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FOUR-DIMENSIONAL EINSTEIN METRICS FROM
BICONFORMAL DEFORMATIONS

PAUL BAIRD AND JADE VENTURA

ABSTRACT. Biconformal deformations take place in the presence of a conformal
foliation, deforming by different factors tangent to and orthogonal to the
foliation. Four-manifolds endowed with a conformal foliation by surfaces
present a natural context to put into effect this process. We develop the tools
to calculate the transformation of the Ricci curvature under such deformations
and apply our method to construct Einstein 4-manifolds. Examples of one
particular family have ends which collapse asymptotically to R2.

1. INTRODUCTION

A smooth Riemannian manifold (M, g) is said to be Einstein if its Ricci curvature
satisfies Ric = Ag for some constant A. D. Hilbert showed how Einstein metrics
arise from the variational problem of extremizing scalar curvature [8]. The relation
between scalar curvature and conformal transformations has been explored by
analysts over the latter part of the last century. The Yamabe problem is to
determine the existence of a metric of constant scalar curvature in a conformal
class [I4]. There have been important contributions by various authors and the
problem was completely solved positively in the compact case by R. Schoen [I0];
for a survey see the notes of Hebey [6].

Conformal transformations are not in general sufficiently discerning to find
Einstein metrics. For example, although any manifold admits a Riemannian metric,
on a compact manifold, there is a topological obstruction to the existence of an
Einstein metric, known as the Hitchin-Thorpe inequality [2, [9, [12], whereas there
always exist constant scalar curvature metrics. Biconformal deformations on the
other hand, appear optimal to control the Ricci curvature.

A biconformal deformation of a Riemannian manifold (M, g) (see below) takes
place in the presence of a conformal foliation. A foliation F is conformal if Lie
transport along the leaves of the normal space is conformal [I3], specifically, if we
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set TF to be the tangent space to the leaves and NF the normal space, there
exists a mapping a: TF — R, linear at each point, such that

(Lug)(X,Y)=a(U)g(X,Y) (VU €TF VXY € NF).

Conformal foliations are intimately related to semi-conformal mappings.

A mapping ¢: (M™,g) — (N™, h) is semi-conformal if at each point where its
derivative is non-zero, it is surjective and conformal (and so homothetic) on the
complement of its kernel. Specifically, at each x € M where dy, # 0, the derivative
is surjective and there exists a real number A(z) > 0 such that

©*h(X,Y) = \Nz)%g(X,Y) (VX,Y € (kerdp,)?b).

Extending X to be zero at points « where dy, = 0, determines a continuous function
A: M — R(> 0), smooth away from critical points, called the dilation of . In [I],
it is shown that if ¢: (M™,g) — (N™, h) is a semi-conformal submersion, then
its fibres form a conformal foliation; conversely, if F is a conformal foliation on
(M™,g) and ¢: W C M — R™ x R™™" is a local foliated chart, then there is a
conformal metric on the leaf space N of F|y with respect to which the natural
projection ¢: W — N is a semi-conformal submersion. The relation between a
above and the dilation A is given by a = —2d1In \|y, where V = T'F = ker dy [I].

Let ¢o: (M™, g) — (N™, h) be a semi-conformal submersion between Riemannian
manifolds. Then the metric g decomposes into the sum g = g +¢"" of its horizontal
and vertical components. A biconformal deformation of g is a metric

g7 g
9="Ft 7
where o, p: M — R are smooth positive functions. Note that the deformation is
conformal if and only if o = p. We could equally define a biconformal deformation
with respect to a conformal foliation. Such deformations preserve semi-conformality
of .

The idea to use biconformal deformations to construct 4-dimensional Einstein
metrics is founded on the possibility of obtaining a suitable expression for the
Ricci curvature in terms of parameters of the semi-conformal map: its dilation,
second fundamental form of its fibres, integrablity form associated to the horizontal
distribution and the almost complex structure J given by rotation through 7/2 in
the horizontal and vertical spaces. When the mapping is a harmonic morphism with
1-dimensional fibres, an elegant expression was exploited by L. Danielo to construct
Einstein metrics in dimension 4 by biconformally deforming the metric with respect
to a harmonic morphism to a 3-manifold, with the deformation restricted to preserve
harmonicity [3} 4].

In this article we achieve a computation of the Ricci curvature associated to a
semi-conformal submersion ¢: (M*%,g) — (N2, h) (see and use it to construct
Einstein metrics by biconformal deformation associated to orthogonal projection
R* — R2. Amongst the examples produced are warped product solutions deriving
from a 3-dimensional dynamical system (see and a family of complete Einstein
metrics of negative Ricci curvature with each member having an R?-end (Theorem
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5.2]). The term end is used loosely here to refer to a component of the exterior of a
family of exhaustive subsets (not compact) that collapses to R2.

In we calculate the connection coefficients associated to a semi-conformal
submersion ¢: (M*%,g) — (N? h). We exploit these formulae in §3| to deduce
expressions for the Ricci curvature in terms of the geometric parameters associated
to ¢ referred to above. In §4] we obtain expressions for how these quantities change
under biconformal transformation. These are then applied in §5| to orthogonal
projection R* — R2, to deduce partial differential equations for an Einstein metric
in terms of the parameters o and p. In general these are challenging to solve, but
special cases yield interesting and possibly new 4-dimensional Einstein metrics.

2. CONNECTION COEFFICIENTS ASSOCIATED TO A SEMI-CONFORMAL SUBMERSION

Let ¢: (M*,g) — (N2,h) be a semi-conformal submersion between oriented
Riemannian manifolds with dilation A\: M — R™. The coefficients of the Levi-Civita
connection with respect to an adapted orthonormal frame field will be expressed in
terms of the dilation, the mean-curvature of the fibres and an integrability form
associated to the horizontal distribution.

Let {f1, f2} be a positive orthonormal frame on N2. Then in general V f; = p12f2
and V fo = po1 fo where p1o = —po; is the associated Cartan 1-form. Since the
notion of semi-conformal is conformally invariant and since any Riemannian surface
is locally conformally equivalent to a domain of R? with its standard metric, for the
rest of this section, we suppose the frame {fi, fo} parallel, so the connection form
p12 vanishes. By a trick, we will later remove this assumption in our expression for
the Ricci curvature.

Let {ey, es, €3, e4} be a positive orthonormal frame on M* such that dy(e;) = Af;
for i = 1,2, and e3,eq € V := kerdy. We will use indices in the following way:
ij,... € {1,2}, r,s,... € {3,4}, a,b,... € {1,2,3,4} and sum over repeated
indices. At each x € M, let H, : T,M — H, = VJ} denote orthogonal projection
onto the horizontal space. If we don’t wish to be specific about the point x we will
simply write H. Similarly, V denotes projection onto the vertical space.

Define complementary indices ¢',j,... by i/ =2 ifi =1 and ¢/ =1 if i = 2.
Set JH to be rotation by +m/2 in the horizontal space H, thus: JH(e1) = ey and
JH (e3) = —ey, equivalently JH (e;) = (—1)"*!e;. Similarly, set J" to be rotation

by +7/2 in the vertical space V, thus: J" (e3) = e4 and JV (e4) = —e3. Then
J = (JH,JV) defines an almost Hermitian structure on (M, g).

Definition 2.1. For a semi-conformal submersion as above, define the integrability
1-form (: TM — R by

CX) = 9(Veye2, V(X)) = Sgller. e V(X)) ¥ X €TM,

where V is orthogonal projection onto kerdy and the second equality follows
from Lemma (z) below. Then, ( is well-defined independently of the (positive)
horizontal orthonormal frame {ej, es} and vanishes if and only if the horizontal
distribution is integrable.
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Definition 2.2. Let S = ¢~ !(y) be a fibre of ¢. Then for vector fields X,Y
tangent to S, we have
VxY =V{Y + BxY

where V is the connection on M, V¢ the connection on S, i.e. V}%Y =VVxY, and
B is the second fundamental form of S (symmetric by integrability of the vertical
distribution). Then the mean curvature of the fibre p := £Tr B = 1H(V,,e3 +
ve4€4).

