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EXISTENCE OF SOLUTIONS FOR A CLASS OF FIRST ORDER
BOUNDARY VALUE PROBLEMS

Amirouche Mouhousa, Svetlin Georgiev Georgievb,
and Karima Mebarkic

Abstract. In this work, we are interested in the existence of solutions for a
class of first order boundary value problems (BVPs for short). We give new
sufficient conditions under which the considered problems have at least one
solution, one nonnegative solution and two non trivial nonnegative solutions,
respectively. To prove our main results we propose a new approach based
upon recent theoretical results. The results complement some recent ones.

1. Introduction

In this paper we investigate the existence of solutions of the following first order
differential equation

x′ = f(t, x) , t ∈ [a, b] ,(1.1)

subject to the boundary conditions

Mx(a) +Rx(b) = 0 ,(1.2)
where M , R ∈ R, M +R 6= 0, a < b <∞ are given constants and

(H1): f ∈ C([a, b]× R), |f(t, x)| ≤
k∑
j=1

aj(t)|x|pj , (t, x) ∈ [a, b]× R,

aj ∈ C([a, b]), 0 ≤ aj ≤ A on [a, b], pj ≥ 0, j ∈ {1, . . . , k}.
The first-order BVPs arise in many applications of science, engineering and techno-
logy (see [1, Chapter 1]). Thanks to these applications, more theoretical studies of
the subject can be developed, including: solvability, uniqueness, positivity and mul-
tiplicity of solutions. For the recent developments involving existence of solutions
to BVPs for first order differential equations, we can refer to [3, 6, 7, 8, 9, 10, 12].

In this article we propose a new approach to ensure the existence of solutions
for the first-order, two BVP (1.1)–(1.2). Our method involves new fixed-point
theorems for the sum of two operators. The problem (1.1)–(1.2) one can consider
as a scalar-valued analogue of the problem in [9]. The scalar-valued analogues of
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the conditions used in [9] are as follows:
(C1) there exist nonnegative constants α and K so that

|f(t, x)| ≤ αxf(t, x) +K , (t, x) ∈ [a, b]× R , and
∣∣∣∣MR

∣∣∣∣ ≤ 1 ,

(C2) there exist nonnegative constants α and K so that

|f(t, x)| ≤ −αxf(t, x) +K , (t, x) ∈ [a, b]× R and
∣∣∣∣ RM

∣∣∣∣ ≤ 1 ,

(C3) there exists a C1 function V : R→ [0,∞) and nonnegative constants α and
K so that
|f(t, x)| ≤ αV ′(x)f(t, x) +K , (t, x) ∈ [a, b]× R and V (x(a)) ≥ V (x(b)) ,

(C4) there exists a C1 function V : R→ [0,∞) and nonnegative constants α and
K so that
|f(t, x)| ≤ −αV ′(x)f(t, x) +K , (t, x) ∈ [a, b]× R and V (x(a)) ≤ V (x(b)) .

Note that the conditions (C1), (C2), (C3), (C4) in the scalar-valued case are
different from the condition (H1). Moreover, in [9], there is an additional restriction∣∣M
R

∣∣ ≤ 1 (
∣∣ R
M

∣∣ ≤ 1) on R and M . Thus, we can consider our main result as a
complementary result to these of [9] in the scalar-valued case. Moreover, our main
results are valid in the case when R = 0. Thus, our main results can be applied for
the classical initial value problems of first-order ODEs whenever f satisfies (H1).

The plan of this paper is as follows. In the next section, we recall some notations,
definitions, and auxiliary results that we need throughout this paper. In Section
3, we prove our main results about existence and multiplicity of solutions for the
problem (1.1)–(1.2). In Section 4, a concluding remarks are given. An example is
given in Section 5 in order to illustrate our obtained results.

2. Preliminary results

In this section, we will give some preliminary results needed to prove our main
results. To prove the existence of at least one solution to the problem (1.1)–(1.2),
we will use the following fixed point theorem for a sum of two operators.

Theorem 2.1. Let ε > 0, ρ > 0, E be a Banach space and X = {x ∈ E : ‖x‖ ≤ ρ}.
Let also, Tx = −εx, x ∈ X, S : X → E is continuous, (I − S)(X) resides in a
compact subset of E and
(2.1) {x ∈ E : x = λ(I − S)x , ‖x‖ = ρ} = ∅
for any λ ∈

(
0, 1

ε

)
. Then there exists a x∗ ∈ X so that

Tx∗ + Sx∗ = x∗.

