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Abstract. We study the notion of strong r-stability for the context of
closed hypersurfaces Σn (n ≥ 3) with constant (r + 1)-th mean curvature
Hr+1 immersed into the Euclidean sphere Sn+1, where r ∈ {1, . . . , n− 2}. In
this setting, under a suitable restriction on the r-th mean curvature Hr, we
establish that there are no r-strongly stable closed hypersurfaces immersed in
a certain region of Sn+1, a region that is determined by a totally umbilical
sphere of Sn+1. We also provide a rigidity result for such hypersurfaces.

1. Introduction and statements of the results

The notion of stability concerning closed hypersurfaces of constant mean curva-
ture in Riemannian manifolds was first studied by Barbosa and do Carmo in [8],
and Barbosa, do Carmo and Eschenburg in [9], where they proved that geodesic
spheres are the only stable critical points in a simply connected space form of the
area functional for volume-preserving variations. On the other hand, with respect
to the notion of strong stability related to constant mean curvature closed hyper-
surfaces (that is, for all variations, not necessarily volume-preserving variations), it
is well known that there are no strongly stable closed hypersurfaces with constant
mean curvature in the Euclidean sphere Sn+1 (for instance, see [3, Section 2]).
Following the same direction, the author together with Aquino, de Lima and dos
Santos obtained in [6] an extension of this result when the space form is either the
Euclidean space Rn+1 or the hyperbolic space Hn+1. More precisely, they proved
that there does not exist a strongly stable closed hypersurface with constant mean
curvature H immersed in either Rn+1 or Hn+1 (n ≥ 3) and such that its total
umbilicity operator Φ satisfies the condition

|Φ| ≤
2
√
n(n− 1)(H2 + c)

(n− 2)|H| ,
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where c = 0 or c = −1 according to the space form be Rn+1 or Hn+1, respectively.
When n = 2 they also showed that there does not exist strongly stable closed
surface with constant mean curvature immersed in either R3 or H3.

In [1], Alencar, do Carmo and Colares extended the results of [8] and [9] to
the context of closed hypersurfaces with constant scalar curvature in a space
form. More specifically, they showed that closed hypersurfaces with constant
scalar curvature of a space form are the critical points of the so-called 1-area
functional for volume-preserving variations and, for the case Sn+1 and Rn+1, they
also proved that a closed hypersurface with constant scalar curvature is stable if
and only if it is a geodesic sphere. More recently Alías, Brasil and Sousa [4] and
Cheng [12] have studied the notion of strong stability of closed hypersurfaces with
constant (normalized) scalar curvature R immersed into Sn+1, where they obtained
characterizations of the Clifford torus via some estimates of the first eigenvalue of
stability when R = 1 and R > 1, respectively.

The natural generalization of mean and scalar curvatures for an n-dimensional
hypersurface of space forms are the r-th mean curvatures Hr, for r ∈ {0, . . . , n},
where H0 is identically equal to 1 by definition. In fact, H1 is just the mean
curvature H and H2 defines a geometric quantity which is related to the scalar
curvature.

In [7], Barbosa and Colares studied the notion of r-stability (see item (a) of
Remark 2 to understand this concept) for closed hypersurfaces immersed with
constant (r+ 1)-th mean curvature Hr+1, r ∈ {0, . . . , n−2}, in space forms. In this
setting, they showed that such hypersurfaces in a simply connected space form are
r-stable if and only if they are geodesic spheres. Moreover, in [14], the author and
de Lima were able to establish another characterization result concerning r-stability
through the analysis of the first eigenvalue of an operator naturally attached to
the r-th mean curvature.

Motivated by all the work described above, a question appears naturally:

Are there closed hypersurfaces which are strongly r-stable with constant
(r + 1)-th mean curvature Hr+1, r ∈ {1, . . . , n− 2}?

With the intention of addressing this issue and seeking a possible answer (affir-
mative or not), we can slightly change our question and propose the new question:

On what conditions is it possible to guarantee the existence (or nonexis-
tence) of hypersupefaces with constant (r + 1)-th mean curvature Hr+1,
r ∈ {1, . . . , n− 2}, that are strongly r-stable?

