
ARCHIVUM MATHEMATICUM (BRNO)
Tomus 57 (2021), 285–297

BOUNDARY VALUE PROBLEMS FOR HADAMARD-CAPUTO
IMPLICIT FRACTIONAL DIFFERENTIAL INCLUSIONS

WITH NONLOCAL CONDITIONS

Ahmed Zahed, Samira Hamani, and John R. Graef

Abstract. In this paper, the authors establish sufficient conditions for the
existence of solutions to implicit fractional differential inclusions with nonlocal
conditions. Both of the cases of convex and nonconvex valued right hand sides
are considered.

1. Introduction

In this paper, we are concerned with the existence of solutions to the boundary
value problem for implicit fractional differential inclusions
(1) C

HD
αy(t) ∈ F (t, y(t),CH Dαy(t)) , for a.e. t ∈ J = [1, T ], 0 < α ≤ 1,

(2)
m∑
1
aky(tk) = y1,

where CHDα is the Hadamard-Caputo fractional derivative, F : [1, T ]×R×R→ P(R)
is a multivalued map, P(R) is the family of all nonempty subsets of R, y1 ∈ R,
ak ∈ R, k = 1, 2, . . . ,m, and 1 < t1 < t2 < · · · < tm < T .

Differential equations and inclusions of fractional order have recently proved to
be valuable tools in the modeling of many phenomena in various fields of science and
engineering. There are numerous applications in viscoelasticity, electrochemistry,
electromagnetism, etc. For basic details of the fractional calculus including some
applications and recent results, we recommend the monographs of Kilbas et al.
[22], Podlubny [24], and the papers of Agarwal et al. [5, 6], Momani et al. [23],
Guerraiche et al. [19, 20], and the references therein.

The study of problems with nonlocal conditions was initiated by Byszewski [13]
where he proved the existence and uniqueness of mild and classical solutions to
nonlocal Cauchy problems. As remarked by Byszewski [13, 14], nonlocal conditions
can be more useful than the standard initial condition in describing certain physical
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phenomena. Implicit fractional differential equations have been studied, for example,
by Benchohra and Souid in [9, 10, 11].

In this paper, we present existence results for the problem (1)–(2) in case the right
hand side is convex valued by using a fixed point theorem of Bohnnenblust-Karlin
type, and for the case where the right hand side is nonconvex valued, we use a fixed
point theorem for contraction multivalued maps due to Covitz and Nadler [16]. An
example is given in Section 4 to demonstrate the application of our main results.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts that
will be used in the remainder of this paper. We let C(J,R) be the Banach space of
all continuous functions from J into R with the norm

‖y‖∞ = sup{|y(t)| : t ∈ J} ,
and we let L1(J ; R) be the space of Lebesgue integrable functions y : J → R with
the norm

‖y‖L1 =
∫
J

|y(t)| dt .

Also, we let AC(J,R) denote the space of functions y : J → R that are absolutely
continuous, AC1(J,R) be the space of functions y : J → R that are absolutely
continuous and have an absolutely continuous first derivative, and if δ = t

d

dt
, then

ACnδ (J,R) = {y : J −→ R | δn−1y(t) ∈ AC(J,R)} .
For any Banach space (X, ‖ · ‖), we set:
Pcl(X) = {Y ∈ P(X) : Y is closed};
Pb(X) = {Y ∈ P(X) : Y is bounded};
Pcp(X) = {Y ∈ P(X) : Y is compact};
Pcp,c(X) = {Y ∈ P(X) : Y is compact and convex}.
A multivalued map G : X → P(X) is convex (closed) valued if G(x) is convex

(closed) for all x ∈ X. We say that G is bounded on bounded sets if G(B) =
Ux∈BG(x) is bounded in X for all B ∈ Pp(X).