Theorem 2.1 will be used to prove Theorem 3.5 and Theorem 3.8 and its proof
can be found in [4] and [5].

In the sequel, we are concerned with the existence of multiple positive fixed
points for the sum of an expansive mapping and a completely continuous one.
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Definition 2.2. Let X and Y be real Banach spaces. A mapping T : X → Y is
said to be expansive if there exists a constant h > 1 such that

‖Tx− Ty‖Y ≥ h‖x− y‖X ,
for any x, y ∈ X.

Let E be a real Banach space.

Definition 2.3. A closed, convex set P in E is said to be cone if
(1) αx ∈ P for any α ≥ 0 and for any x ∈ P,
(2) x, −x ∈ P implies x = 0.

Every cone P defines a partial ordering ≤ in E defined by :
x ≤ y if and only if y − x ∈ P .

Definition 2.4. A mapping K : E → E is said to be completely continuous if it
is continuous and maps bounded sets into relatively compact sets.

In the sequel, we give an extension of the Leray-Schauder boundary condition.
First, we present our result for the completely continuous mappings. Next, we
extend it to the class of a completely continuous mapping perturbed by an expansive
one by considering that the set X is a cone.

Lemma 2.5. Let X be a closed convex subset of a Banach space E and U ⊂ X a
bounded open subset with 0 ∈ U . Assume that A : U → X is a completely continuous
mapping without fixed point on ∂U and there exists ε > 0 small enough such that

Ax 6= λx for all x ∈ ∂U and λ ≥ 1 + ε .

Then the fixed point index i (A,U,X) = 1.

Lemma 2.5 will be the basis of the Theorem 2.8, which we will use to prove
Theorem 3.10. Its proof can be found in [4].

In the sequel, P will refer to a cone in a Banach space (E, ‖ · ‖), Ω is a subset
of P, and U is a bounded open subset of P, and P∗ = P\{0}. Assume that
S : U → E is a completely continuous mapping and T : Ω → E is an expansive
one with constant h > 1. By Lemma ([11, Lemma 2.1]), the operator (I − T )−1 is
(h− 1)−1-Lipschitzian on T (Ω). Suppose that

S(U) ⊂ (I − T )(Ω) ,
and

Tx+ Sx 6= x , for all x ∈ ∂U ∩ Ω .

Then (I − T )−1Sx 6= x, for all x ∈ ∂U and the mapping (I − T )−1S : U → P is
completely continuous. So the fixed point index i (I − T )−1S,U,P) is well defined.
Thus we put

i∗ (T + S,U ∩ Ω,P) =
{
i ((I − T )−1S,U,P) , if U ∩ Ω 6= ∅
0 , if U ∩ Ω = ∅ .
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Using the main properties of the fixed point index for strict set contractions,
Djebali and Mebarki in [2], have discussed the properties of the generalized fixed
point index i∗. The following lemma gives the computation of the index i∗. For
details see [2].

Lemma 2.6. Assume that T : Ω→ E is an expansive mapping with constant h > 1,
S : U → E is a completely continuous mapping and S(U) ⊂ (I − T )(Ω). Suppose
that T + S has no fixed point on ∂U ∩ Ω. Then we have the following results:

(1): If 0 ∈ U and there exists ε > 0 small enough such that

Sx 6= (I − T )(λx) for all λ ≥ 1 + ε, x ∈ ∂U and λx ∈ Ω ,

then the fixed point index i∗ (T + S,U ∩ Ω,P) = 1.
(2): If there exists u0 ∈ P∗ such that

Sx 6= (I − T )(x− λu0), for all λ > 0 and x ∈ ∂U ∩ (Ω + λu0) ,

then the fixed point index i∗ (T + S,U ∩ Ω,P) = 0.

Proof.
(1): The mapping (I − T )−1S : U → P is completely continuous without

fixed point on ∂U and it is readily seen that the following condition is
satisfied

(I − T )−1Sx 6= λx for all x ∈ ∂U and λ ≥ 1 + ε .

Then, our claim follows from the definition of i∗ and the Lemma 2.5.
(2): See [2, Proposition 2.16].

�

Remark 2.7. The result (1) in Lemma 2.6 is an extension of [2, Proposition 2.11].

