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OSCILLATORY BEHAVIOR OF HIGHER ORDER
NEUTRAL DIFFERENTIAL EQUATION WITH MULTIPLE
FUNCTIONAL DELAYS UNDER DERIVATIVE OPERATOR

R.N. Rath, K.C. Panda, and S.K. Rath

Abstract. In this article, we obtain sufficient conditions so that every solution
of neutral delay differential equation(
y(t)−

k∑
i=1

pi(t)y(ri(t))
)(n)

+ v(t)G(y(g(t)))− u(t)H(y(h(t))) = f(t)

oscillates or tends to zero as t → ∞, where, n ≥ 1 is any positive integer,
pi, ri ∈ C(n)([0,∞),R) and pi are bounded for each i = 1, 2, . . . , k. Further,
f ∈ C([0,∞),R), g, h, v, u ∈ C([0,∞), [0,∞)), G and H ∈ C(R,R). The
functional delays ri(t) ≤ t, g(t) ≤ t and h(t) ≤ t and all of them approach
∞ as t → ∞. The results hold when u ≡ 0 and f(t) ≡ 0. This article
extends, generalizes and improves some recent results, and further answers
some unanswered questions from the literature.

1. Introduction

In this article, we obtain sufficient conditions for every solution of the higher
order neutral delay differential equation (NDDE in short)

(1.1)
(
y(t)−

k∑
i=1

pi(t)y(ri(t))
)(n)

+ v(t)G
(
y(g(t))

)
− u(t)H

(
y(h(t))

)
= f(t) ,

to oscillate or to tend to zero as t → ∞, where, n ≥ 1 is any positive integer,
pi, ri ∈ C(n)([0,∞),R) and pi are bounded for each i = 1, 2, . . . , k. Further,
f ∈ C([0,∞),R), g, h, v, u ∈ C([0,∞), [0,∞)), G and H ∈ C(R,R). The functional
delays ri(t) ≤ t, g(t) ≤ t and h(t) ≤ t and all of them approach ∞ as t→∞.

The results hold when u ≡ 0, f(t) ≡ 0, and G(u) ≡ u.
Some of the following assumptions would be needed later in this article.
(H0) lim inf

t→∞
G(x(t)) > 0 if lim inf

t→∞
x(t) > 0 and lim sup

t→∞
G(x(t)) < 0 if

lim sup
t→∞

x(t) < 0.
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(H1) xG(x) > 0 for x 6= 0.

(H2) v(t) > 0,
∫ ∞
t0

v(s) ds =∞.

(H3) There exists a bounded function F ∈ C(n)([0,∞),R) such that
F (n)(t) = f(t).

(H4) The function F (t) in (H3) satisfies lim
t→∞

F (t) = 0.

(H5)
∫ ∞
t0

tn−1u(t) dt <∞.

(H6) H is bounded and uH(u) > 0 for u 6= 0.

(H7)
∫ ∞
t0

tn−1v(t) dt =∞.

Note that if
∫ ∞
t0

tn−1|f(t)| dt <∞ then, (H3) and (H4) hold.

In recent years there have been much interest in studying the oscillatory and
asymptotic behaviour of neutral delay differential equations and it’s applications.
For some recent results, one may go through the publications [1, 2, 7, 8, 10, 11, 13]
and references cited there in. However, study of NDDEs of the form (1.1) with
several functional delays under the derivative operator; seems to be relatively scarce.
It is found that the authors [1, 7, 8, 10, 11, 13] use the result [2, Lemma 1.5.2], as
the main tool, to study NDDEs

(1.2)
(
y(t)− p(t)y(t− τ)

)(n) + q(t)G(y(t− σ)) = f(t)

where n ≥ 1, is any positive integer. But this lemma cannot be applied to the study
of (1.1) because of the presence of multiple functional delays under the derivative
operator. In this article, by following the suggestion in [2, Notes 1.8, page 31], we
extend [2, Lemma 1.5.2] from one delay to multiple delays for it’s own sake and for
it’s application to study the oscillatory behavior of (1.1). Then these results are
further applied to study the behavior of solutions of

(1.3)
[
y(t)−

k∑
i=1

pi(t)y
(
ri(t)

)](n)
+ q(t)G

(
y(g(t))

)
= f(t) ,

where q(t) changes sign. The paper [9] is concerned with the study of oscillatory and
asymptotic behaviour of NDDE (1.2) with q(t) having fixed sign. We considered the
general case that q(t) may change sign and generalized the results in [9] by dropping
the conditions (i) G is non decreasing and lim inf

|u|→∞
G(u)/u > δ > 0. Further, this

article could address the proposed problems [2, Open problem 2.8.3, page 57, Open
problem 10.10.2, page 287].

“Let t1 be a fixed positive real number and

t0 = min
{

inf
t≥t1

(r1(t), r2(t), . . . , rk(t)), inf
t≥t1

g(t), inf
t≥t1

h(t)
}
.
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By a solution of (1.1), we mean a function y ∈ C([t0,∞),R) such that y(t)−
k∑
i=1

pi(t)y(ri(t)) is n times continuously differentiable on [t0,∞) and the neutral

equation (1.1) is satisfied by y(t) for all t ≥ t1. It is known that (1.1) has a
unique solution provided that an initial function φ ∈ C([t0, t1],R) is given to satisfy
y(t) = φ(t) for all t ∈ [t0, t1]. Such a solution is said to be non-oscillatory if it is
eventually positive or eventually negative, otherwise it is called oscillatory.”

In this work we assume the existence of solutions of (1.1) and study only their
qualitative behaviour. In the sequel, unless otherwise specified, when we write a
functional inequality, it will be assumed to hold for all sufficiently large values of t.

2. Lemmas

In this section, some lemmas are presented which will be used to find sufficient
conditions for oscillation of solutions of (1.1).

Lemma 2.1 ([5, p.193]). “Let y ∈ Cn([0,∞),R) be of constant sign and 6≡ 0 in any
interval [T,∞), T ≥ 0,and y(n)(t)y(t) ≤ 0.Then there exists a number t0 ≥ 0 such
that the functions y(j)(t), j = 1, 2, . . . , n− 1, are of constant sign on [t0,∞) and
there exists a number m ∈ {1, 3, . . . , n−1} when n is even or m ∈ {0, 2, 4, . . . , n−1}
when n is odd such that

y(t)y(j)(t) > 0 for j = 0, 1, 2, . . . ,m, t ≥ t0 ,

(−1)n+j−1y(t)y(j)(t) > 0 for j = m+ 1,m+ 2, . . . , n− 1, t ≥ t0 .”