The mapping G is upper semi-continuous (u.s.c.) on X if for each x0 ∈ X,
the set G(x0) is a nonempty closed subset of X, and for each open set N ⊂ X
containing G(x0), there exists an open neighborhood N0 of x0 such that G(N0) ⊂ N .
In addition, G is said to be completely continuous if G(B) is relatively compact
for every B ∈ Pb(X). It is well known that if a multivalued map G is completely
continuous with nonempty compact values, then in fact G is u.s.c if and only if G has
a closed graph (i.e., xn → x∗, yn → y∗, and yn ∈ G(xn) imply y∗ ∈ G(x∗)). The map
G has a fixed point if there is x ∈ X such that x ∈ G(X), and the set of fixed points
of G will be denoted by FixG. We say that a multivalued map G : J → Pcl(R) is
measurable if for every y ∈ R, the function t→ d(y,G(t)) = inf{|y− z| : z ∈ G(t)}
is measurable.

Definition 2.1. A multi-valued maps F : [0, T ] × R × R → P(R) is said to be
Carathéodory if



FRACTIONAL DIFFERENTIAL INCLUSIONS 287

(1) t→ F (t, u, v) is measurable for each u, v ∈ R, and
(2) u→ F (t, u, v) is upper semicontinuous for almost all t ∈ J .

Furthermore, a Carathéodory function is called L1-Carathéodory if
(3) for each ρ > 0, there exists φρ ∈ L1([0, T ],R+) such that ‖F (t, u, v)‖ =

sup{|v| : v ∈ F (t, u, v)} < φρ(t) for all |v|, |u| < ρ.

Let (X, d) be a metric space induced from the normed space (X, ‖ · ‖). The
function Hd : P (X)× P (X)→ R+ ∪ {∞} given by

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)}

is known as the Hausdorff-Pompeiu metric.

Definition 2.2. A multivalued operator N : X → Pcl(X) is:
(1) Lipschitz if there exists γ > 0 such that

Hd(N(x), N(y)) < γd(x, y) for each x, y ∈ X;

(2) a contraction if it is γ-Lipschitz with γ < 1.

The following fixed point result for contraction multivalued maps is due to
Covitz and Nadler [16].

Lemma 2.3. Let (X, d) be a complete metric space. If N : X → Pcl(X) is a
contraction, then FixN 6= ∅.

It will be convenient to have the following compactness criteria available in one
of our proofs.

Theorem 2.4. (Kolmogorov compactness criterion [17]) Let Ω ⊆ Lp(J,R), 1 ≤
p ≤ +∞. If

(i) Ω is bounded in Lp(J,R), and
(ii) uh → u as h→ 0 uniformly with respect to u ∈ Ω,

then Ω is relatively compact in Lp(J,R), where

uh(t) = 1
h

∫ t+h

t

u(s) ds .

For additional details on multivalued maps see, for example, the monographs of
Aubin and Cellina [7], Aubin and Frankowska [8], Castaing and Valadier [15], or
Deimling [17].

In what follows, log denotes the natural logarithm.

Definition 2.5 ([22]). The Hadamard fractional integral of order α for a function
h : [1,+∞)→ R is defined as

Iαh(t) = 1
Γ(α)

∫ t

1

(
log t

s

)α−1
h(s)
s

ds , α > 0 ,

provided the integral exists.
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Definition 2.6 ([4]). Let r ≥ 0 and n − 1 < α < n, where n = [α] + 1, and
h ∈ ACnδ [1,+∞). The Caputo-Hadamard fractional derivative of order α is defined
by

(HCDαh)(t) = 1
Γ(n− α)

∫ t

1

(
log t

s

)n−α−1
δnh(s)ds

s

= HI
n−α(δnh)(t) .

where δ = t ddt and δn = δ(δn−1).

Lemma 2.7 ([4]). Let h ∈ ACnδ [1,+∞) and r > 0. Then

HIr(Hc Drh)(t) = h(t)−
n−1∑
i=0

δiy(1)
i! (log t)i .

Proposition 2.8 ([25]). Let α, β > 0. Then we have:
(1) For Iα : L1(J,R)→ L1(J,R), if f ∈ L1(J,R), then

IαIβf(t) = IβIαf(t) = Iα+βf(t) .

(2) If f ∈ Lp(J,R), 1 < p <∞, then ‖Iαf(t)‖Lp ≤ Tα

Γ(α+1)‖f(t)‖Lp .
(3) The fractional integration operator Iα is linear.
(4) The fractional order integral operator Iα maps L1(J,R) into itself.
(5) If α = n, then Iα0 is n-fold integration.
(6) The Caputo and Riemann-Liouville fractional derivative are linear.
(7) The Caputo derivative of a constant is equal to zero.