Our proposal here is to investigate the strong r-stability concerning closed
hypersurfaces ψ : Σn # Sn+1 with constant (r + 1)-th mean curvature Hr+1, r ∈
{1, . . . , n− 2}, immersed into the (n+ 1)-dimensional Euclidean sphere Sn+1, with
n ≥ 3 (see Definition 1). For this, in Section 2 we recorded some main facts about
the hypersurfaces immersed in Sn+1 and in Section 3 we describe the variational
problem that gives rise to the notion of strong r-stability. Next, initially we
prove that geodesic spheres of Sn+1 are strongly r-stable (see Proposition 2), which
provides an affirmative answer to our first question. Afterwards, to achieve our goals,
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we make use of the Riemannian warped product (0, π)× sin τ Sn, τ ∈ (0, π), which
models a certain open region Ωn+1 of Sn+1 (see equations (4.1), (4.2) and (4.3))
and, in Proposition 3, we calculate the differential operator Lr (associated with the
variational problem that defines the notion of strong r-stability) acting on an support
function ξ (see equation (4.9)) naturally attached to a hypersurface ψ : Σn #
Ωn+1 ⊂ Sn+1 with constant (r + 1)-th mean curvature Hr+1, r ∈ {1, . . . , n− 2},
immersed in Ωn+1. Then, under a suitable restriction on Hr and Hr+1, we use the
formula of Lr(ξ) to show that if a closed hypersurface ψ : Σn # Ωn+1 ⊂ Sn+1 with
constant (r + 1)-th mean curvature Hr+1, r ∈ {1, . . . , n− 2}, in Sn+1 is strongly
r-stable, then it must be a geodesic sphere contained in the closure of the upper
domain enclosed by the geodesic sphere of Ωn+1 ⊂ Sn+1 of level τ0 = π

4 (for a
better understanding of this region, we recommend the reader to see Definition 2),
which provides a partial converse of Proposition 2. More specifically, we have
established the following rigidity result for strongly r-stable hypersurfaces in Sn+1:

Theorem 1. Let ψ : Σn # Ωn+1 ⊂ Sn+1 (n ≥ 3) be a strongly r-stable closed
hypersurface with constant (r + 1)-th mean curvature Hr+1, r ∈ {1, . . . , n− 2}. If
the r-th mean curvature Hr of ψ : Σn # Ωn+1 obeys the condition
(1.1) Hr+1 ≥ Hr ≥ 1 on Σn,
then ψ(Σn) is isometric to a geodesic sphere contained in the closure of the upper
domain enclosed by the geodesic sphere of Ωn+1 ⊂ Sn+1 of level τ0 = π/4.

The motivation to assume the hypothesis (1.1) in Theorem 1 is described in
Remark 3, while the restrictions r 6= {0, n − 1, n} are explained in item (b) of
Remark 2. As an immediate consequence of this result, we establish a result of
nonexistence for strongly r-stable closed hypersurfaces immersed in Sn+1, which
can be understood as an answer to our second question.

Theorem 2. There is no strongly r-stable closed hypersurface Σn (n ≥ 3) with
constant (r + 1)-th mean curvature Hr+1, r ∈ {1, . . . , r + 2}, immersed into the
lower domain enclosed by the geodesic sphere of Ωn+1 ⊂ Sn+1 of level τ0 = π/4,
with r-th mean curvature Hr satisfying the inequality Hr+1 ≥ Hr ≥ 1 on Σn.

From our results listed above we can conclude that the region of Sn+1 that
contains the set of closed hypersurfaces ψ : Σn # Sn+1 (n ≥ 3) with constant
(r+ 1)-th mean curvature Hr+1, r ∈ {1, . . . , n− 2}, which are strongly r-stable and
whose r-th mean curvature Hr satisfies the condition (1.1), is small. It is in this
configuration that our results can be understood as a half-space type property of
strongly r-stable closed hypersurfaces in the Euclidean sphere Sn+1 (cf. Remark 4).

Finally, in Corollary 1 and 2 we write Theorems 1 and 2 for the case of closed
hypersurfaces immersed into Sn+1 with constant (normalized) scalar curvature R.
The proofs of the main results of this work is carried out in Section 4.

2. Background

Unless stated otherwise, all manifold considered on this work will be connected,
while closed means compact without boundary. Let Sn+1 be the (n+1)-dimensional
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Euclidean sphere. We will consider immersions ψ : Σn # Sn+1 of closed orientable
hypersurfaces Σn in Sn+1. In this setting, we denote by dΣ the volume element
with respect to the metric induced by ψ, C∞(Σn) the ring of real functions of class
C∞ defined on Σn and by X(Σn) the C∞(Σn)-module of vector fields of class C∞
on Σn. Since Σn is orientable, one can choose a globally defined unit normal vector
field N on Σn. Let

(2.1) A : X(Σn) → X(Σn)
Y 7→ A(Y ) = −∇YN .

denote the shape operator with respect to N , so that, at each q ∈ Σn, A restricts
to a self-adjoint linear map Aq : TqΣ→ TqΣ.