Now we are able to present a multiple fixed point theorem. The proof rely on
the results (1) and (2) of Lemma 2.6 producing the computation of the index i∗.
The following result will be used to prove existence of at least two nonnegative
solutions to the problem (1.1)–(1.2).

Theorem 2.8. Let U1, U2 and U3 three open bounded subsets of P such that
U1 ⊂ U2 ⊂ U3 and 0 ∈ U1. Assume that T : Ω→ E is an expansive mapping with
constant h > 1, S : U3 → E is a completely continuous mapping and S(U3) ⊂
(I − T )(Ω). Suppose that (U2 \ U1) ∩ Ω 6= ∅, (U3 \ U2) ∩ Ω 6= ∅, and there exists
u0 ∈ P∗ such that the following conditions hold:

(i): Sx 6= (I − T )(x− λu0), for all λ > 0 and x ∈ ∂U1 ∩ (Ω + λu0),
(ii): there exists ε > 0 small enough such that Sx 6= (I − T )(λx), for all
λ ≥ 1 + ε, x ∈ ∂U2 and λx ∈ Ω,

(iii): Sx 6= (I − T )(x− λu0), for all λ > 0 and x ∈ ∂U3 ∩ (Ω + λu0).
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Then T + S has at least two non-zero fixed points x1, x2 ∈ P such that

x1 ∈ ∂U2 ∩ Ω and x2 ∈ (U3 \ U2) ∩ Ω

or

x1 ∈ (U2 \ U1) ∩ Ω and x2 ∈ (U3 \ U2) ∩ Ω .

Proof. If Sx = (I − T )x for x ∈ ∂U2 ∩ Ω, then we get a fixed point x1 ∈ ∂U2 ∩ Ω
of the operator T + S. Suppose that Sx 6= (I − T )x for any x ∈ ∂U2 ∩ Ω. Without
loss of generality, assume that Tx + Sx 6= x on ∂U1 ∩ Ω and Tx + Sx 6= x on
∂U3 ∩ Ω, otherwise the result is obvious. By Lemma 2.6, we have

i∗ (T + S,U1 ∩ Ω,P) = i∗ (T + S,U3 ∩ Ω,P) = 0

and

i∗ (T + S,U2 ∩ Ω,P) = 1 .

The additivity property of the index yields

i∗ (T + S, (U2 \ U1) ∩ Ω,P) = 1 and i∗ (T + S, (U3 \ U2) ∩ Ω,P) = −1 .

Consequently, by the existence property of the index, T + S has at least two fixed
points x1 ∈ (U2 \ U1) ∩ Ω and x2 ∈ (U3 \ U2) ∩ Ω. �

3. Main results

In [9], it is proved that the BVP (1.1)–(1.2) is equivalent to the following integral
equation

(3.1) x(t) =
∫ t

a

f
(
s, x(s)

)
ds− R

M +R

∫ b

a

f
(
s, x(s)

)
ds, t ∈ [a, b] .

Let E = C([a, b]) be endowed with the maximum norm

‖x‖ = max
t∈[a,b]

|x(t)| .

For x ∈ E, define the operator

S1x(t) =
∫ t

a

f
(
s, x(s)

)
ds− R

M +R

∫ b

a

f
(
s, x(s)

)
ds− x(t) , t ∈ [a, b] .

By (3.1), it follows that if x ∈ E satisfies the equation S1x = 0, then it is a solution
to the BVP (1.1)–(1.2). Fix B > 0 arbitrarily.

Lemma 3.1. Suppose that (H1) holds. For any x ∈ E with ‖x‖ ≤ B, we have

‖S1x‖ ≤ A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

Bpj +B .



146 A. MOUHOUS, S.G. GEORGIEV AND K. MEBARKI

Proof. We have

|S1x(t)| =
∣∣∣ ∫ t

a

f
(
s, x(s)

)
ds− R

M +R

∫ b

a

f
(
s, x(s)

)
ds− x(t)

∣∣∣
≤
∫ b

a

|f
(
s, x(s)

)
|ds+

∣∣∣ R

M +R

∣∣∣ ∫ b

a

|f
(
s, x(s)

)
|ds+ |x(t)|

≤
(

1 +
∣∣∣ R

M +R

∣∣∣) ∫ b

a

k∑
j=1

aj(s)|x(s)|pjds+B

≤ A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

Bpj +B , t ∈ [a, b] ,

whereupon

‖S1x‖ ≤ A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

Bpj +B .

