D1.

Proof. We shall use the well-known Bendixson-Dulac theorem (for instance see [14])
for this purpose. We set X(z, y) = y and Y (z, y) = −(−z + ε)y − (−z2 + 2

√
−µ1z)

and define the ‘Bendixson-Dulac function B(z, y)’ by B(z, y) = −(y+z−2
√
−µ1)−1,

where the denominator is the algebraic invariant curve of system (2.1) for ε = 1.
Then we have

∂

∂ z
(BX) + ∂

∂ y
(BY )

= 1
(y + z − 2

√
−µ1)2

{
y + ε(z − 2

√
−µ1)

}
< 0

on D1. This completes the proof. �
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Let
l+ = {(z, y)

∣∣ y + ε(z − 2
√
−µ1) = 0, z > 0} ,

l− = {(z, y)
∣∣ y + ε(z − 2

√
−µ1) = 0, z ≤ 0}

and D2 = R2 − (D1 ∪ l+ ∪ l−).
To prove Theorem 3, we divide the proof in two cases (I) ε ≥ 1 and (II) 0 < ε < 1.

Case (I):
Lemma 6. Let ε ≥ 1. Then an orbit of system (2.1) passing through l+ (resp. l−)
must cross l+ (resp. l−) from D1 (resp. D2) to D2 (resp. D1).
Proof. Let us express an orbit γ of system (2.1) as the pair (φ(t), ψ(t)). Suppose
that γ meets the line l+. If γ meets l+ at a point (φ(t0), ψ(t0)) with t0 ≥ 0, then
we have

ψ
′(t0)
φ′(t0) = −ε+

(
1− 1

ε

)
φ(t0) ≥ −ε

for ε ≥ 1. Thus, the point (φ(t), ψ(t)) crosses the line l+ from D1 to D2 at t = t0.
Similarly, we see that the point (φ(t), ψ(t)) crosses the line l− from D2 to D1 at
t = t0. �

Case (II): From the similar discussion to Lemma 6, we have the following

Lemma 7. Let 0 < ε < 1. Then an orbit of system (2.1) passing through l+

(resp. l−) must cross l+ (resp. l−) from D2 (resp. D1) to D1 (resp. D2).
Proof. We use the same signs as Lemma 6. If γ meets l+ at a point (φ(t0), ψ(t0))
with t0 ≥ 0, then we have ψ′(t0)/φ′(t0) < −ε for 0 < ε < 1. Thus, the point
(φ(t), ψ(t)) crosses the line l+ from D2 to D1 at t = t0. Similarly, we see that the
point (φ(t), ψ(t)) crosses the line l− from D1 to D2 at t = t0. �

3. Proof of Theorem 3

First, we remark from Lemma 5 that a non-trivial closed orbit C of system (2.1)
can not stay in D1. We divide the proof in two cases.

Case (I): If ε ≥ 1, from Lemma 6, the orbit C of system (2.1) must pass
through l+ (resp. l−) from D1 (resp. D2) to D2 (resp. D1). Thus, it must contain
two equilibrium points O and A. This contradicts to the Poincaré index theorem.

Case (II): If 0 < ε < 1, from Lemma 7, the orbit C passes through l+ (resp. l−)
from D2 (resp. D1) to D1 (resp. D2). On the other hand, we have the following
fact by the similar calculation to [6].

Lemma 8. Let the function y = y(x) be the orbit of system (1.1) starting from
the initial point (0, 2ε

√
−µ1). Then the inequality

y(2
√
−µ1) < 2

(
1− 1

3ε

)
(−µ1)

holds for ε > 0.
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Proof. Since

y(2
√
−µ1)− y(0) =

∫ 2
√
−µ1

0

dy

dz
dz =

∫ 2
√
−µ1

0

{
z − ε− −z(z − 2

√
−µ1)

y

}
dz ,

we get

y(2
√
−µ1) < 2ε

√
−µ1 +

∫ 2
√
−µ1

0

{
z − ε− −z(z − 2

√
−µ1)

2ε
√
−µ1

}
dz

< 2
(

1− 1
3ε

)
(−µ1)

for ε > 0. �

From the above lemma, we remark that the condition ε ≥ 1/3 is a necessary
condition in order that the orbit y = y(x) starting from the initial point (0, 2ε

√
−µ1)

intersects the half-line m+ = {(z, y)
∣∣ z = 2

√
−µ1, y ≥ 0}. Thus, if 1/3 ≤ ε < 1,

from Lemma 7, Lemma 8 and the uniqueness of the solution for the initial value
problem, the closed orbit C must contain two equilibrium points O and A. This
also contradict to the Poincaré index theorem.