According to the ideas established by Reilly [16], for 1 ≤ r ≤ n, if we let Sr(q)
denote the r-th elementary symmetric function on the eigenvalues of Aq, we get n
functions Sr ∈ C∞(Σn) such that

det(tI −A) =
n∑
r=0

(−1)rSr tn−r ,

where I : X(Σn) → X(Σn) is the identity operator and S0 = 1 by definition. If
q ∈ Σn and {e1, . . . , en} is an orthonormal basis of TqΣ formed by eigenvectors of
Aq, with corresponding eigenvalues λ1, . . . , λn, one immediately sees that

(2.2) Sr = σr(λ1, . . . , λn) ,

where σr ∈ R[X1, . . . , Xn] is the r-th elementary symmetric polynomial on the
indeterminates X1, . . . , Xn.

For 1 ≤ r ≤ n, one defines the r-th mean curvature Hr (also called higher order
mean curvature) of ψ : Σn # Sn+1 by

(2.3)
(
n

r

)
Hr = Sr = Sr(λ1, . . . , λn) .

In particular, for r = 1,

H1 = 1
n

n∑
k=1

λk = H

is the mean curvature of the hypersurface ψ : Σn # Sn+1, which is the main
extrinsic curvature. When r = 2, H2 defines a geometric quantity which is related
to the (intrinsic) normalized scalar curvature R of ψ : Σn # Sn+1. More precisely,
it follows from the Gauss equation of ψ : Σn # Sn+1 that

(2.4) R = 1 +H2.

We can also define (cf. [16, Section 1]), for 0 ≤ r ≤ n, the so-called r-th Newton
transformation Pr : X(Σn)→ X(Σn) by setting P0 = I and, for 1 ≤ r ≤ n, via the
recurrence relation

Pr = SrI −APr−1 .

A trivial induction shows that

Pr = SrI − Sr−1A+ Sr−2A
2 − · · ·+ (−1)rAr,
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so that Cayley-Hamilton theorem gives Pn = 0. Moreover, since Pr is a polynomial
in A for every r, it is also self-adjoint and commutes with A. Therefore, all bases
of Tp(Σn) diagonalizing A at p ∈ Σn also diagonalize all of the Pr at p. Let
{e1, . . . , en} be such a basis. Denoting by Ai the restriction of A to 〈ei〉⊥ ⊂ Tp(Σn),
it is easy to see that

det(tI −Ai) =
n−1∑
j=0

(−1)jSj(Ai) tn−1−j ,

where

(2.5) Sj(Ai) =
∑

1≤j1<...<jm≤n
j1,...,jm 6=i

λj1 · · ·λjm .

With the above notations, it is also immediate to check that

(2.6) Pr(ei) = Sr(Ai)ei ,

and hence (cf. [7, Lemma 2.1])

(2.7)


tr(Pr) = (n− r)Sr = brHr ;
tr(APr) = (r + 1)Sr+1 = brHr+1 ;
tr(A2Pr) = S1Sr+1 − (r + 2)Sr+2 = n br

r+1HHr+1 − br+1Hr+2 ,

where br = (r + 1)
(
n
r+1
)

= (n− r)
(
n
r

)
.

Associated to each Newton transformation Pr one has the second order linear
differential operator Lr : C∞(Σn)→ C∞(Σn), given by

(2.8) Lr(f) = tr (Pr Hess f) .

We observed that L0 = ∆, the Laplacian operator on Σn, and L1 = 2, the Yau’s
square operator on Σn (cf. [13, Equation (1.7)]).

3. The variational problem

For a closed orientable hypersurface ψ : Σn # Sn+1 as in the previous section, a
variation of it is a smooth mapping X : (−ε, ε)×Σn → RPn+1 such that, for every
t ∈ (−ε, ε), the map

(3.1) Xt : Σn # Sn+1

q 7→ Xt(q) = X(t, q)

is an immersion, with X0 = x. In what follows, we let dΣt denote the volume
element of the metric induced on Σn by Xt, and Nt will stand for the unit normal
vector field along Xt.

The variational field associated to the variation X : (−ε, ε) × Σn → Sn+1 is
∂X
∂t |t=0 ∈ X(X((−ε, ε)× Σn)). Letting

(3.2) ft =
〈∂X
∂t

,Nt

〉
,
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we get
∂X

∂t
= ftNt +

(
∂X

∂t

)>
,

where ( · )> stands for the tangential component.
The balance of volume of the variation X : (−ε, ε)×Σn → Sn+1 is the functional

V : (−ε, ε) → R

t 7→ V(t) =
∫

Σn×[0,t]
X∗ (dV ) ,

and we say that X : (−ε, ε) × Σn → Sn+1 is a volume-preserving variation for
x : Σn # Sn+1 if V(t) = V(0) = 0, for all t ∈ (−ε, ε). Moreover, following [7], we
define the r-th area functional

Ar : (−ε, ε) → R

t 7→ Ar(t) =
∫

Σn
Fr (S1(t), S2(t), . . . , Sr(t)) dΣt ,

where Sr(t) = Sr(t, ·) is the r-th elementary symmetric fuunction of Σn via the
immersion (3.1) and Fr is recursively defined by setting F0 = 1, F1 = S1(t) and,
for 2 ≤ r ≤ n− 1,

Fr = Sr(t) + (n− r + 1)
r − 1 Fr−2 .