This completes the proof. �

Let g ∈ C([a, b]) be positive except at a finite number of points on [a, b] and

(3.2) C =
∫ b

a

g(t) dt .

For x ∈ E, define the operator

S2x(t) =
∫ t

a

g(τ)S1x(τ) dτ , t ∈ [a, b] .

Lemma 3.2. Suppose (H1). If x ∈ E satisfies the integral equation

(3.3) S2x(t) = 0 , t ∈ [a, b] ,

then x is a solution to the BVP (1.1)–(1.2).

Proof. We differentiate the equation (3.3) with respect to t and we get

g(t)S1x(t) = 0 , t ∈ [a, b] ,

whereupon

S1x(t) = 0 , t ∈ [a, b] .

This completes the proof. �

Lemma 3.3. Suppose that (H1) hold. Let x ∈ E be such that ‖x‖ ≤ B. Then

‖S2x‖ ≤ C
(
A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

Bpj +B
)
.
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Proof. Using Lemma 3.1, we arrive at

|S2x(t)| =
∣∣∣ ∫ t

a

g(τ)S1x(τ) dτ
∣∣∣

≤ C
(
A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

Bpj +B

)
, t ∈ [a, b] .

Hence,

‖S2x‖ ≤ C
(
A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

Bpj +B

)
.

This completes the proof. �

3.1. Existence of at least one solution. Suppose that ε > 0, B > 0 be such
that

(H2): C
(
A
(

1 +
∣∣∣ R
M+R

∣∣∣)(b− a)
k∑
j=1

Bpj +B
)
< B.

(H3): ε
(
B + C

(
A
(

1 +
∣∣∣ R
M+R

∣∣∣)(b− a)
k∑
j=1

Bpj +B
))
≤ B,

where C is the constant which appears in (3.2). In the last section, we will give an
example for the constants ε, a, b, M , R, A, B, C and functions f , g that satisfy
(H1)–(H3).

Let X̃ be the set of all equi-continuous families in E. Let also,
X = {x ∈ X̃ : ‖x‖ ≤ B} .

For x ∈ E, define the operators
Tx(t) = −εx(t) ,

Sx(t) = (1 + ε)x(t) + εS2x(t) , t ∈ [a, b] .
By Lemma 3.2, it follows that any fixed point of the operator T + S is a solution
to the BVP (1.1), (1.2).

Lemma 3.4. Suppose that (H1)–(H3) hold. For x ∈ X, we have
‖(I − S)x‖ ≤ B and ‖((1 + ε)I − S)x‖ < εB .

Proof. By Lemma 3.3, we get
‖(I − S)x‖ = ‖ − εx− εS2x‖

≤ ε‖x‖+ ε‖S2x‖

≤ ε
(
B + C

(
A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

Bpj +B
))

≤ B
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and

‖((1 + ε)I − S)x‖ = ‖εS2x‖

= ε‖S2x‖

≤ εC
(
A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

Bpj +B

)
< εB .

This completes the proof. �

Our main result in this section is as follows.

Theorem 3.5. Suppose that (H1)–(H3) hold. Then the BVP (1.1)–(1.2) has at
least one solution in C1([a, b]).

Proof. By Lemma 3.4, it follows that I − S : X → X and it is continuous. Since
the continuous map of equi-continuous families are equi-continuous families, we
conclude that (I−S)(X) resides in a compact subset of E. Now, assume that there
is an x ∈ ∂X and λ ∈

(
0, 1

ε

)
so that

λ(I − S)x = x

or

1
λ
x = −εx− εS2x ,

or ( 1
λ

+ ε
)
x = −εS2x =

(
(1 + ε)I − S

)
x ,

whereupon

εB <
( 1
λ

+ ε
)
B =

( 1
λ

+ ε
)
‖x‖ = ε‖S2x‖

= ‖
(
(1 + ε)I − S

)
x‖ < εB .

This is a contradiction. Hence and Theorem 2.1, it follows that the operator T + S
has a fixed point and the BVP (1.1)–(1.2) has at least one solution. �

3.2. Existence of at least one nonnegative solution. Below, suppose that
ε > 0, B > 0, r̃ > 0 satisfy the following inequalities

(H4)


C
(
A
(

1 +
∣∣∣ R
M+R

∣∣∣)(b− a)
k∑
j=1

Bpj +B
)

+ max(B, r̃) ≤ min(B, r̃) ,

ε
(
B + C

(
A
(

1 +
∣∣∣ R
M+R

∣∣∣)(b− a)
k∑
j=1

Bpj +B
)

+ r̃
)
≤ B ,
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where C is the constant which appears in (3.2). In the last section, we will give an
example for constants ε, C, B, A, a, b, r̃ that satisfy (H4). Let

X1 = {x ∈ X̃ : x ≥ 0, ‖x‖ ≤ B} .