Theorem 2.9 (Bohnenblust-Karlin 1950 [12]). Let X be a Banach space, K ∈
Pcl,cv(X), the operator G : K → Pcl,cv(K) be upper semicontinuous, and the set
G(K) be relatively compact in X. Then G has a fixed point in K.

We define the set of all measurable selections of F that belong to the Banach
space L1([1, T ],R) by

S1
F,y = {v ∈ L1([1, T ],R) : v(t) ∈ F (t, y(t), CHDαy(t)) a.e. t ∈ [1, T ]} .

3. Main results

Let us start by defining what we mean by a solution to the problem (1)–(2).

Definition 3.1. A function y ∈ AC([1, T ],R) is a solution of (1)–2 if there exists
a function x ∈ L1([1, T ],R) with x(t) ∈ F (t, y(t), CHDαy(t)) for a.e. t ∈ [1, T ] such
that CHDαy(t) = x(t) and the function y satisfies the conditions (2).

We assume that
∑m
k=1 ak 6= 0 and set

a = 1∑m
k=1 ak

.

In order to discuss the existence of solutions to the nonlocal problem (1)–(2), we
need the following auxiliary lemma giving an equivalent integral formulation for
our problem.
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Lemma 3.2. The nonlocal problem (1)–(2) is equivalent to the integral equation

(3) y(t) = ay1 −
1

Γ(α)

∫ tk

1

(
log t

s

)α−1
x(s)ds

s
+ 1

Γ(α)

∫ t

1

(
log t

s

)α−1
x(s)ds

s

where x is the solution of the functional integral equation
(4)

x(t) ∈ F
(
t, ay1−

1
Γ(α)

∫ tk

1

(
log t

s

)α−1
x(s)ds

s
+ 1

Γ(α)

∫ t

1

(
log t

s

)α−1
x(s)ds

s
, x(t)

)
.

Proof. Let CHDαy(t) = x(t) in equation (1), i.e.,
(5) x(t) ∈ F (t, y(t), x(t))
and

(6) y(t) = c1 + HIαx(t) = c1 + 1
Γ(α)

∫ t

1

(
log t

s

)α−1
x(s)ds

s
.

Letting t = tk in (6), we obtain

y(tk) = c1 + 1
Γ(α)

∫ tk

1

(
log tk

s

)α−1
x(s)ds

s
,

and so

(7)
m∑
k=1

aky(tk) =
m∑
k=1

akc1 +
m∑
k=1

ak
1

Γ(α)

∫ tk

1

(
log tk

s

)α−1
x(s)ds

s
.

Applying (2) to (7),

y1 =
m∑
k=1

akc1 +
m∑
k=1

ak
1

Γ(α)

∫ tk

1

(
log tk

s

)α−1
x(s)ds

s
,

and hence

(8) c1 = a

(
y1 −

m∑
k=1

ak
1

Γ(α)

∫ tk

1

(
log tk

s

)α−1
x(s)ds

s

)
.

Substituting (8) into (6) and (5), we obtain (3) and (4).
To complete the proof, we need to show that equation (3) satisfies the nonlocal

problem (1)–(2). Differentiating (3), we obtain
C
HD

αy(t) = x(t) ∈ F (t, y(t), CHDαy(t)) .
Letting t = tk in (3) gives

y(tk) = ay1.

Then,
m∑
k=1

aky(tk) =
m∑
k=1

akay1 = y1.

This completes the proof of the equivalence between the nonlocal problem (1)–(2)
and the integral equation (3). �

In our main results we will make use of the following conditions.
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(H1) F : J × R× R→ Pcv,cl(R) is a Carathéodory multi-valued map.
(H2) There exist a positive function b ∈ L1(J) and constants bi > 0, i = 1, 2,

such that

‖F (t, u1, u2)‖P = sup{|f | : f ∈ F (t, u1, u2)} ≤ |b(t)|+ b1|u1|+ b2|u2| .