The following lemma is well known and can be found in [7].

Lemma 1. Let ψ : Σn # Sn+1 be a closed hypersurface. If X : (−ε, ε)×Σn → Sn+1

is a variation of ψ : Σn # Sn+1 then
(a) d

dtV(t) =
∫

Σn ftdΣt, where ft is the function defined in (3.2). In particular,
X : (−ε, ε)×Σn → Sn+1 is a volume-preserving variation for ψ : Σn # Sn+1

if and only if
∫

Σn ftdΣt = 0 for all t ∈ (−ε, ε).

(b) d
dtAr(t) = −br

∫
Σn Hr+1(t)ftdΣt, where br = (r + 1)

(
n
r+1
)

and Hr+1(t) =
Hr+1(t, ·) is the (r + 1)-th mean curvature of Σn via the immersion (3.1).

Remark 1. From [9, Lemma 2.2], given a closed hypersurface ψ : Σn # Sn+1, if
f ∈ C∞(Σn) is such that

(3.3)
∫

Σn
fdΣ = 0 ,

then there exists a volume-preserving variationX : (−ε, ε)×Σn → Sn+1 for ψ : Σn #
Sn+1 whose variational field is just ∂X

∂t |t=0 = fN .

In order to characterize hypersurfaces of Sn+1 with constant (r+1)-th mean curva-
ture, we will consider the variational problem of minimizing the r-th area functional
Ar for all volume-preserving variations of the closed hypersurface ψ : Σn # Sn+1.

The Jacobi functional Jr associated to the problem is given by
Jr : (−ε, ε) → R

t 7→ Jr(t) = Ar(t) + %V(t) ,
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where % is a constant to be determined. As an immediate consequence of Lemma 1
we get

d

dt
Jr(t) =

∫
Σn
{−brHr+1(t) + %} ftdΣt ,

where ft is the function defined in (3.2) and br = (r + 1)
(
n
r+1
)

and Hr+1(t) =
Hr+1(t, ·) is the (r + 1)-th mean curvature of Σn via the immersion (3.1). In order
to choose %, let

H = 1
Area(Σn)

∫
Σn
Hr+1dΣ

be a integral mean of the function Hr+1 along the Σn. We call the attention to the
fact that, in the case that Hr+1 is constant, one has
(3.4) H = Hr+1 ,

and this notation will be used in what follows without further comments. Therefore,
if we choose % = brH, we arrive at

d

dt
Jr(t) = br

∫
Σn

{
−Hr+1(t) +H

}
ftdΣt .

In particular,

(3.5) d

dt
Jr(t)

∣∣∣
t=0

= br

∫
Σn

{
−Hr+1 +H

}
f0dΣ.

Now, following the same ideas of [8, Proposition 2.7], from (3.5), (3.4) and
Remark 1 we can establish the following result, which characterizes all the critical
points of the variational problem described above.

Proposition 1. Let ψ : Σn # Sn+1 be a closed hypersurface. The following state-
ments are equivalent:

(a) ψ : Σn # Sn+1 has constant (r + 1)-th mean curvature functions Hr+1;
(b) we have δfAr = d

dtAr(t)|t=0 = 0 for all volume-preserving variations of
ψ : Σn # Sn+1;

(c) we have δfJr = d
dtJr(t)|t=0 = 0 for all variations of ψ : Σn # Sn+1.

Motivated by the ideas established in [4], [2] and [12], we exchanged our studying
problem and now we wish to detect hypersurfaces ψ : Σn # Sn+1 which minimize
the Jacobi functional Jr for all variations of ψ : Σn # Sn+1. Then, Proposition 1
shows that the critical points for this new variational problem coincide with those
of the first variational problem, namely, are the closed hypersurfaces ψ : Σn # Sn+1

with constant (r+ 1)-th mean curvature Hr+1. Currently, geodesic spheres of Sn+1

and Clifford hypersurfaces of Sn+1 are examples for these critical points. So, for
such a critical point, we need computing the second variation δ2

fJr = d2

dt2Jr(t)|t=0
of the Jacobi functional Jr. This will motivate us to establish the following notion
of stability.