Extend B to all vectors by the formula BxY := HVyx VY. Then its adjoint is
characterized by:

9(BxY,Z)=9(Y,BxZ) = BYxZ=-VVyxHZ.

Lemma 2.3 (Fundamental equation of a semi-conformal submersion [I]). For a
semi-conformal submersion @: (M™, g) — (N", h), the tension field 7, = Tr ;Vdep
is given by

T, = —(n — 2)dp(grad In \) — (m — n)dp(p)
where p is the mean-curvature of the fibres.

Recall that the connection forms w,y, are defined by Ve, =3, wapep. In order
to express the connection coefficients, we require only the form wsy. The following
lemma expresses the connection coefficients in terms of the above quantities.
Lemma 2.4.

(1) Ve = —e;j(InA)e; +grad In A + (—1)114;;,¢F
(i)  Ve,er = —e(InN)e; — ((e,)Je; + wsale;)J ey
(iii)  Ve,e; = —Cler)Je; — B} e;
(iv)  Ve.es = B, es +wsaler)Jes.
Proof. (i) From Lemma [2.3]
Te = —2dp(p) .
But, recalling we sum over repeated indices, Vdp(e,, e,) = —dp(Ve, e,) = —2dp(u),
so that
Vdy(e;, ei) = 7, — Vdop(er,e) =0.
On the other hand,
Vdp(ei, i) = (—dp(Ve,er) + V¢ di(ei))
= (= do(Ve,e:) + ei(In A)de(e;) + N2V fi)
= (—de(Ve,e) + ei(InX)dep(e;)) = (— de(Ve,e;) + ei(In N)dep(e;)) -
The expression for the horizontal component of V.,e; now follows when we note
that g(e1, Ver) = 0 etc.

For the vertical component, first note that
(1) g([ervei]vej) :e’r‘(ln)\)g(eiaej) (v iaj7€ {172} Vre {354})5
since, on the one hand

Vd‘p(ei; 67‘) = _d(P(VeieT) 5
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on the other hand, by the symmetry of the second fundamental form

Vdgp(er, er) = Vdpler, e) = ~dp(Ve,ei) + VE dp(er)
= —dp(Ve,e;) + e (In N)de(e;)

r

= dp(Ve,er) = dp(Ve,€) —er(InX)dp(e;) .

i

Equation follows. But then
—9(Veej,e0) = glej, Ve,er) = glej, Ve, €) — ex(InA)g(ej, €i)
—9(Ve,ei,er) = glei, Ve, er) = glei, Ve, ;) — er(In X)g(es, e5) .
Now add and use the fact that 0 = e, (g(ei, e;)) = 9(Ve, €, e;) + glei, Ve, €5).
(ii) follows since
HVe.er = g(Ve,er,€5)e; = —g(er, Ve,e;)e;
= —e.(InN)e; + (—=1)Cles)es = —er(InN)e; — C(eT)JHei )

(iii) follows from (1) and (ii).
(iv) is a consequence of the definitions. O

Corollary 2.5.
(i) [6i, 6]‘} = ei(ln )\)ej —€j (ln )\)e, + 2(—1)i+16i]‘/(;ﬁ
) lerei] = er(InX)e; — Bl e; —wsale;)Je,
(iii) Ve,e; = grad In A+ Vgrad In A
) Ve,eq =grad In A+ Vgrad In A + 2p + wss(er) Je,

3. THE RICCI CURVATURE

Let ¢: (M*,g) — (N2, h) be a semi-conformal submersion between oriented Rie-
mannian manifolds. Choose an orthonormal frame field {e,} = {e;;e,} adapted
to the horizontal and vertical spaces. The Ricci curvature is determined by its
components:

Ric = Ry 0,0, = R11912 + 2R1260105 + ...

where {6, } is the dual frame to {e, } and the product 6,6, = 6,00, = %(9a®9b+9b®
0,) is the symmetric product of 1-forms. The coefficients R, are symmetric in their
indices and R, = Ric (eq, €p). In order to compute the Ricci curvature associated to
a semi-conformal submersion, we will separately calculate the horizontal components
R;;, the mixed components R,; and the vertical components R,;.

Define the covariant tensor fields C' and C* by

C(X,Y) = g(Be, X, B.,Y) = g(Tr (B"B)(X),Y)
C*(X,Y) :=g(B: X,B.Y) = g(Tr (BB*)(X),Y).

Note that C' and C* are well-defined independent of the frame, symmetric and
that C vanishes on horizontal vectors and C* on vertical vectors.
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For a general covariant tensor field T(X,Y,Z,...), define its divergence as
derivation and contraction with respect to the first entry:

(divT) (Y, Z,...) = (Ve,T) €, Y, Z,...) =ea(T(eq,Y, Z,...)) =T(Ve,€0,Y, Z,...)
—T(eq,Ve Y, Z,...) = T(eq,Y, Ve, Zy...) — -+

To the second fundamental form of the fibres B (a (2, 1) tensor field), we associate
two (3,0)-tensor fields. The first of these is By: TM x TM x TM — R determined
by

Bi(X,Y,Z) = g(X, HVvyVZ)
and the second

By(X,Y,Z) = g(HVyx VY, Z).
Note that By and Bs are identical up to ordering of their arguments, however,
their divergences differ.

Our aim is to calculate the Ricci curvature in terms of parameters associated
to . Being a tensorial object, it suffices to calculate Ric at a point xy where
we can suppose the frame chosen such that V'V, e; = 0, for all r,s = 3,4. Such
a frame can be constructed by first choosing a local normal frame {e,} for the
fibre =1 (¢(z0)) centered on xq (see [11], Vol. 2, Chapter 7) and then extending
this to an orthonormal frame {e,} about g in M. In particular, at o, we have
wsq(ey) =0 for r = 3,4.

Lemma 3.1. Acting on vertical vectors, the divergence of By at xg is determined
by
(div By)(er, €5) = ei(g(ei, Be,es)) — 214" (Be, es) — dIn A\(Be, es)
- g(eta veier)g(eia Betes) - g(et7 veies)g(e% BeTet)

(recalling, we sum over repeated indices).
Proof.

(diV Bl)(er, 65) = (vea Bl)(em €r, 65)

= ei(Bi(eiser,e5)) — Bi(Ve,€a, er,€5) — Bi(ei, Ve,er, €5)
- Bl(eiy €r, veies) .

From Corollary (iv), at x9, HVe,ea = 24 + Hgrad InA; also VV,e,
glet, Ve,er)e, etc. and the formula follows.

Ol

Lemma 3.2. Acting on a vertical and a horizontal vector, the divergence of By at
xq s given by

(div By)(er, e;) = es(Ba(es, er, €;)) — 29(ngrad maers €) — C(Ve, J ;).
Proof. Calculating at z,
(div Ba)(eyr, €i) = eq(B2(€q,€r,€;)) — B2a(VVe, €q,€r,€;) — Ba(es, VVe_e€r, €;)
— Bs(es, er, HV ¢ €;)
= es(Ba(es, er,ei)) — Bo(VVe, e, €r,€5) — Ba(es, ep, HV e ;) -
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On applying Corollary iii) and Lemma iii), this becomes
65(32(65, €r, el)) - 29(ngrad In \E7> ei) + C(es)g(VE'rveS7 JHei) :

But the latter term equals —((es)g(es, Ve, J7te;) and the formula follows. O

In what follows, we shall first establish the stated formulae for the case when
N? is flat; in particular, we can suppose that dy(e;) = Af; where {f;} is a parallel
frame: V f; = 0 and apply the formulae of §2] We will then extend the formulae to
the case when N? is an arbitrary Riemannian surface.