● ●
O A

D1

D2

y

z

l −

l +

m+

y = ε(z − 2 − µ1)
z = 2 − µ1

2ε − µ1 y = y(z)

Figure for 1/3 ≤ ε < 1
Therefore, we conclude from the Cases (I) and (II) that if ε =

√
−µ1−µ2 ≥ 1/3,

then system (1.1) has no limit cycles.
The proof of the theorem is completed now. �

Example. Consider system (1.1) with µ1 = −19 and µ2 = 4. The pair (µ1, µ2)
does not belong to the set E, but the set F . This is an example which can not
apply Proposition 2. Using Theorem 3, it follows that this system has no limit
cycles.

4. Relation with previous works

To discuss on the relation Theorem 3 and the result of Gasull et al. [1], we use
the same signs as [1]. Let µ1 = −m2 (m > 0) and µ2 = b > 0 for system (1.1).
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Using b and m, the set F in Theorem 3 is written as the following

F =
{

(m, b)
∣∣ b ≤ m− 1

3

}
.

Our purpose in this section is to improve the results (Theorems 1 and 2) in [1]
partially. The following is known in [1, 2, 8] or [10].

Proposition 9. No limit cycles of system (1.1) exist if and only if b ≤ b∗(m) or
b ≥ m, for an unknown function b∗(m).

We note that the condition b ≥ m coincides with E(iii) in Proposition 2. Perko
in [10] gave the function b∗(m) = 5m/7 +O(m2). Gasull et al. [2] improved it and
gave the global lower and upper bounds of b∗(m) (see the Theorem 2 in [1]) as
follows.

max
(5m

7 ,m− 1
)
< b∗(m) < min

(
(5 + 37

12m)m
7 + 37

12m
,m− 1 + 25

7m

)
.

We consider on the positions of two curves b = m−1/3 and b = b∗(m). If m ≥ 12/5,
then we have

min
(

(5 + 37
12m)m

7 + 37
12m

,m− 1 + 25
7m

)
≤ m− 1

3 .

Thus, we get b∗(m) < m− 1/3. If 0 < m ≤ 7/6, then it holds that

(4.1)
(
m− 1

3 ≤
) 5m

7 < b∗(m) <
(5 + 37

12m)m
7 + 37

12m
.

Moreover, remark that there exists m∗ ∈ (7/6, 12/5) such that b∗(m∗) = m∗ − 1/3.
Thus, we have b∗(m) > m − 1/3 for 0 < m < m∗ and b∗(m) ≤ m − 1/3 for
m∗ ≤ m < 12/5. Therefore, we conclude by combinating Theorem 3 with the
Theorem 2 in [1] the following

Theorem 10. Let

G1 =
{

(m, b) | b ≤ m− 1
3 and m ≥ m∗

}
,

G2 =
{

(m, b) | b ≤ b∗(m) and 0 < m < m∗
}
,

G3 =
{

(m, b) | b ≥ m
}
,

where b∗(m) is the function satisfying the inequality (4.1) and m∗ ∈ (7/6, 12/5).
If the parameter pair (m, b) belongs to the set G1 ∪G2 ∪G3, then system (1.1)

has no limit cycles.

Remark that the set G =
{

(m, b)
∣∣ b∗(m) ≤ b ≤ m− 1

3

}
is an improved region

for the non-existence of limit cycles.
From the above theorem, [5] and [8], we have the following
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Corollary 11. Let the parameter pair (m, b) belongs to the set R2−(G1∪G2∪G3).
If the limit cycle for system (1.1) exists, then it is at most one, hyperbolic and
unstable.

The shaped region G below expresses an improved non-existence region corres-
ponds to the Figure 2 in [1].

0

b

mm*

G

G1

G2

G3

b = m

b = m − 1 3

b = b*(m)

An improved non-existence region G
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