Definition 1. Let ψ : Σn # Sn+1 (n ≥ 3) be a closed hypersurface with constant
(r + 1)-th mean curvature Hr+1, r ∈ {1, . . . , n− 2}. We say that ψ : Σn # Sn+1 is
strongly r-stable if δ2

fJr ≥ 0 for all f ∈ C∞(Σn).
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From [7, Proposition 4.4] we get that the sought formula for the second variation
δ2
fJr of Jr is given by

(3.6) δ2
fJr = −(r + 1)

∫
Σn
fL(f)dΣ ,

where

(3.7) L = Lr + nbr
r + 1HHr+1 − br+1Hr+2 + brHr

is the Jacobi differential operator associated with our variational problem. Here,
Lr is the differential operator defined in (2.8), H, Hr, Hr+1 and Hr+2 are the
mean curvature, the r-th mean curvature, the (r + 1)-th mean curvature and the
(r + 2)-th mean curvature of ψ : Σn # Sn+1, respectively, and bk = (k + 1)

(
n
k+1
)

for k ∈ {r, r + 1}.

Remark 2. Regarding our definition of strong stability, we note that:
(a) From a geometrical point of view, the notion of r-stability, namely, when

δ2
fAr ≥ 0 for all f ∈ C∞(Σn) satisfying the condition (3.3), is more natural

than the notion the strong r-stability. However, from an analytical point of
view, the strong r-stability is more natural and easier to use. The analytical
interest is due to its possible applications to Geometric Analysis such as:
the approach of bifurcation techniques related to our variational problem,
the study of evolution problems related to the differential operator of Jacobi
L, problems of eigenvalue of L, the search for notions of parabolicity for
L, uniqueness (or multiliqueness) of solutions to problems of initial value
involving L, among others.

(b) In Definition 1, we put the restriction r 6= 0 due to the fact that there are
no strongly stable constant mean curvature closed hypersurfaces in Sn+1

(cf. [3, Section 2]), whereas the constraint r 6= {n + 1, n} is due to the
explicit expression that admits δ2

fJr (see equations (3.6) and (3.7)).

In [7, Proposition 5.1] was established that the geodesic spheres of Sn+1 are
r-stable. We note that the proof of this result can be used to affirm that the geodesic
spheres of Sn+1 are also strongly r-stable. Here, for completeness of content, we
present a proof.

Proposition 2. For any r ∈ {1, . . . , n− 2}, the geodesic spheres of Sn+1 (n ≥ 3)
are strongly r-stable.

Proof. Let Σn be a geodesic sphere of Sn+1 and let ι : Σn # Sn+1 be its inclusion
map into Sn+1. Since Σn is totally umbilical then its principal curvatures are all
equal to a certain constant λ. By choosing the normal vector we may assume that
λ ≥ 0. Thus, from (2.2), (2.3) and (2.5), respectively, we have for r ∈ {1, . . . , n−2}
that

Sr =
(
n

r

)
λr = constant , Hr = λr = constant
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and

(3.8) Sr(Ai) =
(
n− 1
r

)
λr = constant.

Next, if e1, . . . , en are the principal directions of Σn, from (2.8), (2.6) and (3.8),
we get

Lr(f) =
n∑
i=1

〈
Hess(f)(ei), Pr(ei)

〉
=
(
n− 1
r

)
λr

n∑
i=1

〈
Hess(f)(ei), ei

〉
=
(
n− 1
r

)
λr∆f ,

for all f ∈ C∞(Σn).
Then, from (3.6), (3.7) and (2.7), we obtain

δ2
fJr = −

∫
Σn

{(n− 1
r

)
λr∆f + brHrf(3.9)

+
(
n

br
r + 1HHr+1 − br+1Hr+2

)
f
}
fdΣ

= −
∫

Σn

{(n− 1
r

)
λrf∆f + (n− r)

(
n

r

)
λrf2

+
[
n

(
n

r + 1

)
λr+2 − (n− r − 1)

(
n

r + 1

)
λr+2

]
f2
}
dΣ

= −
(
n− 1
r

)
λr
∫

Σn

{
f∆f + nf2 + nλ2f2} dΣ

=
(
n− 1
j

)
λr
∫

Σn

{
−f∆f − n(1 + λ2)f2} dΣ .

Now, let η1 be the first eigenvalue of the Laplacian ∆ of ι : Σn # Sn+1, which
admits the following min-max characterization (cf. [11, Section 1.5])

(3.10) η1 = min
{
−
∫

Σn
f∆fdΣ

/∫
Σn
f 2 dΣ : f ∈ C∞(Σn) , f 6= 0

}
.