3.1. The horizontal components of the Ricci curvature.
First, we require the following lemma.

Lemma 3.3. The horizontal sectional curvature K := g(R(ey1, ea)ea, e1) is given
by
K% = Aln )\ — TrypVdIn A + |[Vgrad In A2 — 3||¢|| .
Proof. From Lemma[2.4(i) and Corollary [2.]i),
K" = g(Ve,Ve,ea — Ve, Ve ea — Vi, cp1€2,€1)
= g(Ve, (ex(In Neg + Vgrad In \) + Ve, (e2(In Ney — ¢¥),e1)
—e1(InA\)g(Veye2,e1) + ea(InA)g(Ve, €2, €1) — 29(Visez, e1)
= e1(e1(InN)) + ea(ez(In ) — [[Vgrad In A||2 — |2
—e1(InX)? —ea(InN)? — 2¢(er)g(Ve, €2, €1)
= A(In\) — TryVdIn A+ dIn \(V,e;) — ||[Vgrad In A||?
— | Herad In AJ|* = 3][¢]|?,

which, from Corollary iii)7 gives the required formula. ([l
Lemma 3.4. The horizonal part of the Ricci curvature: Ric |gx g is given by
Ric|gxn = {NKY + Aln A+ 2dIn A(p) — 2|[¢|[*} " = C* + Lgluxn
where KN denotes the Gaussian curvature of N.
Proof. The horizontal components R;; = Ric (e;, e;) are given by
Rij = g(R(eis ea)ea, ¢5) = K™ glei, e5) + g(R(eis er)er, ¢)

where K is given by Lemma above.
We now calculate g(R(es,er)er, e;) = g(Ve, Ve, er—Ve, Ve e —Vig, e 16r€5).
Then
9(Ve, Ve, erej) = 9(Ve,(HVe,er + VVe, €r), €5)
=29(Ve, 1, ej) —9g(VVe, e, Veiej) =29(Ve, 1, ej) :
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From Lemma ii) and (iii),
_g(vervei €r, ej) = _g(var (Hvei er + Vvei er); ej)
= g(veT (er (ln )\)6,’ + C(eT)Jei)7 6j) - g(Vvei €r, veT 6]‘)
= er(e,(InN))g(ei, ej) +er(In\)g(Ve, e, ej)
+9(Ve, (C(er)Jes), ej) —g(VVe,er, verej)
= (TryVdIn A+ 2dIn A(u))g(e;, €5)
+ er(ln )‘)g(ve,,-eia ej) + g(ve,. (C(er)‘]ei)> ej)
—g(VVe,e, Ve, €j).
From Lemma [2.4
lei,er] = g([ei, er], er)er + g([ei, €], es)es
= —e.(InN)e; + g(Ve,er — Ve, €5, e5)es
so that

—9(Vie, e, €5) = er(InA)g(Ve,er,e5) — g(Ve,er — Ve, e4,€5)9(Ve, ers €5)
er(InA)g(—er(In Ne; — ((er) Jei, e5)
—9(Veser,e5)9(Ve,er,€5) + 9(Ve, e, €5)9(Ve, €r, €5)
= —|[Vgrad n A|[*g(es, ¢5) — er(In A)C(er)g(Jei, ;)
—9(Ve,er,es)g(Ve,er, ej) +9(Ve,€i,e5)9(Ve, er, ej) .

However, the Ricci tensor is symmetric in its arguments: Ric (e;, e;) = %(Ric (ei,€5)
+Ric(ej,e;). But then g(Vep,ej) + g(Vepuei) = Lugleire;), g(Jeie))
+g(Jej,e;) =0 and

C(er)(g(Ve, Jei e)+9(Ve, Jej, e) = —Cler)(g(Jei, Ve, e5)+g(Jei, Ve, e5) = |IC]|* .

Collecting terms now gives the required expression in the case of flat codomain. [

3.2. The mixed components of the Ricci curvature.

Lemma 3.5. For X a horizontal vector and U a vertical vector, one has
Ric (X,U) = VdIn A(X,U) — (dIn \)?(X,U) — 2(dIn X © ¢)(JX, U)
= (VuxQU) = 2¢(Vy JX) — div By (U, X)
—2dIn \(Bj; X) + 2(Vup’)(X).
Proof. By tensoriality, it suffices to set X =e; and U = e,.. Then
Ric (e;,er) = g(R(ei, eq)eq, er) = g(R(ei, e5)ej, er) + g(R(er, e5)es, €;) .
First, we deal term by term with

g(R(ei,ej)ej,er) = g(Ve,Vee5 — Ve, Ve — Viese;1€55€r) -
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From Corollary [2.5[(iii) and Lemma ii),

9(Ve, Ve, ej,er) = g(Ve, (2grad In A — Hgrad In M), e;)
= 2VdlIn A(e;, e.) + g(Hgrad In A\, V., e;)
=2VdIn A(e;, er) —e;(InA)e, - (In ) — (e,)(Je;)(In ).

Also, from Lemma ii),

—9(Ve,Vesej,er) = —ej(g(Ve,ej,€:) + (Ve €5, Ve er)

ej(g(ej, Veer)) +9(Ve,ej,Ve,er)

=e;j(— e (InN)d;; — C(er)glej, Jei)) + g(Ve,ej, Ve, er)

= —ei(e,(In X)) — (Jei)(C(er) + 9(Ve,e5, Ve, er)

= —ei(er(InN)) = (Vye,Q)(er) = C(Vie,er) + 9(Ve,e5, ijeT)’

where, from Lemma [2.4]

9(Ve,e5,Ve,er) = g(Ve,ej, en)g(en, Ve er) + (Ve €5, e5)g(es, Ve er)
=er(InN)dijg(ex, Ve er) — ej(InX)oirg(er, Ve, er)
+es(InX)dijg(es, Ve, er) + (fl)iﬂéijlg(es)g(es, Ve, er)
= g(Hgrad In \, V¢ e;) — g(es, Ve, e, )e;(In )
+ g(Vgrad In A\, V,e,) + C(es)g(es, Ve, €r)
= —2((e,)dInA(Je;) + dIn A(VV,er) + (Ve €r) -

From Corollary 2.5[i) and Lemma ii),
—9(Vie, e85, €r) = —€i(ln A)3jkg(Ve, 5, €r) + €;(In N)6ikg(Ve, €5, €r)
+2(=1)"0ij:C(es)g(Ve, €5, ¢r)
= —2¢;(InA)e,(In ) — g(Hgrad In A, V,e,)

- 2C(65)9(ves*}€iaer)
= —e;(InA)e,(InA) + (e, )dIn A(Je;) — 2¢(Ve, Je;) .

Collecting terms now yields

g(R(es,e5)ej,er) = VdA(e;, er) —e;(InX)e, (InX) — ((e,)dIn A(Je;)
= (Vie; Oler) —2¢(Ve, Jei) .

For the other term, first note that at the point z,

g(vervesesa ei) = g(ve,« (Hveses + Vv@seS)v ei) = 2g(v6r/~La ei)
- g(VVGb €s, verei) = 29(v67~/’b7 6’i) .
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Then from Lemma [3.2]
g(R(er,es)es,ei) = g(Ve, Ve, e5 — Ve Ve, €5 — Vie,,ed)€ss e;)
=29(Ve, s ei) —es(9(Ve, es,€i) + 9(Ve, €5, Ve, e;)
—9(Vie, e.]€s»€i)
= 2(Ve, 1) (e;) — (div Ba)(er, €;) — 29(Ve, Verad In \, ;)
—((Ve,Jei) + g(HVe, e, HV . €;) .

But from from Lemma[2.4] g(HV., es, HV,, e;) =—g(Ve,es,C(es)Je;) = ((Ve, Je€;).
The formula now follows for flat codomain. O

3.3. The vertical components of the Ricci curvature.

Define the vertical sectional curvature by K" := g(R(es,e4)eq,e3) where
F = o~ (y) C M is the fibre over y € N and R is the Riemannian curvature of
F. Then KV is related to the sectional curvature in M via the Gauss equation (see
[11] Chapter 7):

9g(R(es, eq)es, e3) = g(R" (es,eq)ea, €3) + |Beyeal” — g(Be,es, Be,ea) .

The correction terms have an invariant expression given by the following lemma,
established by evaluating the right-hand and left-hand sides on the various (e, es).

Lemma 3.6.
(IBeseal® = g(Beses, Beyea))g” = C = 20" (Box) .

Lemma 3.7.
Ric lyxy = KV g 4+2VdIn M|y v +2d In A\(B,x)—2(d1In )2 |y v +2¢2+div By |y xv -
Proof.

Ric (e, es) = g(R(er, €q)ea, es) = (K'Y + | Beyeql?