Lemma 2.2 ([12]). “Let u(t) and v(t) be two real valued continuous functions
defined for t ≥ t0 ≥ 0. Then

lim inf
t→∞

u(t)+ lim inf
t→∞

v(t)

≤ lim inf
t→∞

(
u(t) + v(t)

)
≤ lim sup

t→∞
u(t) + lim inf

t→∞
v(t)

(
or lim inf

t→∞
u(t) + lim sup

t→∞
v(t)

)
≤ lim sup

t→∞

(
u(t) + v(t)

)
≤ lim sup

t→∞
u(t) + lim sup

t→∞
v(t)(2.1)

provided that no sum is of the form ∞−∞.”
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Lemma 2.3 ([12]). “Let u(t) and v(t) be two non negative real valued continuous
functions defined for t ≥ t0. Then

lim inf
t→∞

u(t)× lim inf
t→∞

v(t)

≤ lim inf
t→∞

(
u(t)× v(t)

)
≤ lim sup

t→∞
u(t)× lim inf

t→∞
v(t)

(
or lim inf

t→∞
u(t)× lim sup

t→∞
v(t)

)
≤ lim sup

t→∞

(
u(t)× v(t)

)
≤ lim sup

t→∞
u(t)× lim sup

t→∞
v(t)(2.2)

provided that no product is of the form 0×∞.”

The following lemma generalizes an important result [2, Lemma 1.5.2].

Lemma 2.4 ([13]). “Suppose that τ(t) is a continuous and strictly increasing
unbounded function such that τ(t) ≤ t. Let u, v, p : [t0,∞)→ R be such that

(2.3) u(t) = v(t)− p(t)v
(
τ(t)

)
, t ≥ τ−1(t0) .

Suppose that p(t) is in one of the ranges

0 ≤ p(t) ≤ p1 ,(2.4)
−1 < −p ≤ p(t) ≤ 0 ,(2.5)

or

−p2 ≤ p(t) ≤ −p1 < −1 ,(2.6)

where p, p1, p2 are positive real numbers. If v(t) > 0 for t ≥ t0 > 0 and lim inf
t→∞

v(t) =
0 and lim

t→∞
u(t) = L ∈ R exists, then L = 0.”

By following the suggestion in [2, Note 1.8, page 31], we now extend the above
lemma from single functional delay to several functional delays for its application
to study the qualitative behaviour of solutions of (1.1).

Lemma 2.5. Suppose that, for each i = 1, 2, . . . , k, pi, ri ∈ C([t0,∞),R), pi are
bounded, ri(t) ≤ t and lim

t→∞
ri(t) = ∞. Further, suppose that y ∈ C([t0,∞),R).

Assume y(t) > 0 for t ≥ t0. Let

(2.7) z(t) = y(t)−
k∑
j=1

pj(t)y(rj(t)) , t ≥ t1 > t0 .

If lim inf
t→∞

y(t) = 0 and lim
t→∞

z(t) = δ ∈ R exists then the following statements are
true.

(a) If pj(t) ≥ 0 for each j then δ ≤ 0 and pj(t) ≤ 0 for each j then δ ≥ 0.
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(b) Further, suppose that y(t) is bounded and pj(t), j = 1, 2, . . . , k, satisfy one
of the following four conditions.

pj(t) ≥ 0 for every j = 1, 2, . . . , k and
k∑
j=1

lim sup
t→∞

pj(t) < p < 1 .(2.8)

pj(t) ≤ 0 for every j = 1, 2, . . . , k and
k∑
j=1

lim inf
t→∞

pj(t) > −p > −1 .(2.9)

pj(t) < 0 for every j = 1, 2, . . . , k and there exists, i ∈ {1, 2, 3, . . . , k}

such that lim sup
t→∞

pi(t)−
∑
j 6=i

lim inf
t→∞

pj(t) < −1 .(2.10)

pj(t) > 0 for every j = 1, 2, . . . , k and there exists, i ∈ {1, 2, 3, . . . , k}

such that lim inf
t→∞

pi(t)−
∑
j 6=i

lim sup
t→∞

pj(t) > 1 .(2.11)

Then δ = 0 and lim
t→∞

y(t) = 0.

Proof. (a) Since lim
t→∞

z(t) = δ exists finitely then lim inf
t→∞

z(t) = lim sup
t→∞

z(t) = δ. If

pj(t) ≥ 0 then z(t) ≤ y(t) and lim inf
t→∞

z(t) ≤ lim inf
t→∞

y(t). This implies δ ≤ 0. Again
if pj(t) ≤ 0 then z(t) ≥ y(t) and this implies δ ≥ 0. Hence the result follows.

(b) Consider case (i) i.e.; suppose pj(t) satisfy (2.8). As pi(t) ≥ 0, by part (a)
above δ ≤ 0. Then applying Lemma 2.2 and 2.3 we have

0 ≥ δ = lim sup
t→∞

z(t) = lim sup
t→∞

(
y(t)−

k∑
j=1

pj(t)y
(
rj(t)

))

≥ lim sup
t→∞

y(t) + lim inf
t→∞

(
−

k∑
j=1

pj(t)y
(
rj(t)

))

≥ lim sup
t→∞

y(t)− lim sup
t→∞

( k∑
j=1

pj(t)y
(
rj(t)

))

≥ lim sup
t→∞

y(t)−
k∑
j=1

lim sup
t→∞

(
pj(t)y

(
rj(t)

))
≥ lim sup

t→∞
y(t)−

k∑
j=1

lim sup
t→∞

pj(t) lim sup
t→∞

y
(
rj(t)

)
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≥ lim sup
t→∞

y(t)
(

1−
k∑
j=1

lim sup
t→∞

pj(t)
)

≥ lim sup
t→∞

y(t)(1− p) ≥ 0 .

Hence δ = 0 and lim sup
t→∞

y(t) = 0 by (2.8). Then lim
t→∞

y(t) = 0.