Since λ ≥ 0, from (3.9) and (3.10) we get

δ2
f Jr ≥

(
n− 1
r

)
λr
∫

Σn

{
η1 − n(1 + λ2)

}
f2dΣ ,

for all f ∈ C∞(Σn). But, since ι(Σn) is isometric to an n-dimensional Euclidean
sphere with constant sectional curvature equal to λ2+1, we have that η1 = n(λ2+1).
Hence, for every f ∈ C∞(Σn) we get

δ2
fJr ≥

(
n− 1
r

)
λr
∫

Σn

{
η1 − n(1 + λ2)

}
f2dΣ = 0 .

Therefore, according to Definition 1, ι : Σn # Sn+1 must be strongly r-stable. �
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4. Proof of the main results

In order to obtain a rigidity result concerning to strongly r-stable closed hyper-
surfaces immersed into (n+ 1)-dimensional unit Euclidean sphere Sn+1, we need
to describe a Riemannian warped product that models a certain region of Sn+1.

Let P be the north pole of Sn+1 and Sn be the equator orthogonal to P. From [15,
Example 2], the open region
(4.1) Ωn+1 := Sn+1 \ {P,−P}
is isometric to the Riemannian warped product
(4.2) (0, π)× sin τ Sn, τ ∈ (0, π) .
At the moment, making P = (0, . . . , 0, 1) ∈ Sn+1 and identifying the point
q = (q1, . . . , qn+1) ∈ Sn with q = (q1, . . . , qn+1, 0) ∈ Sn+1, we have that the
correspondence

(4.3) Ψ : (0, π)× sin τ Sn → Ωn+1 ⊂ Sn+1

(τ, q) 7→ Ψ(τ, q) = (cos τ) q + (sin τ) P,
defines an isometry between (4.2) and (4.1). We denote by
(4.4) Φ : Ωn+1 ⊂ Sn+1 → (0, π)× sin τ Sn

as being the inverse of Ψ.
If dτ2 and dσ2 denote the metrics of (0, π) and Sn, respectively, then

〈 , 〉 = (πI)∗
(
dτ2)+ (sin τ)2(πSn)∗

(
dσ2) ,

is the tensor metric of the Riemannian warped product (4.2), where πI and πSn

denote the projections onto the (0, π) and Sn, respectively. In this context, the
vector field

(sin τ) ∂

∂τ
∈ X ((0, π)× sin τ Sn)

is a conformal and closed one (in the sense that its dual 1-form is closed), with
conformal factor cos τ . Moreover, from [15, Proposition 1], for each τ0 ∈ (0, π), the
slice {τ0} × Sn of the foliation

(0, π) 3 τ0 7−→ {τ0} × Sn

is a n-dimensional geodesic sphere of Sn+1, parallel to the equator Sn, with shape
operator (see (2.1)) Aτ0 given by

(4.5)
Aτ0 : X({τ0} × Sn) → X({τ0} × Sn)

Y 7→ Aτ0(Y ) = −∇Y (−∂τ ) = (cos τ0)
(sin τ0) Y

with respect to the orientation given by − ∂
∂τ . Thus, from (2.2), (2.3) and (4.5), we

get for r ∈ {0, . . . , n} that the r-th elementary symmetric function Sr and the r-th
mean curvature Hr of each slice {τ0} × Sn are

(4.6) Sr =
(
n

r

)
(cot τ0)r and Hr = (cot τ0)r ,

respectively. We note that Sr and Hr are constant on {τ0} × Sn.
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In order to facilitate the understanding of certain regions in the Euclidean sphere,
we have established the following notions.

Definition 2. Fixed τ0 ∈ (0, π), the region
Φ−1 ( (0, τ0)× sin τ Sn ) = { q ∈ Sn+1 : Φ(q) ∈ (0, τ0)× sin τ Sn }

of Sn+1 that corresponds to
(0, τ0)× sin τ Sn ⊂ (0, π)× sin τ Sn

will be called of upper domain enclosed by the geodesic sphere of Ωn+1 of level τ0.
Similarly, the region

Φ−1 ( (τ0, π)× sin τ Sn ) = { q ∈ Sn+1 : Φ(q) ∈ (τ0, π)× sin τ Sn }
of Sn+1 that corresponds to

(τ0, π)× sin τ Sn ⊂ (0, π)× sin τ Sn

will be called of lower domain enclosed by the geodesic sphere of Ωn+1 of level τ0.
In turn, the regions

Φ−1 ( (0, τ0]× sin τ Sn ) = { q ∈ Sn+1 : Φ(q) ∈ (0, τ0]× sin τ Sn }
and

Φ−1 ( [τ0, π)× sin τ Sn ) = { q ∈ Sn+1 : Φ(q) ∈ [τ0, π)× sin τ Sn }
of Sn+1 that corresponds to

(0, τ0]× sin τ Sn ⊂ (0, π)× sin τ Sn

and
[τ0, π)× sin τ Sn ⊂ (0, π)× sin τ Sn,

respectively, will be called of closure of the upper domain and closure of the lower
domain enclosed by the geodesic sphere of Ωn+1 of level τ0, where Φ is the isometry
given in (4.4).