— g(Beges, Be,ea))g(er, es) + g(Rler, ei)ei, es)

with

g(R(er, ei)ei es) = g(Ve, Ve,ei = Ve, Ve ei — Vie, 1€, €s) -

From Corollary iii), Ve,e; = grad In A + Vgrad In A = 2grad In A — Hgrad In A,
so that

9(Ve, Ve,eies) =29(Ve, grad In A es) + g(Hgrad In A, V., eg)
=2Vdln A(e,, es) + dln A(Be,.es) -
From Lemma (3.1
—g(Ve, Ve, ei,es) = —ei(g(Ve,€iye5) + g(Ve, €, Ve, e5)

= div By (e, e5) + 21 (Be, e5) + dIn A(B,.e,)
+9(Ve,€irej)g(e;, Ve,es) + 9(Ve, eirer)gler, Ve, es)

= div By (e, es) + 21°(Be, es) + dIn A(B., )
+g(et, Ve,er)glei Ve,es) + 9(Ve,eire5)g(ej, Vees)
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where the last term can be expressed using Lemma [2.4(ii) and (iii):
9(Ve,eirej)g(ej, Veses) = 2C(er)C(es) -
From Corollary [2.5[(ii) and (iii)
—9(Vie, ei1€ir€s) = —2er(In Nes(In X) — g(es, Be, er)g(ei, Be,es)
+g(et, Ve,er)g(Ve €5, €5) -
On collecting terms and applying Lemma the formula follows for the case of

flat codomain. 0

3.4. Mapping into an arbitrary curved surface.

Suppose ¢: (M*,g) — (N?,h) is a semi-conformal submersion into an arbitrary
Riemannian surface with dilation A\. About a point in the image of ¢, choose
local isothermal coordinates ¢: W — R? on an open set W C N2, so that h =
v=2(dy; % + dys?) for some function v: W — R. Consider the following composition:

(M, g) £ (W € N2, ) - (W' C R R)
where h is the canonical metric dy;% + dy2? on R? and W’ = (W). Then the
formulae of and apply to 1 o . We now show how they extend to ¢.

Lemma 3.8.
NENop=Aln(voy)+2dn(vop)(u).

Proof. First note that KV = I/_QAEhll/ = Ay Inv. Then from Lemma
Ag(lnvoyp)=dlnv(r,) + Tr,Vdlnv(de, dy)
= —2d(Invo¢)(p) + A} (ApInT) 0o
=—2d(Invop)(u) + N2KNop. O
Since the dilation of ¥ o ¢ is given by Av, from Lemma [3.4] (for the flat case),
Ric|pxn = {Am(Ww) +2d (W) (n) = 21[¢]1*} g7 = C* + Loglmxn -
But from Lemma [3.8]
Aln(\v) +2dIn(Av)(p) = N2KY + Aln A 4 2dIn A(u),

where the latter quantity is invariant with respect to conformal changes of metric
on the codomain. B
For the mixed components of the Ricci curvature, we note that on setting A = v,

VdIn A(X,U) — (dIn X\)?(X,U) —2(dln A ® O)(JX, U)
=VdIn M(X,U) — (dIn X)?(X,U) — 2(dIn X ® ¢)(JX,U).
For example

Vdln (e, e3) = VdIn A(eg, e3) —dIn(v o ¢)(Ve,e3).
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But from Lemma [2.4]

—dIn(v o ¢)(Ve,e3) = —dIn(v o ¢)(HV,, e3)
= dIn(vop)(g(es, Ve,e1)er + g(es, Ve, e2)ea)
=2(dIn Ao dIn(voy))(er,es3) +2(dIn(r o ) ® ¢)(Jer, e3) .
Whereas
—(dInX)?(eq,e3) — 2(dIn X @ ¢)(Jeq, e3)
=—(dIn))?(e1,e3) —2(dIn A ® ¢)(Jey, e3)
—2(dIn A O dIn(ao p))(er,e3) —2(dIn(ao ) © ()(Jer,es) .

The invariance of the vertical components of the Ricci curvature follows from the
invariance of the quantity VdIn A|yxy + dIn A(B,x), specifically VdIn A(e,, es) +
dIn A(Be,es) = e(es(In X)) —dIn A(VV,, es) = e (es(In X)) — dIn A(VV,, es).

4. BICONFORMAL DEFORMATIONS

4.1. The effect of a biconformal deformation on the Ricci curvature.
Let o: (M*,go) — (N2, h) be a semi-conformal map between oriented manifolds.
Consider a biconformal deformation:

_% 9%
9—; p7

where o, p: M* — R are smooth strictly positive functions. Write objects with
respect to go with an index 0, either upstairs or downstairs, and objects with
respect to g as before. For example, the positive orthonormal basis with respect to
go will be written {e?, €9, €9, e} and the dilation of » with respect to go as Ao, etc.
Then the new frame field and the dual field of 1-forms are given by

0 0 0 0
€] =o0ey, ey = 0e;y, €3 = pe3, €4 = pey

1 1 1 1
01 = ;9?, 92 = ;037 93 = ;9%, 94 == ;92 .

The following lemma gives the change in the connection coefficients.
Lemma 4.1. (i)  g(Ve,es,€;) = gO(Vgge& ei) +ei(Inp)dys
(i) g(Veeres) = go(Ve,e €d)
(iii)  g(Ve,€i e5)
(iv)  g(Ve.es,er)
(v)  gle )
2

(vi)  g(Ve,e5,er) = %go(vg?ej, er) + (1 - %) er(InXg)dsj + er(Inc)dy;.

9o

90 (vgrez’ej) + p2p2 90([ 1769] 67)
gO(vOO6 et) +€t(1np)57’s - s(lnp)ért
ago(e? Vooe )+ o(ed(Ino)djn — eJ(Ina)di)

gle 7v€k6j
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Proof.

(i) 29(Ve,es,e:) —g([ez,e,«] es) + g([ei, es; er)
70’90([ € r]7 9)+090([ ?7 9] )+20’6 (lnp)6T9
= 2090(V80 eV, e?) + 20¢ef(In p)dy-s

(i) 29(Ve,er,es) = g(leiser], es) *9([6%63]’@)
= —=g0([ei, pell, ped) — Sz go([ei, pel], pey)
:90([61762]7 s) 90([617eg]a r) +ei(lnp)drs — ei(In p)drs
= 290(V816r762)
(iii) 2g(ver6uej) = g([er,el] e]) ([eza

} BT)JFQ([ereT] ez)
go([pey, efl, e )**9 (

[oed, oef], )+ Zgo([oe], pegl, ef)
:Pgo([ e el e ) €;(0)dij — *go([ NS
+p90([ €55 2]7 z) ;62( )
= 2pg0(Viel, ef) + £ go([ e, e, ed)
(iv) As above, we write 2g(V. €5, e:) = g([er7 esl,er)— g(les, ed], er) + g(les, er], es)
and replace e, by pe? etc. Case (v) is similar.

(vi) 29(Ve,ej,er) = g([es, €] er) — g([eJ,eT] ei) + g(ler, ], ej)
= fgo([deo aef], ed)— go([oewpe ], ed)+ go([per,oeo],e(})

=27 go(vooe]’e’r‘)—"_ (90([ €55 g]’ z) 90([ €rs z] ))

—Pgo([ €j» 7‘]’ z)+p90([ €rs z] )+IO€ (Ino)di;
+ped(Ino)d;;

From Lemma, this gives

2 o2
29(Ve,ej,6r) = Q%go(v oej,er) 2?6 O(In Xo)d;j+ 2pel (In Xg)dij + 2pe2(In 0)d;
and the formula follows. O
Corollary 4.2.