(H3) There exist constants l1, l2 > 0 such that

Hd(F (t, x, z), F (t, x̄, z̄)) < l1|x− x̄|+ l2|z − z̄|

for every x, x̄, z, z̄ ∈ R.
(H4) F : J ×R×R→ Pcp(R) has the property that F (·, u1, u2) : J → Pcp(R) is

measurable and integrably bounded for each u1, u2 ∈ R.
Our first result is based on the Bohnenblust-Karlin fixed point theorem.

Theorem 3.3. Assume that conditions (H1)–(H3) are satisfied. If

(9) 4b1(log T )2α

Γ(2α+ 1) + 2b2(log T )α

Γ(α+ 1) < 1 ,

then the problem (1)–(2) has at least one solution.

Remark 3.4. Note that for an L1-Carathéodory multifunction F : J × R× R→
Pcp(R), the set S1

F,y is not empty.

Proof. We transform the problem (1)–(2) into a fixed point problem by defining
the multivalued operator

N : L1(J,R)→ P(L1(J,R))

by
(10)

(Nx)(t) =

h ∈ L1(J,R) : h(t) =


ay1 −

1
Γ(α)

∫ tk

1

(
log t

s

)α−1
v(s)ds

s

+ 1
Γ(α)

∫ t

1

(
log t

s

)α−1
v(s)ds

s


where v ∈ S1

F,x. Clearly, from Lemma 3.2, the fixed points of N are solutions to
(1)–(2). We shall show that N satisfies the assumptions of Bohnenblust-Karlin
fixed point theorem.

Let

r ≥
|ay1||T − 1|+ 2(log T )α

Γ(α+ 1) ‖a‖L
1 + 2b1|ay1|(log T )α

Γ(α+ 1)

1−
(4b1(log T )2α

Γ(2α+ 1) + 2b2(log T )α

Γ(α+ 1)

)
and consider the bounded set

Br = {x ∈ L1(J,R) : ‖x‖L1 ≤ r} .

The proof will be given in several steps.
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Step 1: N(x) is convex for each y ∈ L1(J,R). Let h1, h2 belong to N(y); then
there exist selections v1, v2 ∈ S1

F,y such that, for each t ∈ J , we have

hi(t) = ay1 −
1

Γ(α)

∫ tk

1

(
log t

s

)α−1
vi(s)

ds

s

+ 1
Γ(α)

∫ t

1

(
log t

s

)α−1
vi(s)

ds

s

for i = 1, 2. Let 0 ≤ d ≤ 1. Then, for each t ∈ J ,

(dh1 + (1− d)h2)(t) = ay1 −
1

Γ(α)

∫ tk

1

(
log t

s

)α−1
(dv1 + (1− d)v2)(s)ds

s

+ 1
Γ(α)

∫ t

1

(
log t

s

)α−1
(dv1 + (1− d)v2)(s)ds

s
.

Since SF,y is convex (because F has convex values), we have

dh1 + (1− d)h2 ∈ N(x) .

Step 2: N(Br) is relatively compact. First we show that N(Br) is bounded. Let
y ∈ Br. For each h ∈ N(x) and t ∈ J , by (H2) we have

‖h‖
L1 =

∫ T

1
|h(t)| dt

=
∫ T

1

∣∣∣∣ay1 −
1

Γ(α)

∫ tk

1

(
log t

s

)α−1
v(s)ds

s
+ 1

Γ(α)

∫ t

1

(
log t

s

)α−1
v(s)ds

s

∣∣∣∣ dt
≤ |ay1||T − 1|+ 2

∫ T

1

∣∣∣∣ 1
Γ(α)

∫ t

1

(
log t

s

)α−1
v(s)ds

s

∣∣∣∣ dt
≤ |ay1||T − 1|+ 2

∫ T

1

( 1
Γ(α)

∫ t

1

(
log t

s

)α−1
|v(s)|ds

s

)
dt

≤ |ay1||T − 1|+ 2
∫ T

1

( 1
Γ(α)

∫ t

1

(
log t

s

)α−1
|a(t)|ds

s

)
dt

+ 2b1
∫ T

1

( 1
Γ(α)

∫ t

1

(
log t

s

)α−1
|ay1|

)
dt

+ 4b1
∫ T

1

( 1
Γ(α)

∫ t

1

(
log t

s

)α−1
| 1
Γ(α)