For example, from Definition 2 we have that the upper domain enclosed by the
geodesic sphere of Ωn+1 of level τ = π/2 is the open upper hemisphere (minus the
north pole P) of Sn+1, which is isometric to the Riemannian warped product(

0, π2

)
× sin τ Sn, τ ∈ (0, π/2)

According to the ideas established in [5, Section 5], we will consider that the
orientable hypersurfaces ψ : Σn # Ωn+1 ⊂ Sn+1 for which their Gauss map N
satisfies

−1 ≤
〈

Φ∗(N(q)), ∂
∂τ

〉
Φ(ψ(q))

< 0

for all q ∈ Σn. In this setting, for such a hypersurface ψ : Σn # Ωn+1 ⊂ Sn+1 we
define the normal angle θ as being the smooth function

(4.7)
θ : Σn →

[
0, π2

)
q 7→ θ(q) = arccos

(
−
〈

Φ∗(N(q)), ∂
∂τ

〉
Φ(ψ(q))

)
.
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Thus, on Σn the normal angle θ verifies

(4.8) 0 < cos θ = −
〈

Φ∗(N), ∂
∂τ

〉
≤ 1 .

Moreover, since the orientation of the slice {τ0} × Sn is given by − ∂
∂τ , the normal

angle θ of {τ0} × Sn is such that cos θ = 1.
We need the following result, whose proof is a consequence of a suitable formula

due to Barros and Sousa [10].

Proposition 3. Let ψ : Σn # Ωn+1 ⊂ Sn+1 (n ≥ 2) be an orientable hypersurface
with constant (r + 1)-th mean curvature Hr+1, r ∈ {0, . . . , n− 2}. If

(4.9) ξ : Σn → R
q 7→ ξ(q) = − sin τ cos θ(q),

where θ is the normal angle of Σn defined in (4.7), then the formula of the differential
operator Lr defined in (2.8) acting on ξ is given by

Lr(ξ) = −
(
nbr
r + 1 HHr+1 − br+1Hr+2 + brHr

)
ξ(4.10)

− brHr sin τ cos θ − brHr+1 cos τ.
where H, Hr, Hr+1 and Hr+2 are the mean curvature, r-th mean curvature, (r +
1)-th mean curvature and (r+ 2)-th mean curvature of ψ : Σn # Sn+1, respectively,
and bk = (k + 1)

(
n
k+1
)

for k ∈ {r, r + 1}. Here, for simplicity we are adopting the
abbreviated notations Hj = Hj ◦ ψ−1 ◦ Φ−1, j ∈ {1, r, r + 1, r + 2}, where Φ is the
isometry described in (4.4).

Proof. From Theorem 2 of [10],

Lr(ξ) = −
( nbr
r + 1 HHr+1 − br+1Hr+2 + brHr

)
ξ(4.11)

− brHr Φ∗(N)(cos τ)(cos τ)− brHr+1 cos τ .
Observing that

∇ cos τ =
〈
∇ cos τ, ∂

∂τ

〉 ∂
∂τ

= (cos τ)′ ∂
∂τ

= − sinh τ ∂
∂τ

,

from (4.8) we have that
Φ∗(N)(cos τ) = 〈∇ cos τ,Φ∗(N)〉(4.12)

= −
〈 ∂
∂τ
,Φ∗(N)

〉
sin τ = sin τ cos θ.

Substituting (4.12) into (4.11) we obtain (4.10). �

Remark 3. For 1 ≤ r ≤ n− 1, from (4.6) we can observe that the (r+ 1)-th mean
curvature Hr+1, of slice the {τ0}× Sn, with τ0 ∈ (0, π4 ), of the Riemannian warped
product (0, π)× sin τ Sn verify the inequalities

Hr+1 = Hr+1 > Hr > · · · > H2 > H > 1.
Taking into account this situation, we established in Theorem 1 a rigidity result
for strongly r-stable closed hypersurfaces immersed into Sn+1.
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Proof of Theorem 1. Since the hypersurface

(4.13) Φ ◦ ψ : Σn # (0, π)× sin τ Sn

is strongly r-stable, where Φ is the isometry described in (4.4), from (3.6) and (3.7)
following Definition 1 we get

0 ≤ −
∫

Φ(x(Σn))