(i) Ve =apVie) + ”22;;72 (es)Jej —ej(lnp)es

(i) Ve,es = a?HV%ed 4+ p*VV% el + 6, (e Hgrad ¢, In p + p?Vgrad 4, In p)

“ed(Inp)ey

Proof. From Lemma [4.1]
Ve.e; =9g(Ve.€ej,ei)e; + g(Ve.€j,er)er = g(Ve,€j,€i)e; — g(ej, Ve, er)er

2 _ ;2
(VO ]’ z)ei+ £ 2,02 90([62760] s)€i— gO(VSQEEaej)er_ ej(In p)d,se,
= Upvgoeo +2 CO( s)Je; —e;(Inp)es
The proof of (ii) is snmlar. O

Corollary 4.3.
B, es = 0'2(Beo€ + go(e2, e2)Hgrad 4, In p) .
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Proof. From (i) of Lemma [4.1]
go(Be, s, ei) = UQ(QO(VOOesv ez) + € (ln p)drs)
from which the formula follows. O

Lemma 4.4. The mean curvature of the fibres, the integrability form and the
dilation change according to

o2

p = 0* (o + Herad 4, In p), (=56 A=ok.

Proof. The expression for p follows by taking the trace in Corollary The Lie
bracket is defined independently of the metric and the change in ¢ follows. The
expression for A follows since the new horizontal basis is a multiple of o times the
old. O

Lemma 4.5. For a smooth function f,
grad f = o”grad g, f + (p* — 0%)Vgrad g, f -
Proof.
grad o f = ea(f)ea = a20(f)ed + p2ed(f)el = o?grad 5, f + (p* — 0%)Vgrad 5,
O
Recall that the basis {€2} is chosen such that at the point zg, we have VVPOe

=0, Vr,s =3,4.
Lemma 4.6. At the point xg,
Ve, ea = 0%(210 + Hgrad go In(aop?)) + p?Verad 4, In(po?A3)
Proof. From Corollary 2.5(iv),
Ve,€a = grad In A + Verad In A + 2p + wsq(er) Je, .

From Lemma wsq(er)Je, = Vgrad In p. The formula now follows from Lemmas
E4 and O

Define the vertical Laplacian at a point x with respect to the metric g of a smooth
function f by Ay f = A (flr) = er(er(f)) — df(VVe,e,), where F = o~ 'p(x) is
the fibre passing through z. Similarly, we have the vertical Laplacian with respect
to go. Note that at the point o, we have A} f = e2(e2(f)).

Lemma 4.7. [3,[4]
Agf =Ny f+ (p° — 0®){AY f—2df(Vgrad g, In Xo)}
— 202df(ngad 90 Inp) — 2p*df(Vegrad 4, Ino) .

Remark 4.8. Note that if 0 = p, so that the transformation is conformal, we
obtain the well-known formula for the transformation of the Laplacian:

Ayf = 0*Agf — (m — 2)0%df(grad 5, Ino)

(with dimension m = 4).
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Proof. From Lemma |4.6]
Agf = ealea(f)) = df(Ve,ea) = eilei(f)) + er(er(f))
—df (202u0 + o%Hgrad go In o \gp? + p*Vgrad g0 I p02)\2)
= 2eD(E(f)) + 02 (In )2 (f) + peU(e2()) + ped(Im p)el(f)
—df (20 po + o*Hgrad go In(oXop?) + p*Verad 4, In po )\0)
= 02Ny, f+ (p* — 0)ed(ed(f)) + 02df(V006 ) + o?df(Hgrad 4 Ino)
+ pdf(Vgrad 4, In p)
— 202 f(s10) — 0*df (Hegrad go In(ohop?)) — pPdf (Verad 5, In po?A3)
But from Corollary iv)7 Vgg el = grad 4, In \g + Vgrad 4, In \g + 240, so that
Ayf =Ny f+ (p* — 0)ed(el(f))+o?d f(grad 4 In Ng)+odf(Verad 4, In Ag)
+ o*df(Hgrad 4, Ino) + p?df(Verad 4, In p) — o?df(Hgrad go In(aAop?))
— p*df(Vgrad 4, In po®)3)
=0? Ny f+ (p* — 02){A2;0f —2df(Vgrad 4, In Ag)}
— 202df(Hgrad go In p) — 2p*d f(Vgrad ,, Ino) .

Corollary 4.9.
Agln A = 0Ny, In(oAg) + (p>—0?){A} (In(cAg)) — 2d In(oAg) (Vgrad 4, In Ag) }
—20%dIn(o)g)(Hgrad 4, In p) — 2p*dIn(o)o)(Vgrad 4 Ino).

4.2. The second fundamental forms and their divergences. The vertical
components of the Ricci tensor contain the term div B; acting on vertical vectors.

Lemma 4.10.
Bl(eiaemes) = B?(eiv €y s) +9 sez(lnp)

Proof. This follows from Corollary

Bi(e, er,e5) = g(ei, Be,es) = %go(ei,Beres)
= go(ei, BSOeO + go(€?, e?)Hgrad 4, In p)
= BY(ei, €}, €]) + drsei(lnp). O
Lemma 4.11.
(div By)(er, es) = o*(div o BY) (€2, €2) — a? BY (Hgrad go In p?, €2, €2)
+ 5T502{Trg)vod In p + 2d1n p(Vgrad ¢, In Ag)
— dIn p(2u0 + Herad go In pz)} .

(Note that Tr g)Vd In p can be written in terms of the Laplacian and the vertical
Laplacian).
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Proof. Applying Lemma and Lemma
(div By)(ep,e5) = (Ve,B1)(€a, er,e5) = €;(Bi(ei, er,e5)) — B1(Ve, €a, €r, €5)
— Bi(e;, Ve, er,e5) — Bi(ei, er, Ve, €5)
= ced(oBY(€), €2, €%) + 0d,.€?(In p))
— 0?B1(2p0 + Hgrad 4, In(oXop?), €, €5)
- Bl(ei,Veler,es) — Bi(ei, e, Ve,€5)
=2 (BY(e?,eY, %)) + o2e?(In o) BY (€Y, €2, €2)
+ 6,50%ed (el (In p)) + 6502 (Ino)e? (In p)
— 0231(2u(), Hgrad g, ln(a)\op ), €r,€5)
— Bi(ei, 90(Ve, €7, € )er, e5) — Bilei, er, go(V0, €3, €7)er)
= 2{dlvoBO( e ed) + BO(VOOemeT,eS) + BY(e? Vooewes)
+ By (e, e, Vooeo) + BY(Hgrad ,, Ino, e, e?)
T Graed(€0(10 ) + 8061 0)e (I p)
— BY(2u0 + Hgrad 4, In(oXop?), €2, €2)
— 8,5 (2p0 + Hegrad 4, In(aXop?))(In p)
B, Ve, ) — B, V) — (0Pl )
+go(V oer,es )el lnp)}
After simplifying and noting that from Corollary iii)
Tr ;{)vod Inp=—dln p(Vgge?) +e2(e2(In p))
= —dInp(grad 4, In Ao + Vgrad ¢, In Ao) + €} () (In p))
the formula follows. O
Let us now deal with div By. As for Lemma [£.10} we have
Lemma 4.12.
Bs(e,, es,e;) = BI(eY, €Y ;) 4 6psei(Inp) .
Lemma 4.13.
(div By)(es, ;) = div 4, B3 (es, €;) + Vd1In p(es, e;) — BI(Vegrad 4, In(p®0), €5, €5)

— es(In(oXo?))e;(In p) + 2e,(In p) g (e;)
2 2
+ (;7 - 1)33(4“3763, Jej) + (% - 1)Co(es)Jej(lnp) .

Proof.