∫ t

1

(
log t

s

)α−1
x(s)ds

s
|
)
dt

+ 2b2
∫ T

1

( 1
Γ(α)

∫ t

1

(
log t

s

)α−1
|x(s)|ds

s

)
dt

≤ |ay1||T − 1|+ 2(log T )α

Γ(α+ 1) ‖a‖L
1 + 2b1|ay1|(log T )α

Γ(α+ 1) + 4b1(log T )2α

Γ(2α+ 1) ‖x‖L
1

+ 2b2(log T )α

Γ(α+ 1) ‖x‖L
1

≤ |ay1||T − 1|+ 2(log T )α

Γ(α+ 1) ‖a‖L
1 + 2b1|ay1|(log T )α

Γ(α+ 1)
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+
(4b1(log T )2α

Γ(2α+ 1) + 2b2(log T )α

Γ(α+ 1)

)
r ≤ r.

The above inequalities show that

‖N(x)‖ = sup{‖h‖L1 : h ∈ N(x)} ,

which means that N(Br) ⊂ Br and Br is bounded; that is, N(Br) is bounded.
Next, we show that (Nx)τ → (Nx) uniformly in L1(J,R) for each x ∈ Br. Let

x ∈ Br and h ∈ N(x); we then have

‖hτ − h‖L1 =
∫ T

1
|hτ (t)− h(t)| dt

=
∫ T

1

∣∣∣1
τ

∫ t+τ

t

h(s)ds− h(t)
∣∣∣ dt

=
∫ T

1

(1
τ

∫ t+τ

t

|h(s)− h(t)| ds
)
dt

=
∫ T

1

(1
τ

∫ t+τ

t

∣∣∣− a m∑
k=1

ak
HIαv(s)|s=sk + HIαv(s)

+ a

m∑
k=1

ak
HIαv(t)|t=tk − HIαv(t)

∣∣∣ ds) dt
=
∫ T

1

1
τ

∫ t+τ

t

∣∣∣− a m∑
k=1

ak
HIαv(s)|s=sk + HIαv(s)

+ a

m∑
k=1

ak
HIαv(t)|t=tk − HIαv(t)

∣∣∣ ds dt.
Since v(s) ∈ L1(J,R) by Proposition 2.8 (4), it follows that HIαv(s) ∈ L1(J,R).
Hence,

1
τ

∫ t+τ

t

∣∣∣∣∣−a
m∑
k=1

ak
HIαv(s)|s=sk + a

m∑
k=1

ak
HIαv(t)|t=tk + HIαv(s)− HIαv(t)

∣∣∣∣∣ ds
≤ 1
τ

∫ t+τ

t

∣∣∣∣∣−a
m∑
k=1

ak
HIαv(s)|s=sk + a

m∑
k=1

ak
HIαv(t)|t=tk

∣∣∣∣∣ ds
+ 1
τ

∫ t+τ

t

|HIαv(s)− HIαv(t)| ds .

Therefore,
(Nx)τ → (Nx) uniformly as τ → 0 .

As a consequence of the Kolmogorov compactness criteria, we see that N(Br) is
relatively compact.

Step 3: N has a closed graph. Let xn → x∗, hn ∈ N(xn), and hn → h∗. We
need to show that h∗ ∈ N(x∗). Now hn ∈ N(xn) implies there exists vn ∈ S1

F,xn



FRACTIONAL DIFFERENTIAL INCLUSIONS 293

such that, for each t ∈ J ,

hn(t) = ay1 −
1

Γ(α)

∫ tk

1

(
log t

s

)α−1
vn(s)ds

s

+ 1
Γ(α)

∫ t

1

(
log t

s

)α−1
vn(s)ds

s
.

We must show that there exists v∗ ∈ S1
F,x∗

such that, for each t ∈ J ,

h∗(t) = ay1 −
1

Γ(α)

∫ tk

1

(
log t

s

)α−1
v∗(s)

ds

s

+ 1
Γ(α)

∫ t

1

(
log t

s

)α−1
v∗(s)

ds

s
.

Since F (t, ·, ·) is upper semicontinuous, for every ε > 0 there exist n0(x) such that
n ≥ n0(x) implies vn ∈ F (t, y(t), x(t)) ⊂ F (t, y∗(t), x∗(t)) + εB(0, 1) a.e. t ∈ J .