For x ∈ E, define the operator

S̃x(t) = (1 + ε)x(t) + εS2x(t)− εr̃ , t ∈ [a, b] .

Lemma 3.6. Suppose that (H1) holds. If x ∈ E is a fixed point of the operator
T + S̃, then it satisfies the BVP (1.1)–(1.2).

Proof. We have

x(t) = Tx(t) + S̃x(t)

= −εx(t) + (1 + ε)x(t) + εS2x(t)− εr̃ , t ∈ [a, b] ,

whereupon

0 = S2x(t)− r̃ , t ∈ [a, b] .

We differentiate the last equation with respect to t and we get

g(t)S1x(t) = 0 , t ∈ [a, b] ,

or

S1x(t) = 0 , t ∈ [a, b] .

This completes the proof. �

Lemma 3.7. Suppose that (H1) and (H4) hold. Then I − S̃ : X1 → X1,

‖(I − S̃)x‖ ≤ B and ‖((1 + ε)I − S̃)x‖ < 2εB , x ∈ X1 .

Proof. Take x ∈ X1 arbitrarily. Then

(I − S̃)x = −εx− εS2x+ εr̃ .

Since

‖ − εx− εS2x‖ ≤ ε‖x‖+ ε‖S2x‖

≤ ε
(
B + C

(
A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

Bpj +B
))

≤ εr̃ ,
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where we have used the first inequality of (H4), we conclude that (I − S̃)x ≥ 0.
Next, using the second inequality of (H4), we get

‖(I − S̃)x‖ = ‖ − εx− εS2x+ εr̃‖

≤ ε‖x‖+ ε‖S2x‖+ εr̃

≤ ε
(
B + C

(
A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

Bpj +B
)

+ r̃

)
≤ B .

Thus, I − S̃ : X1 → X1. Moreover,

‖((1 + ε)I − S̃)x‖ = ‖ − εS2x+ εr̃‖
≤ ε‖S2x‖+ εr̃

≤ ε
(
C
(
A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

Bpj +B
)

+ r̃

)
< 2εB ,

where we have used the second inequality of (H4). This completes the proof. �

Our main result in this section is as follows.

Theorem 3.8. Suppose that (H1) and (H4) hold. Then the BVP (1.1)–(1.2) has
at least one nonnegative solution in C1([a, b]).

Remark 3.9. Note that, when we say that u ∈ C1([a, b]) is a nonnegative solution
to the BVP (1.1)–(1.2), we have in mind that u(t) ≥ 0 for any t ∈ [a, b].

Proof. By Lemma 3.7, we have that I − S̃ : X1 → X1 and it is continuous and
(I − S̃)(X1) resides in a compact subset of E. Now, assume that there are an
x ∈ ∂X1 and λ ∈

(
0, 1

ε

)
so that

λ(I − S̃)x = x

or
1
λ
x = (I − S̃)x = −εx− εS2x+ εr̃ ,

or ( 1
λ

+ ε
)
x = −εS2x+ εr̃ =

(
(I + ε)I − S̃

)
x .

Hence, applying Lemma 3.7, we get

2εB <
( 1
λ

+ ε
)
B =

( 1
λ

+ ε
)
‖x‖

= ‖((1 + ε)I − S̃)x‖ < 2εB .
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This is a contradiction. From here, applying Lemma 3.6 and Theorem 2.1, we get
that the BVP (1.1)–(1.2) has at least one nonnegative solution. This completes the
proof. �

3.3. Existence of at least two nonnegative solutions. Let m > 0 be large
enough and A, r, L, R1 be positive constants that satisfy the following inequalities

(H5)


r < L < R1, R1 >

( 2
5m + 1

)
L ,

C
(
A
(

1 +
∣∣∣ R
M+R

∣∣∣)(b− a)
k∑
j=1

R
pj
1 +R1

)
< L

5 ,

where C is the constant which appears in (3.2). Let ε > 0, For x ∈ E, define the
operators

T1x(t) = (1 +mε)x(t)− ε L10 ,

S3x(t) = −εS2x(t)−mεx(t)− ε L10 , t ∈ [a, b] .