Next consider case ii i.e; pj(t) satisfy (2.9). Clearly, z(t) ≥ 0 due to (2.9) and
this implies δ ≥ 0. Application of Lemmas 2.2 and 2.3 to (2.7) yields:

δ = lim inf
t→∞

z(t) = lim inf
t→∞

(
y(t)−

k∑
j=1

pj(t)y
(
rj(t)

))

≤ lim inf
t→∞

y(t) + lim sup
t→∞

( k∑
j=1
−pj(t)y

(
rj(t)

))

≤
k∑
j=1

lim sup
t→∞

(−pj(t)) lim sup
t→∞

(
y(rj(t))

)
=

k∑
j=1
− lim inf

t→∞
(pj(t) lim sup

t→∞

(
y(rj(t))

)
≤ p lim sup

t→∞

(
y(t)

)
≤ pα .

Hence we get

(2.12) α ≥ δ

p
> δ .

Again

δ = lim sup
t→∞

z(t) = lim sup
t→∞

(
y(t)−

k∑
j=1

pj(t)y
(
rj(t)

))

≥ lim sup
t→∞

y(t) + lim inf
t→∞

( k∑
j=1
−pj(t)y

(
rj(t)

))

≥ lim sup
t→∞

y(t) +
k∑
j=1

lim inf
t→∞

(
(−pj(t))y

(
rj(t)

))

≥ lim sup
t→∞

y(t) +
k∑
j=1

lim inf
t→∞

(−pj(t)) lim inf
t→∞

y
(
rj(t)

)
= lim sup

t→∞
y(t) = α .

From this and (2.12) it follows that
α > δ ≥ α ,
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a contradiction. This implies δ = 0 = α. Then lim
t→∞

y(t) = 0.
Next consider case iii: i.e.; pj(t) satisfy (2.10). Then proceeding with the appli-

cation of Lemmas 2.2 and 2.3 to (2.7) we obtain

δ = lim inf
t→∞

z(t) = lim inf
t→∞

(
y(t)−

k∑
j=1

pj(t)y
(
rj(t)

))
≤ lim sup

t→∞

(
y(t) +

∑
j 6=i
−pj(t)y(rj(t))

)
+ lim inf

t→∞

(
− pi(t)y

(
ri(t)

))
≤ lim sup

t→∞
y(t) + lim sup

t→∞

∑
j 6=i
−pj(t)y

(
rj(t)

)
+ lim sup

t→∞

(
− pi(t)

)
lim inf
t→∞

(
y(ri(t))

)
≤ lim sup

t→∞
y(t) +

∑
j 6=i

lim sup
t→∞

(
(−pj(t))y

(
rj(t)

))
≤ lim sup

t→∞
y(t) +

∑
j 6=i

lim sup
t→∞

(
− pj(t)

)
lim sup
t→∞

(
y(rj(t))

)
≤ lim sup

t→∞

(
y(t)

)[
1−

∑
j 6=i

lim inf
t→∞

pj(t)
]
.(2.13)

Again we have

δ = lim sup
t→∞

z(t) = lim sup
t→∞

(
y(t)−

k∑
j=1

pj(t)y
(
rj(t)

))

≥ lim inf
t→∞

y(t) + lim sup
t→∞

( k∑
j=1
−pj(t)y

(
rj(t)

))
≥ lim sup

t→∞
(−pi(t)y(ri(t)) + lim inf

t→∞

∑
j 6=i

(
− pj(t)y(rj(t))

)
≥ lim sup

t→∞
y(ri(t)) lim inf

t→∞
(−pi(t)) +

∑
j 6=i

lim inf
t→∞

(
(−pj(t))y(rj(t))

)
≥ lim sup

t→∞
y(t)

(
− lim sup

t→∞
pi(t)

)
+
∑
j 6=i

lim inf
t→∞

(
−pj(t)

)
lim inf
t→∞

y
(
rj(t)

)
≥ lim sup

t→∞
y(t)

(
− lim sup

t→∞
pi(t)

)
.(2.14)

From (2.13) and (2.14), it follows that

lim sup
t→∞

y(t)
(∑
j 6=i

lim inf pj(t)− 1− lim sup pi(t)
)
≤ 0 .

Using (2.10), we obtain α = lim sup
t→∞

y(t) = 0. Then lim
t→∞

y(t) = 0 and further, using

(2.13) and (2.14) we obtain δ = lim
t→∞

z(t) = 0.
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Next consider case iv: i.e.; pj(t) satisfy (2.11). Then proceeding with the appli-
cation of Lemmas 2.2 and 2.3 to (2.7) we obtain

δ = lim inf
t→∞

z(t) = lim inf
t→∞

(
y(t)−

k∑
j=1

pj(t)y
(
rj(t)

))

≤ lim sup
t→∞

y(t) + lim inf
t→∞

k∑
j=1
−pj(t)y

(
rj(t)

)
≤ lim sup

t→∞
y(t)− lim sup

t→∞

k∑
j=1

pj(t)y
(
rj(t)

)
≤ α− lim inf

t→∞

∑
j 6=i

pj(t)y(rj(t))− lim sup
t→∞

(
pi(t)

)(
y(ri(t))

)
≤ α−

∑
j 6=i

lim inf
t→∞

(
−pj(t)

)(
y(rj(t))

)
−lim inf

t→∞

(
pi(t)

)
lim sup
t→∞

(
y(ri(t))

)
≤ α−

∑
j 6=i

lim inf
t→∞

pj(t) lim inf
t→∞

y
(
rj(t)

)
− lim inf

t→∞

(
pi(t)

)
lim sup
t→∞

y(t)

≤ α
(
1− lim inf

t→∞
pi(t)

)
.(2.15)

Again we have

δ = lim sup
t→∞

z(t) = lim sup
t→∞

(
y(t)−

k∑
j=1

pj(t)y
(
rj(t)

))

≥ lim inf
t→∞

y(t) + lim sup
t→∞

( k∑
j=1
−pj(t)y

(
rj(t)

))

≥ − lim inf
t→∞

( k∑
j=1

pj(t)y
(
rj(t)

))
≥ − lim inf

t→∞

(
pi(t)y

(
ri(t)

))
− lim sup

t→∞

∑
j 6=i

(
pj(t)y

(
rj(t)

))
≥ − lim inf

t→∞
y
(
ri(t)

)
lim sup
t→∞

pi(t)−
∑
j 6=i

lim sup
t→∞

((
− pj(t)

)
y
(
rj(t)

))
≥ −

∑
j 6=i

lim sup
t→∞

pj(t) lim sup
t→∞

y
(
rj(t)

)
≥ − lim sup

t→∞
y(t)

(∑
j 6=i

lim sup
t→∞

pj(t)
)

= −α
(∑
j 6=i

lim sup
t→∞

pj(t)
)
.(2.16)
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From (2.15) and (2.16), it follows that

−α
(∑
j 6=i

lim sup
t→∞

pj(t)
)
≤ δ ≤ α

(
1− lim inf

t→∞
pi(t)

)
.