Since F has compact values, there exists a subsequence vnm(·) such that
vnm(·)→ v∗ as m→∞ ,

and so
v∗ ∈ F

(
t, y∗(t), x∗(t)

)
for t ∈ J .

For every w(t) ∈ F (t, y∗(t), x∗(t)), we have
|vnm − v∗| ≤ |vnm − w(t)|+ |w(t)− v∗|

and so

|vnm − v∗| ≤ d(vnm(t), F (t, y∗(t), x∗(t))) .
By an analogous relation obtained by interchanging the roles of vnm and v∗, it
follows that

|vnm − v∗| ≤ Hd(F (t, ynm(t), xnm(t)), F (t, y∗(t), x∗(t)))
≤ l1|ynm − y∗|+ l2|xnm − x∗|
≤ l1|Iα(x∗ − xnm)|t=tk + Iα(xnm − x∗)|+ l2|xnm − x∗|
≤ 2l1|Iα(xnm − x∗)|+ l2|xnm − x∗| .

Therefore,

|hnm(t)− h∗(t)| ≤
2

Γ(α)

∫ t

1

(
log t

s

)α−1
|vnm − v∗|

ds

s
,

so

‖hnm(t)− h∗(t)‖L1 ≤
(4l1(log T )2α

Γ(2α+ 1) + 2l2(log T )α

Γ(α+ 1)

)
‖xnm(t)− x∗(t)‖L1 .

Then,
‖hnm(t)− h∗(t)‖L1 → 0 as m→∞.

Therefore, by the Bohnenblust-Karlin fixed point theorem, Theorem 2.9 above,
N has a fixed point x in Br ⊂ L1(J,R) that in turn is a solution of the nonlocal
problem (1)–(2). This completes the proof of the theorem. �
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We next present a result for the problem (1)–(2) with a nonconvex valued right
hand side. Our considerations are based on the fixed point result in Lemma 2.3 for
contraction multivalued maps given by Covitz-Nadler.

Theorem 3.5. Assume that conditions (H3)–(H4) are satisfied. If

(11) 4l1(log T )2α

Γ(2α+ 1) + 2l2(log T )α

Γ(α+ 1) < 1 ,

then the problem (1)–(2) has at least one solution y ∈ L1(J,R).

Remark 3.6. For each y ∈ L1(J,R), the set S1
F,y is nonempty since, by (H4), F

has a measurable selection (see [15, Theorem III.6]).

Proof of Theorem 3.5. We shall show that N given by (10) satisfies the assump-
tions of the Covitz and Nadler fixed point theorem. The proof will be given in two
steps.

Step 1: N(x) ∈ Pcl(L1(J,R)) for all x ∈ L1(J,R). Let {hn}n≥0 ∈ N(x) be
such that hn → h ∈ L1(J,R). Then there exists {vn} ∈ S1

F,y such that, for each
t ∈ J ,

hn(t) = ay1 −
1

Γ(α)

∫ tk

1

(
log t

s

)α−1
vn(s)ds

s
+ 1

Γ(α)

∫ t

1

(
log t

s

)α−1
vn(s)ds

s
.

From (H3) and the fact that F has compact values, we may pass to a subsequence
if necessary to obtain that vn converges to v in L1(J,R), and hence v ∈ S1

F,y. Thus,
for each t ∈ J ,

hn(t)→ h̃(t) = ay1 −
1

Γ(α)

∫ tk

1

(
log t

s

)α−1
v(s)ds

s
+ 1

Γ(α)

∫ t

1

(
log t

s

)α−1
v(s)ds

s

so h̃ ∈ N(x).
Step 2: There exists γ < 1 such that Hd(N(y), N(ȳ)) < γ‖y− ȳ‖∞ for all y, ȳ ∈

C(J,R). Let y, ȳ ∈ C(J,R) and h1 ∈ N(y). Then there exists v1 ∈ F (t, y(t), x(t))
such that

h1(t) = ay1 −
1

Γ(α)

∫ tk

1

(
log t

s

)α−1
v1(s)ds

s
+ 1

Γ(α)

∫ t

1

(
log t

s

)α−1
v1(s)ds

s

for t ∈ J . From (H3) it follows that
Hd(F (t, y(t), x(t)), F (t, ȳ(t), x̄(t)) ≤ l1|y(t)− ȳ(t)|+ l2|x(t)− x̄(t)| .