(div B2)(es,e5) = (Ve,B2)(€q, es,€5) = er(Ba(er, es,€5))
- B2(Vveaea7 €s; ej)_BQ(era Vve,.esa ej) - B2(era esaHve,vej) .
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From Lemma VYV, eq = p*Vgrad 4 In pa?A3. From Lemma iv)
VVe, s = g(Ve,es,er)er = (ey(In p)drs —es(In p)dre)er = 6,5Vgrad In p—eg(Inp)e,.,
and from Lemma [2.4(iii), HV., e; = —((er)Je;. Thus, from Lemma [£.12]

(div By)(es, ;) = e,(Ba(er, es,e;)) — Ba(p?Verad 4, In pa?Xo?, es, €;)
— Bs(ey, 0rsVgrad Inp — es(Inpe,, ;) + ((e,)Ba(er, es, Jej)
= e, (Ba(er, es,ej)) — Ba(p*Verad 4, In p?0?\o?, €5, €;)
+ 200" (ej)es(In p) + C(er) Baler, e, Jej) = pel(B3 (), €0, ¢5))
+es(ej(Inp)) — pBy(Verad g, In(p?a?Xo?). €7, ¢)

— es(In(p*0*Xo%))e; (In p) + 2e4(In p) (g (e5) + ¢ (In p))
; Coler)(BY(eL, €0, Jej) + brsde;(Inp)) = pel(BY (2, ¢, ¢;)

+ es(ej(In p))—pB3 (Vgrad 4, In(p*0 \o?), €2, €;) — e (In(0? X0))e; (In p)
+2esnplles) + G BR(G e, ed) + Ty alec)des i )
= div 4, B3 (es, ¢;) + B3 (VVioep, es,¢5) + By(e, e, HV %o e;)
+ es(ej(In p)) — pBY(Varad 5, ln(p?0?Xo%), ¢, ;)
— es(In(02X0%))e; (In p) + 2e,(In p)p(e;) + %BS@S, e, Jej)

2
o :

+ ?CO(es)Jej(lnp)) = dlvgoBZO(esv ej) + Bg(VV&;ega €s, ej)

+Bj (e, s, —Co(e;) Jej + e, (In)e;) + ea(e;(In p))

— BY(Vgrad ¢, In(p*0?Xo?), €5, €;) — es(In(a*Xo?))e;(In p)

o? L o2

+ 2e,(In p) g (e) + ﬁBS(C& es,Jej) + “5oles) Jej(Inp))
= div 4, BY(es, €;) + 2BI(Verad 4 In Ao, €5, €) — BY(¢L e, Je;)

+ By (Verad 4, Ino, e, ¢;) + es(e;(In p))

— Bg(Vgrad g0 In(p 2 2)\02) €s,€5) — es(ln(UQ)\OQ))ej(ln )
2
o
+2e,(In p) g (e;) + BQ(CoaesJeﬂ) E —Coles)Jej(Inp))

v gy BYes) + exfesIn ) — B Ve (o), v
— e5(In(0X0%))e; (In p) + 2€,(In p) g (e)

o? g2
+ (? —1) B3 e, Jef) + “3Co(ea)Je(Inp).
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However
V0dIn ples, e;) = (V2 e;)(In p) + e (e (In )
= —(HV¢, e;)(Inp) — (VV¢ ;) (In p) + es(e;(Inp)
— Go(es)Je;(In p) — es(Ino)e;(In p) + B e;(In p) + e, (e;(n p)

Finally,
Bgs*ej (Inp) = go(Vgrad In p, ngej) = gO(BSS Vegrad Inp, e;)
= BY(Vgrad Inp, s, e;)
and the expression follows. O

Lemma 4.14. Under biconformal deformation, the quantities C and C* change
according to

2
o
C = 2 {Co+ dIn p(B*) + |[Hgrad 4, lnp||§0g(‘f}
C* =Cy+4dInp © pd +2(dInp o H)?.
Proof. From Corollary (4.3)),
1
C(er,es) = g(Be,er, Be,es) = ng(BetervBEtGS)

1
— 7g0(a2(ngeg + 6 Hgrad ¢, In p), 02(32262 + s Hgrad ¢, In p))

o2
o? 202 o?
= ﬁCg(er, es) + ?dln p(BY e;) + ?Hngadgo hlpH?,Ogo(er, €s)

whereas

C*(eie5) = g(Be i, Bf ej) = gles, B; ei)g(es, B; e;) = g(Be, €5, €i)g(Be, s, €5)
= %gO(UQ(BSQeg + drsHgrad ¢, Inp), e;)
X go(JQ(ngeg + drsHgrad 4, Inp), e;)
= Cj(eirej)+ 2dIn ple;) g (e5)+ 2d n pe;) g (es)+ 2d n p(e;)d n p(ey) -
O

Remark 4.15. When o = p, the deformation is conformal and there is a well-known
formula for the change in Ricci [7]:

Ric (eq, e) = Ric%(eq, ep) + 2[VOdIno(eq, ep) + eq(Ino)ey(In o))
+(Ag, Ino —2|jgrad 4, In o|*)go(ea es) -
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5. ORTHOGONAL PROJECTION FROM R* TO R2

Let ¢: R* — R? be the canonical projection ¢(z!, 22 2% 2*) = (2!,22). Then
X = Lo = 0,B° = BY = BY = 0,(° = 0. We take the standard basis:
ed = 0/0x°.

From Lemma [3.4]

Ric|gxn = {NKY + Aln A+ 2dIn A(p) — 2|¢[]*} g™ — C* + Lg|luxn
= {AlnA+2dInA(u)} g"" = C* + Luglaxn ,

where A = o and p = o*Hgrad 4, In
From Corollary [£.9]

Ayln\ = 0?Ay Ino + (p* — UZ)A;}O (Ino) — 20°dIno(Hgrad 4, In p)
—2p*dIno(Vgrad ,, Ino)

and dIn A(p) = o?dIno(Hgrad 4, In p), so that

2Ilno  ?lno P2Ilne  ?lno
A,In A+ 2d1In A = | T+ 2
g nA+ . ('u> 7 ( 6I12 + 81’22 ) +P ( (91'32 + 65642 )

92 Olno 2+ dlno\?
p 81'3 (921:4 '

From Lemma |4.14]

Olnpdlnp

C*(ei,e5) = 20°€)(In p)e(In p) = 20° 5 O

Next, from Lemma v),

L.9(€irej) = g(Ve i, ej) + glei, Ve, 1)

(9(n,€5)) + €5y (ﬁh@z)) 91, Ve, €5+ Ve, €5)

ei(ej(Inp)) +ej(ei(lnp)) — ex(Inp)g(er, Ve,e5 + Ve, e4)

= ez‘(ej(ln p)) +e;j(ei(lnp)) + e;(In p)e;(Ino)
+e;(Ino)e;(In p) — 26;;Hgrad 4 Inp

_202{ ?lnp Olnodlnp Olnpdlno

_e'l

Ozt 0xI ozt OxJ ozt OxJd

- 8lnaalnp+8lnaalnp
8951 8,@1 8:}52 (9.”[:2 ’
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Collecting terms, we obtain

{(821110 821n0> p? (821110 821110)
Ric(ej,e1) =0 += +

0 Oxo? o Oxg? D42
B /i Blna 2 81n0 2
2 8.1'3 8.’174
In

2 2
< ) 23 lnp+281n031np 281n081np}
8(E1

0z3 Oox1 Ox B O0xo 0o
?lno  0%’Ino p? (0?lnc  O0%lno
. _ 2 L
Ric(ez,e2) =0 { ( 0,2 + 0xg? ) + o? ( Oxg? + Oxy? )

2 2 2
Y Olno . Olno
o2 81'3 81’4
2 2
_2(8lnp) 28 Inp 281n081n,0 28ln081np}

8%2 a’l}% + 8302 8%2 B 8x1 8x1

Ric (1, e) = 202{ 0%Inp _ Olnpdnp n Olnodlnp 8lnp61ng}'