This implies

α
(

1− lim inf
t→∞

pi(t) +
∑
j 6=i

lim sup
t→∞

pj(t)
)
≥ 0 .

By (2.11), we obtain α ≤ 0. Since y(t) > 0 then α = 0. This implies lim
t→∞

y(t) = 0.
By (2.16), it follows that δ ≥ 0. Using (a), we obtain δ = 0. Thus the lemma is
proved. �

Remark 2.6. If pi(t) = p(t) and pj(t) = 0, for j 6= i, then the conditions (2.8),
(2.9), (2.10), (2.11) due to the boundedness of pj(t) reduces to the following
conditions (i) 0 ≤ p(t) ≤ p < 1, (ii)−1 < −p ≤ p(t) ≤ 0, (iii) −p1 ≤ p(t) ≤ −p <
−1 and (iv) p1 ≥ p(t) ≥ p > 1 respectively. These conditions are assumed in
[6, 8, 9, 10, 11].

Lemma 2.7. Assume y(t) < 0 for t ≥ t0 and lim sup
t→∞

y(t) = 0. Suppose that z(t)

is defined as in (2.7). Further, assume and lim
t→∞

z(t) = δ exists finitely. Then
(a) If pj(t) ≥ 0 for each j then δ ≥ 0 and pj(t) ≤ 0 for each j then δ ≤ 0.
(b) Further, suppose that y(t) is bounded and pj(t), j = 1, 2, . . . , k, satisfy one

of the conditions (2.8), (2.9), (2.10) or (2.11). Then δ = 0 and lim
t→∞

y(t) = 0.

Proof. Proceeding as in the proof of above lemma with the substitution x(t) =
−y(t) > 0, one may complete the proof of the lemma. �

Remark 2.8. Observe that u(t) and v(t) are not assumed to be bounded in
Lemmas 2.5 or 2.7. However, we assume that y(t) and y(rj(t)) are bounded. This
is done, only to avoid the statement, “provided that no sum is of the form ∞−∞”
in Lemma 2.2 and, “provided that no product is of the form 0×∞” in Lemma 2.3.
However, if pj(t) satisfies (2.9) or (2.10), then the terms in z(t) are positive when
y(t) > 0. Hence in the limiting case the sum cannot yield ∞−∞ form. Further, if
lim inf
t→∞

pj(t) > 0 for each j in the case when pj(t) satisfies (2.9) then the product
−pj(t)y(rj(t)) in the limiting case cannot be of the form 0 × ∞. Thus, if pj(t)
satisfies (2.9) or (2.10), we can relax the condition of boundedness on y(t) in the
Lemma 2.5. We state this as a lemma.

Lemma 2.9. Assume y(t) > 0 for t ≥ t0 with lim inf
t→∞

y(t) = 0, and let z(t) be
defined as in (2.7). Assume lim

t→∞
z(t) = δ exists is finite. Let pj(t) satisfy (2.9) or

(2.10). Assume lim inf
t→∞

|pj(t)| > 0 for the case pj(t) satisfying (2.9). Then δ = 0
and lim

t→∞
y(t) = 0.
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3. Oscillation of solutions under positive coefficients

Theorem 3.1. Suppose that (H1), (H3)–(H5), (H7) hold. Assume that pj(t) for
j = 1, 2, 3, . . . , k satisfies one of the conditions (2.8)–(2.11). Then every bounded
solution of (1.1) oscillates or tends to zero as t→∞.

Proof. Assume y is a bounded and eventually positive solution of (1.1). Then
there exists a t0 such that for t ≥ t0: y(t), y(h(t)), y(g(t)), y(ri(t)) are positive.

Define

(3.1) c(t) = (−1)n−1

(n− 1)!

∫ ∞
t

(s− t)n−1u(s)H
(
y(h(s))

)
ds for t ≥ t0 .

By assumptions (H2) and (H4), the above integral converges, thus c(t) is a well
defined real-valued function, and

(3.2) lim
t→∞

c(t) = 0 .

Note that the nth derivative of c is c(n)(t) = −u(t)H(y(h(t))). For simplicity of
notation, we define

(3.3) z(t) = y(t)−
k∑
j=1

pj(t)y
(
rj(t)

)
,

and

(3.4) w(t) = z(t) + c(t)− F (t),

where F (n)(t) = f(t). Since v(t) > 0, then from (3.4), (H1) and (1.1) it follows that

(3.5) w(n)(t) = −v(t)G(y(g(t))) ≤ 0 .

Then it follows from (3.5) that w,w′, . . . , w(n−1) are monotonic and of constant
sign on some interval [t1,∞). As y(t) is bounded, then z(t) and w(t) are bounded.
Let λ := lim

t→∞
w(t) which exists as a finite number because w is monotonic and

bounded. Integrating on (3.5), n times,

w(t)− λ = (1)n−1

(n− 1)!

∫ ∞
t

(s− t)n−1v(s)G
(
y(g(s))

)
ds .