Note that any fixed point x ∈ E of the operator T +S3 is a solution to the problem
(1.1)–(1.2).
Our main result in this section is as follows.

Theorem 3.10. Suppose that (H1) and (H5) hold. Then the problem (1.1)–(1.2)
has at least two nontrivial nonnegative solutions in C1([a, b]).

Proof. Define

U1 = Pr = {v ∈ P : ‖v‖ < r} ,

U2 = PL = {v ∈ P : ‖v‖ < L} ,

U3 = PR1 = {v ∈ P : ‖v‖ < R1} ,

R2 = R1 + C

m

(
A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

R
pj
1 +R1

)
+ L

5m ,

Ω = PR2 = {v ∈ P : ‖v‖ ≤ R2} .

(1) For v1, v2 ∈ Ω, we have

‖T1v1 − T1v2‖ = (1 +mε)‖v1 − v2‖ ,

whereupon T1 : Ω→ E is an expansive operator with a constant 1 +mε.
(2) For v ∈ PR1 , we get

‖S3v‖ ≤ ε‖S2v‖+mε‖v‖+ ε
L

10

≤ ε
(
C
(
A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

R
pj
1 +R1

)
+mR1 + L

10

)
.
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Therefore S3(PR1 ) is uniformly bounded. Since S3 : PR1 → X is continuous,
we have that S3(PR1 ) is equi-continuous. Consequently S3 : PR1 → X is a
completely continuous mapping.

(3) Let v1 ∈ PR1 . Set

v2 = v1 + 1
m
S2v1 + L

5m .

Note that S2v1 + L
5 ≥ 0 on [a, b]. We have v2 ≥ 0 on [a, b] and

‖v2‖ ≤ ‖v1‖+ 1
m
‖S2v1‖+ L

5m

≤ R1 + C

m

(
A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

R
pj
1 +R1

)
+ L

5m

= R2 .

Therefore v2 ∈ Ω and

−εmv2 = −εmv1 − εS2v1 − ε
L

10 − ε
L

10
or

(I − T1)v2 = −εmv2 + ε
L

10
= S3v1 .

Consequently S3(PR1 ) ⊂ (I − T1)(Ω).
(4) Assume that for any u0 ∈ P∗ there exist λ > 0 and x ∈ ∂Pr ∩ (Ω + λu0)

or x ∈ ∂PR1 ∩ (Ω + λu0) such that

S3x = (I − T1)(x− λu0) .

Then

−εS2x−mεx− ε
L

10 = −mε(x− λu0) + ε
L

10
or

−S2x = λmu0 + L

5 .

Hence,

‖S2x‖ =
∥∥∥λmu0 + L

5

∥∥∥ > L

5 .

This is a contradiction.
(5) Let ε1 = 2

5m . Assume that there exist λ1 ≥ ε1+1 and x1 ∈ ∂PL, λ1x1 ∈ PR2

such that

(3.4) S3x1 = (I − T1)(λ1x1) .
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Since x1 ∈ ∂PL and λ1x1 ∈ PR2 , it follows that( 2
5m + 1

)
L < λ1L = λ1‖x1‖ ≤ R2 .

Moreover,

−εS2x1 −mεx1 − ε
L

10 = −λ1mεx1 + ε
L

10 ,

or

S2x1 + L

5 = (λ1 − 1)mx1 .

From here,

2L5 >
∥∥∥S2x1 + L

5

∥∥∥ = (λ1 − 1)m‖x1‖ = (λ1 − 1)mL

and
2

5m + 1 > λ1 ,

which is a contradiction.
Therefore all conditions of Theorem 2.8 hold. Hence, the problem (1.1)–(1.2) has
at least two solutions u1 and u2 so that

‖u1‖ = L < ‖u2‖ < R1

or

r < ‖u1‖ < L < ‖u2‖ < R1 .

This completes the proof. �

4. Concluding remarks

(1) The conditions (1.2) are general and they capture in particular the anti-periodic
conditions corresponding to the case M = N = 1.

(2) Our main results in this paper and the results in [9] are complementary.
Moreover, in [9], there is an additional restriction on the constants R and
M (

∣∣M
R

∣∣ ≤ 1 or
∣∣ R
M

∣∣ ≤ 1). Note that our main results also depend on
the hypotheses (H2)-(H5), where the conditions are controlled by the
constants C, ε and B and the source term f does not depend on these
constants.