Hence, there exists w ∈ F (t, ȳ(t), x̄(t)) such that
|v1(t)− w| ≤ l1|y(t)− ȳ(t)|+ l2|x(t)− x̄(t)|, t ∈ J .

Consider U : J → P(R) given by
U(t) = {w ∈ R : |v1(t)− w| ≤ l1|y(t)− ȳ(t)|+ l2|x(t)− x̄(t)|} .

Since the multivalued operator V (t) = U(t) ∩ F (t, ȳ(t), x̄(t))) is measurable, there
exists a measurable selection v2(t) for V . So v2 ∈ F (t, ȳ(t), x̄(t)), and for each
t ∈ J ,

|v1(t)− v2(t)| ≤ l1|y(t)− ȳ(t)|+ l2|x(t)− x̄(t)|
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≤ 2l1HIα|x(t)− x̄(t)|+ l2|x(t)− x̄(t)|

for t ∈ J . For this v2, set

h2(t) = ay1 −
1

Γ(α)

∫ tk

1

(
log t

s

)α−1
v2(s)ds

s
+ 1

Γ(α)

∫ t

1

(
log t

s

)α−1
v2(s)ds

s
.

Then, for t ∈ J ,

|h1(t)− h2(t)| ≤ 1
Γ(α)

∫ t

1

(
log t

s

)α−1
|v1(t)− v2(t)|ds

s

+ 1
Γ(α)

∫ tk

1

(
log t

s

)α−1
|v2(t)− v1(t)|ds

s

≤ 2
Γ(α)

∫ t

1

(
log t

s

)α−1
|v1(t)− v2(t)|ds

s
.

Thus,

‖h1 − h2‖L1 ≤
(4l1(log T )2α

Γ(2α+ 1) + 2l2(log T )α

Γ(α+ 1)

)
‖x(s)− x̄(s)‖L1 .

For an analogous relation obtained by interchanging the roles of x and x̄, it follows
that

Hd(N(x), N(x̄)) ≤
(4l1(log T )2α

Γ(2α+ 1) + 2l2(log T )α

Γ(α+ 1)

)
‖x(s)− x̄(s)‖L1 .

By (11), N is a contraction, and so by Lemma 2.3, N has a fixed point x that is
a solution to (1)–(2). This completes the proof of the theorem. �

4. An example

We conclude this paper with an example to illustrate our main result. We apply
Theorem 3.3 to the implicit fractional differential inclusion

(12) C
HD

αy(t) ∈ F (t, y(t),CH Dαy(t)) , for a.e. t ∈ J = [1, e], 0 < α ≤ 1 ,

(13)
m∑
1
aky(tk) = 1,

where

F (t, y(t),CH Dαy(t)) = {v ∈ R : f1(t, y(t),CH Dαy(t)) ≤ v ≤ f2(t, y(t),CH Dαy(t))}

and f1, f2 : J × R × R 7→ R. We assume that for t ∈ [1, e], f1(t, ·, ·) is lower
semi-continuous (i.e., the set {y ∈ R : f1(t, y(t), cDαy(t)) > µ1} is open for each
µ1 ∈ R), and assume that for each t ∈ [1, e], f2(t, ·, ·) is upper semi-continuous (i.e.,
the set {y ∈ R : f2(t, y(t),cDαy(t)) < µ2} is open for each µ2 ∈ R). For example,
if we have

max(f1(t, y(t), x(t)), f2(t, y(t), x(t))) ≤ t

9 + 1
16 |y(t)|+ 1

16 |x(t)| , for t ∈ J ,
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then we would have T = e, a(t) = t
9 , and b1 = b2 = 1

16 . In that case it is easy to
see that(4b1(log T )2α

Γ(2α+ 1) + 2b2(log T )α

Γ(α+ 1)

)
=
( 1

4Γ(2α+ 1) + 1
8Γ(α+ 1)

)
≤ 1 .

Since all the conditions of Theorem 3.3 are satisfied, the problem (12)–(13) would
have at least one solution y on [1, e].
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