Since w is bounded, the above integral is convergent. This in turn, by (H7), implies
lim inf
s→∞

G
(
y(g(s))

)
= 0. As G(x) 6= 0 for x 6= 0, lim inf

s→∞
y(g(s)) = 0 and because

lim
t→∞

g(t) =∞, lim inf
t→∞

y(t) = 0.
Since lim

t→∞
w(t) exists, c(t), F (t) approach zero, and each pj(t), j = 1, 2, . . . , k

are bounded, it follows that lim
t→∞

z(t) exists as a finite number. Applying Lemma
2.5 we prove lim

t→∞
y(t) = 0. With the application of Lemma 2.7, the proof for the

case y(t) < 0 is similar. Thus the theorem is proved. �
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Theorem 3.2. Suppose that (H0)–(H6) hold. Assume that there exists positive
scalars p and pj : j = 1, 2, . . . , k such that the functions pj(t) for j = 1, 2, . . . , k
satisfies the condition

(3.6) − 1 < −pj ≤ pj(t) ≤ 0 for j = 1, 2, . . . , k and
k∑
j=1

pj = p < 1 .

Then every solution of (1.1) oscillates or tends to zero as t→∞.

Proof. Let y(t) be a solution of (1.1), which is eventually positive for t ≥ t0.
Then proceeding as in Theorem 3.1, set c(t), z(t) and w(t) by (3.1), (3.3) and (3.4)
respectively to obtain (3.5). By (H2), w(n)(t) is not identically zero in any interval
[t1,∞). As in the proof of Lemma 2.1, we can show that there exists t1 ≥ t0 such
that w,w′, . . . , w(n−1) are monotonic and of constant sign on [t1,∞). However, we
do not know yet that w > 0.

Suppose, if possible, y is unbounded. Then there exists an increasing sequence
{aj} such that

lim
j→∞

aj =∞, lim
j→∞

y(aj) =∞ , with y(aj) = max
t1≤s≤aj

y(s) .

By (3.2), for each ε > 0, there exists N0 such that

c(aj) < ε for j ≥ N0 .

Since g(t), h(t), ri(t) for each i, approach ∞ as t→∞, there exists N1 ≥ N0 such
that:

aj , g(aj), h(aj), ri(aj) > t1 for j ≥ N1 .

By (H3), there is an upper bound η for |F |. Using that y(t) > 0, the definition of
{aj}, and that each ri(t) ≤ t, we have: by (3.6),

w(aj) = y(aj)−
k∑
i=1

pi(aj)y
(
ri(aj)

)
+ c(aj)− F (aj)

≥ (1− p)y(aj)− ε− η , j ≥ N1 .

Taking limits in the inequality above, we have lim
j→∞

w(aj) = ∞. Since w,w′, . . . ,

w(n−1) are monotonic and of constant sign, it follows that w > 0 and w′ > 0. Now
by Lemma 2.1 w(n) ≤ 0 and w > 0 imply w(n−1)(t) > 0 for t ≥ t1.

Next we show that y is bounded below by a positive constant, which will be
used for bounding the G term from below.
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Using that w is positive and increasing, and that each ri(t) ≤ t and (3.6), we
have:

(1−
k∑
i=1

pi)w(t) ≤ w(t)−
k∑
i=1

piw
(
ri(t)

)
≤ w(t) +

k∑
i=1

pi(t)w
(
ri(t)

)
≤ y(t)−

k∑
i=1

pi(t)y
(
ri(t)

)
+ c(t)− F (t)

+
k∑
i=1

pi(t)
[
y
(
ri(t)

)
−
[ k∑
j=1

pj
(
ri(t)

)
y
(
rj(ri(t))

)]
+c
(
ri(t)

)
−F

(
ri(t)

)]

≤ y(t) + c(t)− F (t) +
k∑
i=1

pi(t)
[
c
(
ri(t)

)
− F

(
ri(t)

)]
Note that each pi(t) and pj(ri(t)), i = 1, 2, . . . , k, j = 1, 2, . . . , k have the negative
sign and y > 0 in the inequality above. This implies(

1−
k∑
i=1

pi

)
w(t) ≤ y(t) + |c(t)|+ |F (t)|+

k∑
i=1
|pi(t)|

[
|c(ri(t))|+ |F (ri(t))|

]
.

This implies(
1−

k∑
i=1

pi

)
w(t) ≤ y(t) + ε+ η +

k∑
i=1

pi(ε+ η) for t ≥ t1 .

Since lim
t→∞

w(t) =∞, it follows that lim
t→∞

y(t) =∞. Then there exists t2 ≥ t1 such
that for t ≥ t2: y(t), y(g(t)), y(h(t)), y(ri(t)) for each i, are bounded below by a
positive constant. By (H0)–(H1), for s ≥ t2, G(y(g(s))) is bounded below by a
positive constant α. Integrating (3.5),

w(n−1)(t) = w(n−1)(t2) +
∫ t

t2

−v(s)G
(
y(g(s))

)
ds ≤ w(n−1)(t2)− α

∫ t

t2

v(s) ds .

Note that by (H2), the right-hand side approaches −∞, while the left-hand side
is positive. This contradiction implies that the solution can not be unbounded
and eventually positive. Hence y(t) is bounded. Since (H2) implies (H7) then we
proceed as in the proof of Theorem 3.1 to prove lim

t→∞
y(t) = 0. The proof for the

case when y(t) is eventually negative is similar. Thus the theorem is proved. �

Remark 3.3. The condition (3.6) is equivalent to the condition (2.9).

Theorem 3.4. Suppose that (H0)–(H6) hold. Assume that the condition

(3.7) 0 ≤ pi(t) ≤ pi < 1, fori = 1, 2, . . . , k and
k∑
i=1

pi = p < 1 .
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holds. Then every solution of (1.1) oscillates or tends to zero as t→∞.

Proof. By contradiction assume y is an eventually positive solution of (1.1), which
does not tend to zero as t → ∞. Then there exists a t0 such that for t ≥ t0:
y(t), y(h(t)), y(g(t)), y(ri(t)) are positive and lim sup

t→∞
y(t) > 0. Define c(t), z(t)

and w(t) by (3.1),(3.3) and (3.4) respectively to obtain (3.5). By (H2), w(n)(t) is
not identically zero in any interval [t1,∞). Then from Lemma 2.1 it follows that
w,w′, . . . , w(n−1) are monotonic and of constant sign on some interval [t1,∞). We
do not know that w > 0 yet. Since (3.7) holds,

w(t) ≥ y(t)−
k∑
i=1

piy(ri(t)) + c(t)− F (t) .

Taking the limit superior, using that w is monotonic and that c(t) and F (t) converge
to zero, we have

λ = lim
t→∞

w(t) ≥ (1−
k∑
i=1

pi) lim sup
t→∞

y(t) > 0 .