{
Lr(f) +

(
nbr
r + 1HHr+1 − br+1Hr+2 + brHr

)
f

}
fdΦ(Σ)

for all f ∈ C∞(Σn), where Lr is the differential operator defined in (2.8), dΦ(Σ)
denotes the volume element of Σn induced by (4.13), bk = (k + 1)

(
n
k+1
)

for
k ∈ {r, r + 1} and, for simplicity, we use the notations Hj = Hj ◦ ψ−1 ◦ Φ−1,
j ∈ {1, r, r+1, r+2}. In particular, considering the smooth function ξ = − sin τ cos θ
defined in (4.9), from Proposition 3 we obtain

0 ≤ br
∫

Φ(ψ(Σn))
(−Hr sin τ cos θ −Hr+1 cos τ) sin τ cos θ dΦ(Σ)(4.14)

≤ br
∫

Φ(ψ(Σn))
(Hr cos θ −Hr+1) cos τ sin τ cos θ dΦ(Σ)

≤ br
∫

Φ(ψ(Σn))
(cos θ − 1)Hr cos τ sin τ cos θ dΦ(Σ)

where in the last inequality we use the condition (1.1). Now, since Hr ≥ 1 on Σn,
the normal angle θ of Σn verifies the inequalities established in(4.8), and cos τ and
sin τ are positive values when τ ∈ (0, π/4], then from the (4.14) we obtain

0 ≤ br
∫

Φ(ψ(Σn))
(cos θ − 1)Hr cos τ sin τθ dΦ(Σ) ≤ 0 .

Therefore, cos θ = 1 on Σn and, consequently, there is τ0 ∈ (0, π/4] such that
Φ(ψ(Σn)) = {τ0} × Sn. �

With respect to the notion of strong stability related to closed hypersurfaces with
constant mean curvature immersed into Euclidean sphere Sn+1, it is well known
that there are no strongly stable closed hypersurfaces with constant mean curvature
in Sn+1 (cf. [3, Section 2]). In the context of the higher order mean curvatures,
from Theorem 1 we can establish a nonexistent result to strongly r-stable closed
hypersurfaces immersed in Sn+1 (see Theorem 2).

Proof of Theorem 2. Assuming that there is a strongly r-stable closed hypersur-
face ψ : Σn # Ωn+1 ⊂ Sn+1 (n ≥ 3) with constant (r+ 1)-th mean curvature Hr+1,
r ∈ {1, . . . , r+ 2}, immersed into the lower domain enclosed by the geodesic sphere
of Ωn+1 ⊂ Sn+1 of level τ0 = π/4 and with r-th mean curvature Hr satisfying
Hr+1 ≥ Hr ≥ 1 on Σn, from Theorem 1 we get that ψ(Σn) is isometric to a
geodesic sphere contained in the closure of the upper domain enclosed by the
geodesic sphere of Ωn+1 ⊂ Sn+1 of level τ0 = π/4, obtaining a contradiction. �
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Remark 4. Consider all closed hypersurfaces ψ : Σn # Sn+1 (n ≥ 3) with
constant (r + 1)-th mean curvature Hr+1, r ∈ {1, . . . , n− 2}, which are strongly
r-stable and that satisfy the condition Hr+1 ≥ Hr ≥ 1, where Hr is the r-th mean
curvature of ψ : Σn # Sn+1, from Theorems 1 and 2 we can conclude that the
region of the Euclidean sphere Sn+1 that contains all these hypersurfaces is small
when compared to the set of closed hypersurfaces of Sn+1 that do not verify all
these assumptions. It is in this context that our results can be understood as a
half-space type property for this class of hypersurfaces of Sn+1.

For the case r = 1, taking into account (2.4), we can exchange the second mean
curvature H2 for the normalized scalar curvature R in equation (3.5) and then
rewrite our Definition 1 in terms of R. In this context, an immediate application of
Theorem 1 and Theorem 2 gives the following results.

Corollary 1. Let ψ : Σn # Ωn+1 ⊂ Sn+1 (n ≥ 3) be a strongly 1-stable closed
hypersurface with constant normalized scalar curvature R. If the mean curvature
H of ψ : Σn # Ωn+1 obeys the condition R − 1 ≥ H ≥ 1 on Σn, then ψ(Σn) is
isometric to a geodesic sphere contained in the closure of the upper domain enclosed
by the geodesic sphere of Ωn+1 ⊂ Sn+1 of level τ0 = π/4.

Corollary 2. There is no strongly 1-stable closed hypersurface Σn (n ≥ 3) with
constant normalized scalar curvature R immersed into the lower domain enclosed
by the geodesic sphere of Ωn+1 ⊂ Sn+1 (n ≥ 3) of level τ0 = π/4, with mean
curvature H satisfying the condition R− 1 ≥ H ≥ 1 on Σn.
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