0x10x2 O0xr1 Oxo ox1 Oxo 0x1 Oxo
From Lemma [3.5 the mixed Ricci tensor acting on (e;, es) is given by
Ric (ej,es) = VdIn A(ej, e5) — (dInA)?(ej, e5) — 2(dIn A @ ¢)(Je;, es)
= (Vie; Q)(es) = 2¢(Ve, Je;)
—div By (es, ;) —2dIn A(B]_e;) + 2(Ve, 1) (e5)
=Vdlno(ej,es) — (dlno)*(e;, es) — div Ba(es, e5)
—2dIn \(B} e;) + 2(Ve, 1) (ej) -
From Corollary [£.2]
Vdlno(es, e;) = es(ej(ln o)) —dlno(Ve,e;) =es(ej(Ino)) +ej(lnples(Ino).
Since the fibres before deformation are totally geodesic, B® = 0, so from Lemma
(div Bs)(es, e;) = VdIn p(es, ;) — es(Ino)e;(In p) = es(e;(In p))
—dInp(Ve, ;) — es(Ino)e;(In p)
=es(ej(lnp))—dln p(apvgg eg—i— opel(In O’)@?) —es(Ino)e;(lnp)
=es(e;(lnp)) —2es(Ino)e;(lnp).
From Corollary ,
dInA(B} e;j) = —dIno(VV,e;) = —dIno(e;)g(er, Ve, e5) = es(Ino)e;j(lnp) .
Finally, 1 = o*Hgrad 4, In p = e;(In p)e;, so that from Corollary
(Ve (es) = es(glmse5) = 9(p, Ve, e;)
= es(ei(Inp)di;) — ei(lnp)glei, Ve e;) = es(ej(Inp)).
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We conclude that
Ric (ej,es) = es(ej(Ino)) + es(ej(Inp)) + ej(Inples(lno) —ej(Ino)es(Ino),

explicitly

2
Ric (e, e) = Up{a In(op)  Ono alnp} |

OxI Oxs Oxs  Oxd
The vertical components of the Ricci tensor are given by
Ric|yxy = KV g" 4+ 2VdIn Ay v + 2d In A(Bex) — 2(d In M) 2|y »v
+ QCQ + div Bl|V><V
= K" gV +2VdIn Ay v+ 2d In \(B,x) — 2(dIn \)? |y «v + div By [y« v -

After biconformal deformation, the sectional curvature of the fibres is given by
KY = p? A;/O Inp.
For the second fundamental form:
VdIn e, es) = er(es(In X)) —dIn A(Ve, es) .
From Corollary
Ve, €5 = 5rs{02ngad goInp+ p*Vgrad g Inpt —es(lnpe,

and

VdInA(er,es) = er(es(In X)) —dInA(Ve, es)

= (0 o)) + p2ed(In p)el(In ) + p2ed(In p)el(In o)
— d,sdIna(o?Hgrad 4, In p + p?Verad 4, In p)

From Corollary (4.3)),
B, es = 028, Hgrad golnp.
From Lemma 11| we have
(div By)(er,e5) = 5T502{Tr;f)len p—dln p(Hgrad 4, In p?)} .
Thus

Ric (er,e5) = P25rsA;/0 Inp —2p%e%(Ino)e(In o)
+2{p’e)(e)(In0)) + p*e)(In p)el(In o) + p*el(In p)e)(In o)}
+ §TS{J2TrZ:)Vd In p — 20%d1n p(Hgrad ,, In p)

—2p*dIno(Vgrad 4, Inp)} .
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Explicitly,

o Olnpolno Olnodlnp OlnoOdlno
. _ 2 _
Ric(er es) =p {2633T8x3 e o 2 Oz Oxs Oz Ox®
+5r5<02 (821np N 821np> N 9?Inp N 9?Inp

p? \ 0x12 02 032 042
_212 Olnp 2+ Olnp 2 _q 81n081np+8ln031np
P> o1 Oxo Oxs Oxa Oxy Ox4 '

The equations for an Einstein metric: Ric = Ag for some constant A, become
the following system of ten equations:

(2)
o Plno  p? (0?lnoc  FPlno
) A=c? I Y (i Mt
@ ? { 0x12 + 092 + o2 ( 032 014> >
2 2 2 2
p Jdlno dlno 0°Ilnp
202 (( 6x3> +<81’4> >+2 5x?
dlnp 2 Jdlno dlnp Olno dlnp .
-2 2 -2 =1,2
( 6xj ) * axj 8a:j 85@ axj/ (J ’ )
(i) 0= 0?Inp Olnodlnp 81np81n0_8lnp81np
- 3!1718562 81’1 812 6:61 (9£E2 81‘1 6:62

9?In(op) _Olnocdlnp
(iif) 0= 0z Ox* 2 Oz 0xI

(j=1,2,s=3,4)

2 2
0 1n0_2(81n0) +281n081np_281n081np (s = 3,4)

: _ 2

(iv) A=p {2 0x42 Oz Oxs Ox, Oxry Oxg
12 0?Inp 0%Inp +821np 0%Inp
p% \ 0112 0192 0x32 0142

2 2 2
_ 9% Jlnp n Jdlnp
P> 0z 0o
B ?Ino n Olnpdlno . Olno dlnp B Olnodlno
_8138.%4 81'3 8x4 axg 8.%4 8x3 81'4 ’

(v) 0

Note the symmetry between the equations: after the interchange (4, k, o, p) <
(r,s,p,0), equations (i) and (iv) are interchanged.

5.1. Warped product solutions. Let us investigate some special solutions. If
o =o(x1,x2) and p = p(x3,x4), then the system reduces to

2Ino  ?lno

?Inp  *lnp
0x,2 | Oxg? 0152 | Owg®

= A/o? d 2,
/o o 132 + 0142 /P
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+
8112 Ik
(R2, (dz1? + dw2?)/0?); similarly for the second equation. For example, setting

Note that A = o2 (62 Ino | &2 ln") is the Gaussian curvature of the surface

1+ 2% + 252 1+ 232 + 242
Zf and p:f

yields the product of spheres S? x S? with constant A = 1, whereas setting

1—:1?12—$22
o=——%5 and p=

1 —.’1,‘32 —3742
2

yields the product of hyperbolic spaces H? x H? with constant A = —1.

More generally a warped product of the surfaces (R?, (dx1? + dxo?) /o (21, 72)?)
and (R?, (dz3? + dz4?)/B(23,74)?) corresponds to R* endowed with a metric of
the form:

B dzq? + dao? dzs? + dzy?

o(x1,x2)? a(r1,22)?B(23, 4)?

(3)

Setting 0 = o (1, 22) and p = a(x1,x2)B(xs, z4), the Einstein equations become
the system:

2 2 2 2
) A—o {3 lno+8 ln0_2(8lna> +28 Ina

0x12 Ox92 0x1 0z3
Olnocdlna _281110 Olna
81'1 81'1 8952 8952
0?lne  ?lno olna? 0?Ina
) A= g2 _
(i) 7 { 012 + Ox92 ( Oz > 0z3
() +281n081na 281n081na}

+2

Ory Omy Oy Orp
?lna N Olnodlna N dlnadlns 9dlnadlna
8x18x2 a$1 a$2 3%1 8x2 axl 8x2
Pna ?ha 0?Inp  0%°Inpg
. _ of0ha o na 2 02
(iv) A=o (6$12 + 2 )+a B (31:32 + 022 )

952 Olna 2+ dlna\’
8!1/'1 81’2 '

The sum of (i) and (ii) gives the equation:

(iii) 0=

A=0(AgyIno+ Ay Ina— ||grad ¢ Inal[f) .

On the other hand the difference gives:

0:

82lna_82lna_ Olna\? Oln o 2+ alnoalna_ Olnocdlna
83312 8.1322 8561 8.732 (9$1 (9$1 3332 3332 '
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Since o = a(x1,22) and 8 = B(x3,x4) are independent, on dividing equation (iv)
by a?, we deduce that

o (0*Inp  9%Ing B
(5) ﬂ < 833‘32 + 81‘42 > =

for a constant C' and in particular the metric (dz3? + dz42)/3? is necessarily of
constant Gaussian curvature C, and

A—Ca® =0?AyIna —20%||grad 5, Inal3 .

Set x1 = t and suppose that o = «a(t) and o = o(¢) depend only on ¢. Then
(4] (iii) is satisfied and « and o are determined by the system:

i) A=0¢*((Ino)”"+ (Ina)” — (Inw)?)
(6) (ii) 0=(na)” - (Ina)?+2(no) (Ina)
(iii) A—Ca?=0?((In®)” —2(In)’?)
From (@))(ii), provided (Ina)" # 0,
—(Ina)” + (Ina)™
(Ina)’
= 2lno=—-In|(lna)|+na+ae = o*= Ba?/d,

2(lno) = =(—In|(Ilna)|+na)

for constants a and B, with B non-zero. In particular, taking the difference between
(6) (i) and (iii), we deduce that

Ca' = (Ino)” + (Inw)?,
where C' = C/B. But from () (ii),
—(na)”+ (Ina)(na)” (Ina)”

2(lno)’ =

(o) (In @)’ + (In )2
~ —(na)” + (Ina)(na)” (Ina)” 9
= 200"= (In )’ * (In )" +2na)”.