Then w(t) is positive for t large enough. By [5, Lemma 5.2.1], w(n) ≤ 0 and w > 0
imply the existence of t1 such that w(n−1)(t) > 0 for t ≥ t1. Next we show that
lim inf
t→∞

y(t) > 0, which will be used for bounding G(y(g(s))) from below by a
positive constant. Using that 0 ≤ pj(t), j = 1, 2, . . . , k and y > 0, we have

w(t) ≤ y(t) + c(t)− F (t) .

Taking the limit inferior, using that w is monotonic and that c(t) and F (t) approach
zero, we have

0 < λ = lim
t→∞

w(t) ≤ lim inf
t→∞

y(t) .

Then there exists a t2 ≥ t1 such that for t ≥ t2: y(t), y(h(t)), y(g(t)), y(ri(t))
for each i, are bounded below by a positive constant. By (H0)–(H1), for s ≥ t2,
G(y(g(s))) is bounded below by a positive constant α. Integrating (3.5),

w(n−1)(t) = w(n−1)(t2) +
∫ t

t2

−v(s)G
(
y(g(s))

)
ds ≤ w(n−1)(t2)− α

∫ t

t2

v(s) ds .

Note that by (H2), the right-hand side approaches −∞, while the left-hand side is
positive. This contradiction implies that the solution can not be eventually positive
without approaching zero.

The proof for the case when y is eventually negative and does not tend to zero
as t→∞ is similar. This completes the proof. �

Remark 3.5. The condition (3.7) is equivalent to the condition (2.8).

Theorem 3.6. Assume (H0), (H1), (H3)–(H6). Further, assume

(3.8) − pj ≤ pj(t) ≤ 0 for j = 1, 2, . . . , k .
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Suppose that there exists a real α > 0 such that r′i(t) ≥
1
α

for i = 1, 2, . . . , k. Further
Suppose that, the delay functions satisfy g(rj(t)) = rj(g(t)). for j = 1, 2, . . . , k and
(3.9)∫ ∞

t0

v∗(t) dt =∞ , where v∗(t) = min
{
v(t), v(r1(t)), v(r2(t)), . . . , v(rk(t))

}
.

Let there exists a positive constant δ, such that for xi > 0, i = 1, 2, . . . , k + 1 and
u > 0

(3.10) G(
k+1∑
i=1

xi) ≤ δ
k+1∑
i=1

G(xi) and G(uxi) ≤ G(u)G(xi)

and that for xi < 0, i = 1, 2, . . . , k + 1 and u > 0,

(3.11) G
( k+1∑
i=1

xi

)
≥ δ

k+1∑
i=1

G(xi) and G(uxi) ≥ G(u)G(xi) .

Then every solution of (1.1) is oscillatory or tends to zero as t→∞.

Proof. By contradiction assume y is an eventually positive solution of (1.1), which
does not tend to zero as t → ∞. Then there exists a t0 such that for t ≥ t0:
y(t), y(h(t)), y(g(t)) and y(ri(t)): i = 1, 2, . . . , k are positive and lim sup

t→∞
y(t) > 0.

Define c(t), z(t) and w(t) by (3.1), (3.3) and (3.4) respectively to obtain (3.5).
Then, w(n) ≤ 0 and w,w′, . . . , w(n−1) are monotonic and of constant sign on some
interval [t1,∞). From pj(t) ≤ 0 for each j = 1, 2, . . . , k and y > 0, it follows that
w(t) ≥ y(t) + c(t)− F (t). In the limit

λ = lim
t→∞

w(t) ≥ lim sup
t→∞

y(t) > 0 .

Since c(t) and F (t) approach zero then lim
t→∞

z(t) = lim
t→∞

w(t) = λ > 0. z(t) is

bounded below by a positive constant, for all t large. Using y(t) +
k∑
i=1

piy(ri(t)) ≥

y(t) −
k∑
i=1

pi(t)y(ri(t)), lim
t→∞

g(t) = ∞, and g(ri(t)) = ri(g(t)), i = 1, 2, . . . , k, it

follows that y(g(t)) +
k∑
i=1

piy(g(ri(t))) is also bounded below by a positive constant,

on some interval [t2,∞). Then by (H0)–(H1), there exist a positive constant α such
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that α ≤ G
(
y(g(t)) +

k∑
i=1

piy(g(ri(t)))
)
. Using (3.10)

α ≤ G
(
y(g(t)) +

k∑
i=1

piy(g(ri(t)))
)

≤ δ
[
G
(
y(g(t))

)
+

k∑
i=1

G
(
(pi)y(g(ri(t)))

)]
≤ δ
[
G
(
y(g(t))

)
+

k∑
i=1

G(pi)G
(
y(g(ri(t)))

)]
Since r′i(t) ≥

1
α

and w(n)(ri(t)) < 0, it follows that αw(n)(ri(t))r′i(t) ≤ w(n)(ri(t))
for i = 1, 2, . . . , k. Using this, from (3.5), we obtain

w(n)(t) + α

k∑
i=1

G(pi)r′i(t)w(n)(ri(t))

≤ w(n)(t) +
k∑
i=1

G(pi)w(n)(ri(t))

≤ −v∗(t)
[
G(y(g(t))) +

k∑
i=1

G(pi)G
(
y(g(ri(t)))

)]
≤ −v∗(t)α/δ .

Integrating,

w(n−1)(t) + α

k∑
i=1

G(pi)w(n−1)(ri(t))
≤ w(n−1)(t2) + α

k∑
i=1

G(pi)w(n−1)(ri(t2)
)
− (α/δ)

∫ t

t2

v∗(s) ds .

In the limit as t → ∞, by (3.9), the right-hand side approaches −∞ while the
left-hand side is positive. This contradiction proves that eventually positive solutions
must converge to zero. For eventually negative solutions,one may proceed as above
to get the desired result. Thus the proof is complete. �

Remark 3.7. The condition (3.8) is less restrictive than the condition (2.10).

Remark 3.8. The condition (3.9) implies (H2) but the converse is not necessarily
true. However, if v(t) is monotonic then both (3.9) and (H2) are equivalent. Indeed,
if v(t) is decreasing then v∗(t) = v(t). Hence the equivalence of (3.9) and (H2)
is immediate. On the other hand if v(t) is increasing then assume that (H2)
holds. As v(t) is increasing, (3.9) implies v∗(t) = v(r(t)) where r(t) = min{ri(t) :
i = 1, 2, . . . , k} for large t. Clearly, r(t) ≤ t and r(t) → ∞ as t → ∞. v(t) is
increasing implies, there exists δ > 0 such that v(r(t)) > δ for t ≥ t1. Hence
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t1

v∗(t)dt =
∫ ∞
t1

v(r(t)) dt ≥ δ

∫ ∞
t1

dt =∞. Hence (3.9) holds. Thus, (3.9) and

(H2) are equivalent, when v(t) is monotonic.

Theorem 3.9. Assume (H0)–(H6) to hold. Further, assume that pj(t) j = 1, 2, . . . , k
satisfy (3.8). Suppose that there exists a real α > 0 such that r′i(t) ≥

1
α

for
i = 1, 2, . . . , k. Further Suppose that, the delay functions satisfy g(rj(t)) = rj(g(t))
for j = 1, 2, . . . , k. Suppose that (3.10), (3.11) hold and that v(t) is monotonic.
Then every solution of (1.1) oscillates or tends to zero as n→∞.

Proof. The proof follows from that of Theorem 3.6 and the Remark 3.8. �

Remark 3.10. The prototype of the function G satisfying (H0), (H1), (3.10) and
(3.11) is G(u) = (β + |u|µ)|u|λsgnu, where λ > 0, µ > 0, λ + µ ≥ 1, β ≥ 1. For
verification we may take help of the well known inequality(see [3, p.292])

up + vp ≥

{
(u+ v)p , 0 ≤ p < 1 ,
21−p(u+ v)p , p ≥ 1 .

4. Oscillation of solutions under oscillatory coefficients

In this section, we find sufficient conditions so that every solution of the higher
order (n ≥ 1) neutral differential equation (1.3) oscillates or tends to zero as
t → ∞, where q(t) is allowed to change sign. Let q+(t) = max{q(t), 0} and
q−(t) = max{−q(t), 0}. Then q(t) = q+(t)− q−(t) and the equation (1.3) can be
written as

(4.1)
[
y(t)−

k∑
i=1

pi(t)y(ri(t))
](n)

+ q+(t)G
(
y(g(t))

)
− q−(t)G

(
y(g(t))

)
= f(t) .

Now we proceed as in the previous section by setting v(t) = q+(t), u(t) = q−(t)
and H(x) = G(x). Assumptions (H2), (H5), (H6) and (H7) become

(B2):
∫ ∞
t0

q+(t) dt =∞. (B5):
∫ ∞
t0

tn−1q−(t) dt <∞. (B6): G is bounded and

(B7):
∫ ∞
t0

tn−1q+(t) dt =∞ respectively.

Therefore, the study of (1.3) reduces to the study of (1.1) in Theorems 3.1, 3.2
and 3.4. Thus, we have the following results for (1.3) where q(t) changes sign.

Theorem 4.1. Suppose that (H1), (H3)–(H4),(B5),(B7) hold. Assume that pj(t)
for j = 1, 2, 3, . . . , k satisfies one of the conditions (2.8)–(2.11). Then every bounded
solution of (1.3), where q(t) changes sign, oscillates or tends to zero as t→∞.

Theorem 4.2. Suppose that (H0), (H1), (B2), (H3), (H4), (B5), (B6) hold. Assume
that there exists a positive constant p such that the functions pj(t) for j = 1, 2, . . . , k
satisfies the condition (3.6). Then every solution of (1.3) oscillates or tends to
zero as t→∞.
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Theorem 4.3. Suppose that (H0), (H1), (B2), (H3), (H4), (B5), (B6) hold. Assume
that the condition (3.7) holds. Then every solution of (1.3) oscillates or tends to
zero as t→∞.

However, theorems in [4] can not be applied to (4.1) or to (1.3), because the
condition “G is bounded”is not compatible to the condition that “lim inf

|u|→∞
G(u)/u >

δ > 0.”
For the results in this section, we need G to be bounded, continuous, and to

satisfy (H0) and (H1). The prototype of such a function G(y) is y2n sgn(y)/(1+y2n).

5. Examples

The following examples illustrate Theorems 4.1 and 4.3.
Example 5.1. Consider the higher order NDDE

(5.1)
(
y(t)− (1/2e)y(t− 1)− (1/2e2)y(t− 2)

)(n) + q(t)y(t− 3) = f(t)
where

q(t) =

sin(t), 2kπ ≤ t ≤ (2k + 1)π, k = 0, 1, 2, . . .
sin(t)
tn+2 , (2k + 1)π ≤ t ≤ (2k + 2)π, k = 0, 1, 2, . . .

(5.2)

and

f(t) =

sin(t)e−t+3, 2kπ ≤ t ≤ (2k + 1)π, k = 0, 1, 2, . . .
sin(t)e−t+3

tn+2 , (2k + 1)π ≤ t ≤ (2k + 2)π, k = 0, 1, 2, . . .
(5.3)

Clearly,

q+(t) =
{

sin(t), 2kπ ≤ t ≤ (2k + 1)π, k = 0, 1, 2, . . .
0, (2k + 1)π ≤ t ≤ (2k + 2)π, k = 0, 1, 2, . . .

(5.4)

and

q−(t) =

0, 2kπ ≤ t ≤ (2k + 1)π, k = 0, 1, 2, . . .
sin(t)
tn+2 , (2k + 1)π ≤ t ≤ (2k + 2)π, k = 0, 1, 2, . . .

(5.5)

It may be verified that the NDDE (5.1) satisfies all the conditions of theorem 4.1.
Hence every bounded solution of (5.1) oscillates or tends to zero as t → ∞. As
such, it admits a positive solution y(t) = e−t which tends to zero as t→∞.
Example 5.2. The following higher order NDDE

(5.6)
(
y(t)− (1/2e)y(t− 1)− (1/2e2)y(t− 2)

)(n) + q(t)G
(
y(t− 3)

)
= f(t)

where G(u) = u2 sgn (u)/(1 + u2) and q(t) as in (5.2) and

(5.7) f(t) =

e
6(e2t + e6)−1 sin(t), 2kπ ≤ t ≤ (2k + 1)π, k = 0, 1, 2, . . .
e6 sin(t)

(e2t + e6)tn+2 , (2k + 1)π ≤ t ≤ (2k + 2)π, k = 0, 1, 2, . . .
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satisfies all the conditions of Theorem 4.3. Hence every solution of (5.6) oscillates
or tends to zero as t→∞. As such, it admits a positive solution y(t) = e−t which
tends to zero as t→∞.