This simplifies to the third order ODE:
Y2 -
ad” =2d'a” + a(a/ y_ 2Caa’? .
e

Note the specific solution «(t) = t corresponding to hyperbolic space. More generally,
if we set v(t) = &/(t), 6(t) = & (t) = +/(t), then we have the first order system:

!

o Y
(7) (0 I R .
296 4 82
é o T3 2Cy
Cauchy’s existence theorem (see, for example, [5] (10.4.5)) yields local solutions:
o
Let Ty = Yo € R? be a point with ag > 0 and g # 0 and let tg € R. Then

do
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a(t)

there is a solution I'(t) = | ~(¢) | to (7) defined on an open interval I C R
o(t)

(to S I), with F(to) =TY.

Given such a solution to on an open interval I with a(t) positive and o/ ()
non-zero for all ¢t € I, then defining o by 02 = Ba?/a’, where B is a non-zero
constant of sign consistent with o/ and where we require C' = BC to be the
constant Gaussian curvature of the metric (dzs? + dws?)/B(xs, 24)?, equations (6)
are satisfied and the metric is Einstein. The constant A is given by (6])(iii):

A=Ca’+ B (O// - 30/2)

o o o?

which one easily checks is an integral of @

5.2. Solutions depending on a single parameter. Replace x; with the para-
meter ¢ and suppose that both ¢ and p depend only on ¢. Then (2))(iii), (iv) and

(vii) are satisfied, while (i) becomes

(8) A=0"{(Ino)" +2(Inc) (Inp) —2(Inp)” +2(Inp)"};
(ii) becomes

9) A=0*{(lno)" —2(Ino) (Inp)'};

(v) and (vi) become

(10) A=0*{(Inp)” —2(Inp)?}.

The first two of these are equivalent to the pair of equations:
(a) A=02(lno)" —20%(Ino) (Inp)
(b) 0=—(np)?+ (Inp)” +2(no)(inp)

while the third becomes

(11)

) A=o(np)’ —20%(mp)® L A (1np)? 2oy (lnp)
12 g
L (Inp)? = (lno)".

We can combine (L1])(a) and the first identity of to deduce
" " _ / o / P " _ / 14 !
(Inp)’ — (Ino)" =2(Inp)' ((Inp) — (Ino)) = (ln (J)) =2(Inp) (ln (J))
= (In|(Inw)|) =2(np) = (Inu) = cp?

for a constant ¢, where we have written u = p/o. This determines ¢ as a function
of p:

(13) - (l/a)eprzdt = o= ape_przdt
g
for constants a and c. It also yields the identity:

(Inp) — (Ino) =cp* = (Ino)” = (Inp)”’ —2cpp’.



280 P. BAIRD AND J. VENTURA

When we combine this with the last identity of , we obtain
(Inp)" + (Inp)? =2epp’ = p" =2cp*

2
(14) = = gcp?’ +e
for another constant e. Then from :

(15) o= ape™J P = qpe | 57t = qpe= K IHE — | 1/2
—3b%e if p' >0
+3b%e if p' <0

solution p to with o given by (13)), equations , @ and are satisfied

for constants B and b where A = . Conversely, given a

. —3b% if p' >0 .
with A = { 362 if g <0 Specifically,
1/
(Ino)" = (Inp)’ — %%, = (Inp) —cp* = (no)" = (Inp)" —2cpp’

and we now substitute.

Explicit solutions can be obtained by solving . In the case when e = 0,
then up to an affine linear change in the t coordinate, the solution is given by
p(t) = t~/? with

o(t) = at~1/2% Jeta at*’* .
This corresponds to an incomplete Ricci flat (A = 0) metric defined on the half-space
t>0.

In the case when e # 0, relabel the constants such that

(16) o' = al(p* — 8% = alp— B)(p? + Bp+ B7) (c=3a/2 and e = —af?).

Then
dp

alp—B)(p? + Bp + 5?)

which can be integrated explicitly.

=dt

Lemma 5.1. (i) For a <0 and 3 > 0, there is a solution p(t) to that exists
for all t > 0, satisfying p(0) =0, p'(t) > 0 for allt > 0 and 0 < p(t) < B for all
t>0. Ast — oo, p(t) — B and p'(t) — 0.

(ii) For o > 0 and B < 0, there is a to > 0 and a solution p(t) to that exists
for allt € [0,to) satisfying p(0) =0, p'(t) > 0 for all t € [0,9) and that tends to
infinity ast — tg .

Proof. (i) A solution p(t) to in a neighbourhood of ¢t = 0 satisfying p(0) = 0
is guaranteed by the general existence theory of ODEs (see for example [5] (10.4.5)).

Without loss of generality we can suppose that & = —1 and 8 = 1 so the equation
has the form
(17) p=-p*+1.

Clearly p/(t) > 0 provided p(t) < 1. Suppose that p(t) achieves the value 1 and
let tg > 0 be the first time for which this occurs. Then from (7)), p(to) = 0.
On differentiating (17)), we see that p”(tg) = —3p*(to)p’(to) = 0, and so on; by
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F1G. 1: Solution to with « = =1, =1 and p(0) =0

recursion all derivatives p(™ (tg) = 0. But by analyticity of the solution (see [5]
(10.5.3)), this means that p(t) = 1 for all ¢, contradicting the initial condition
p(0) = 0. Thus p(t) < 1 for all £ > 0.

Clearly any interval of existence [0,¢1) can be extended to t > t1, so the solution
exists for all time ¢ > 0 with p(¢t) — 1 and p'(¢t) — 0 as t — oo.
(ii) Without loss of generality, suppose that « = 1 and 8 = —1, so that takes
the form

(18) pr=p+1.

This time we can appeal to the explicit equation determining p obtained on
integrating with p(0) = 0:

1 p+1 V3 2 1 /3
“In—""——— + “arctan [ —= (p— = —Z =t
31n =yt 112 + 3 arc an(\/g (p 2)) + 13

Then as p — oo, the left-hand side approaches 2‘{?“ which yields the upper bound

to = 2437 O

In the following theorem, we consider ends as components of the complement of
the set e < ¢ < 1/e for £ small.
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Fia. 2: Solution to with a =1, 8= —1 and p(0) =0

Theorem 5.2. Solutions to equation yield two families of 4-dimensional
Einstein metrics. Each member of the first family is a complete metric defined
on the upper half space t > 0, having negative Ricci curvature and two ends: one
asymtotic to hyperbolic 4-space and the other to R%. Each member of the second
family is incomplete, defined on the space 0 <t <ty for a fixed constant ty, and
has negative Ricci curvature.

Proof. Consider the solutions to given by Lemma i) and as above, set
e=—af*>0.Att=0, p(0) =0, p'(0) =e, p”(0) = p"(0) = 0. Thus the Taylor
expansion about ¢ = 0 has the form p(t) = et + O(t?). For o we have ¢(0) = 0 and

/\3/2 1 N—1/2 1

Vo' o
Furthermore, o”(0) = ¢'”’(0) = 0, so that about ¢ = 0, we have o (t) = by/et + O(t%).
In particular, being of type gy = (dt? + dao? + dx — 32 4 dxy?)/t?, for t > 0, the
metric is complete in a neighbourhood of the boundary ¢ = 0.

The Einstein constant can be deduced from 7 and the expression
for o, specifically A = 3b%a/3% < 0.

In order to study the ends of the resulting Einstein manifold, we consider
the exterior to the set ¢ < ¢t < 1/e for £ small. As t — oo, then p(t) — S,
p'(t) — 0 and o(t) — oo. Thus the metric approaches an end of the form R?
with metric (dws? + dx4?)/82. Finally, the Taylor expansions of p(t) and o(t)
about t = 0 show that gy —g — 0 as t — 0" (incorporating the constants into
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dt? +dx12 dt? +d$12

the coordinates), for example o(t)? =t + O(t%) and - =

t2 4+ O(t%) 12

(dt? +dz,2)O(t%) /(t*+ O(t")) — 0 as t — 01 which shows asymptotic convergence

to gp.
A similar analysis takes place for the solutions to given by Lemma ii),

but this time p(t) — oo as t — t;, showing the incompleteness of the metric. O
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