Remark 5.3. The results of this article seems to be significant as no result in
literature can be applied to the NDDEs (5.1) and (5.6).

6. Concluding remarks

The open problem [2, Problem 2.8.3, p.57] says:
Extend the following result to equations with oscillating coefficients.
Theorem 2.3.1 in [2]: Under the assumptions that q(t) ≥ 0 and

(6.1) lim inf
t→∞

∫ t

t−τ
q(s)ds > e−1

every solution of
(6.2) y′(t) + q(t)y(t− τ) = 0 , t ≥ t0

oscillates.
If we put n = 1, f(t) = 0, G(y) = y, k = 1 and pj(t) satisfying (2.8) ≡ 0 for each j
in (1.3) then the following corollary follows from Theorem 4.1.

Corollary 6.1. Suppose that (B2) hold . Assume

(6.3)
∫ ∞
t0

q−(t) dt <∞ .

Then every bounded solution of
(6.4) y′(t) + q(t)y(g(t)) = 0 .
oscillates or tends to zero as t→∞.

Again if we put n = 1, f(t) = 0, k = 0 in (1.3) then the following corollary
follows from Theorem 4.3.

Corollary 6.2. Suppose that (H0), (H1), (B2), (B6) and (6.3) hold. Then every
solution of
(6.5) y′(t) + q(t)G(y(g(t))) = 0
oscillates or tends to zero as t→∞. Or equivalently every unbounded solution of
(6.5) oscillates.

Note that (6.1) implies

(6.6)
∫ ∞
t0

q(t) dt =∞ .

Further, (B2) is equivalent to (6.6) under the assumption (6.3). Thus, Corollaries 6.1,
6.2 answer the open problem [2, Problem 2.8.3, p.57] partially. Further, Theorem 3.6
answers the open problem [2, Problem 10.10.2, p.287]. Furthermore, as the condition
“G is non decreasing”is not assumed, and q(t) has no fixed sign, in our results,
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therefore, due to Remark 2.6, Theorems 4.3 and 4.2 of this article improve and
generalize the [10, Theorem 2.2], and Theorem 3.6 improves and generalizes [10,
Theorem 2.6], and Theorem 4.1 improves and generalizes [9, Theorem 3.5]. Last
but not the least Lemmas 2.5 and 2.9 are two very important results of this paper.

References
[1] Dix, J.G., Misra, N., Padhy, L.N., Rath, R.N., On oscillation and asymptotic behaviour of a

neutral differential equations of first order with oscillating coefficients, Electron. J. Qual.
Theory Differ. Equ. 19 (2008), 1–10.

[2] Gyori, I., Ladas, G., Oscillation Theory of Delay-Differential Equations with Applications,
Clarendon Press, Oxford, 1991.

[3] Hilderbrandt, T.H., Introduction to the Theory of Integration, Academic Press, New York,
1963.

[4] Karpuz, B., Rath, R.N., Padhy, L.N., On oscillation and asymptotic behaviour of a hi-
gher order neutral differential equation with positive and negative coefficients, Electron. J.
Differential Equations 2008 (113) (2008), 1–15, MR2430910.

[5] Ladde, G.S., Lakshmikantham, V., Zhang, B.G., Oscillation Theory of Differential Equations
with Deviating Arguments, Marcel Dekker Inc., New York, 1987.

[6] Parhi, N., Rath, R.N., On oscillation criteria for a forced neutral differential equation, Bull.
Inst. Math. Acad. Sinica 28 (2000), 59–70.

[7] Parhi, N., Rath, R.N., On oscillation and asymptotic behaviour of solutions of forced first
order neutral differential equations, Proceedings of Indian Acad. Sci. Math. Sci., vol. 111,
2001, pp. 337–350.

[8] Parhi, N., Rath, R.N., Oscillation criteria for forced first order neutral differential equations
with variable coefficients, J. Math. Anal. Appl. 256 (2001), 525–541.

[9] Parhi, N., Rath, R.N., On oscillation of solutions of forced non linear neutral differential equa-
tions of higher order, Czechoslovak Math. J. 53 (2003), 805–825, MR2018832(2005g:34163).

[10] Parhi, N., Rath, R.N., On oscillation of solutions of forced nonlinear neutral differential
equations of higher order II, Ann. Polon. Math. 81 (20033), 101–110.

[11] Parhi, N., Rath, R.N., Oscillation of solutions of a class of first order neutral differential
equations, J. Indian Math. Soc. 71 (2004), 175–188.

[12] Royden, H.L., Real Analysis, 3rd ed., MacMilan Publ. Co., New York, 1988.
[13] Sahiner, Y., Zafer, A., Bounded oscillation of non-linear neutral differential equations of

arbitrary order, Czechoslovak Math. J. 51 (2001), 185–195.



84 R.N. RATH, K.C. PANDA AND S.K. RATH

Corresponding author:
R.N. Rath, Flat-A 203, Center Point Apartment,
Sailasree Vihar Bhubaneswar 751021
Former Professor of Mathematics, VSSUT, BURLA,
Sambalpur, 768018, Orissa, India,
and
Former Principal Khallikote Autonomous College,
Berhampur, Odisha, India, 760001
E-mail: radhanathmath@yahoo.co.in

Department of Mathematics, Trident Academy of Technology,
Bhubaneswar, Odisha, India,
E-mail: kalicharan.in@gmail.com

Deputy Registrar, BPUT,
Rourkella, Odisha, India
E-mail: rath.subhendu@gmail.com

mailto:radhanathmath@yahoo.co.in
mailto:kalicharan.in@gmail.com
mailto:rath.subhendu@gmail.com

	1. Introduction
	2. Lemmas
	3. Oscillation of solutions under positive coefficients
	4. Oscillation of solutions under oscillatory coefficients
	5. Examples
	6. Concluding remarks
	References