(3) We obtained new sufficient conditions for the existence of at least one or
two solutions of the BVP (1.1)–(1.2).

(4) New existence results of multiple non trivial nonnegative solutions are
proved using recent fixed point theorems on cones in Banach spaces for the
sum of two operators.
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(5) We can clearly see that Theorem 2.8 led us to show the existence of
multiple nonnegative nontrivial solutions (see Theorem 3.10) under weaker
conditions compared with those used in Theorem 3.8, which guarantees
the existence of only one nonnegative solution of the problem (1.1)–(1.2).
Recall that Theorem 2.8 is a multiple fixed point theorem on cones and
Theorem 2.1, used in the proof of Theorem 3.8, guarantees the existence
of a fixed point in any ball of a Banach space. A reason that motivates
the use of the theory of the fixed point on the cones when it comes to the
search for nonnegative solutions.

(6) In this paper we investigated a class of boundary value problems for
first order ODEs. The nonlinear term depends on the solution and may
change sign, and it satisfies general polynomial growth conditions. We
prove existence of at least one solution, one nonnegative solution and two
nonnegative solutions in C1([a, b]) of the considered class of first order
ODEs. The proof of the main results is based upon recent theoretical
results, developed by the authors of this article and presented in Section 2.

(7) It is noted that Theorem 3.5, Theorem 3.8 and Theorem 3.10 can be
generalized to the case where f ∈ C([a, b] × Rn,Rn), n > 1. In this case,
we will consider the space E1 = (C([a, b]))n endowed with the norm

‖x‖1 = max
j∈{1,...,n}

‖xj‖, x = (x1, . . . , xn) .

The hypothesis (H1) takes the form

(H1′): f ∈ C([a, b]×R,Rn), f = (f1, . . . , fn), |fi(t, x)| ≤
k∑
j=1

aji(t)|x|pji ,

(t, x) ∈ [a, b] × Rn, aji ∈ C([a, b]), 0 ≤ aji ≤ A on [a, b], pji ≥ 0,
j ∈ {1, . . . , k}, i ∈ {1, . . . , n},

the hypotheses (H2)–(H5) will be the same.

(8) These theoretical results can be used to study other classes of BVP as well
as some IVP in ODEs. For these aims, firstly has to be find an integral
representation of the solutions of the considered IVPs/BVPs and using it
to be defined the operators S1, S2, S, S̃ and T and finally to be applied
Theorem 2.1 and Theorem 2.8.

5. Examples

Consider the boundary value problem:

(5.1)
x′(t) = (x(t))2 + 1

1 + t2
(x(t))4 + 1, t ∈ [0, 1] ,

2x(0) + x(1) = 0 .
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Here

f(t, x) = x2 + 1
1 + t2

x4 + 1, k = 3, a1(t) = 1, a2(t) = 1
1 + t2

, t ∈ [0, 1],

a = 0, b = 1, p1 = 2, p2 = 4, p3 = 0, M = 2, R = 1 .

Firstly, we will note that the scalar-valued case of the results in [9] are not applicable
for the BVP (5.1). Here R

M = 1
2 < 1. Assume that there are nonnegative constants

α and K so that
|f(t, x)| ≤ −αxf(t, x) +K , (t, x) ∈ [0, 1]× R ,

which is equivalent to

x2 + 1
1 + t2

x4 + 1 ≤ −αx
(
x2 + 1

1 + t2
x4 + 1

)
+K , (t, x) ∈ [0, 1]× R ,

or

(1 + αx)
(
x2 + 1

1 + t2
x4 + 1

)
≤ K , (t, x) ∈ [0, 1]× R .

The last inequality is impossible because

lim
x→∞

(1 + αx)
(
x2 + 1

1 + t2
x4 + 1

)
=∞ ,

i.e., (C2) does not hold. Now, we will show that our main results are applicable for
the BVP (5.1). We have A = 1. Take B = 1. We have

A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

Bpj +B =
(

1 + 1
3

)
(1 + 1 + 1) + 1 = 5 .

Let

g(t) = 2
1010 t , t ∈ [0, 1] .

Then ∫ 1

0
g(t) dt = 2

1010

∫ 1

0
t dt = 1

1010 .

Take C = ε = 1
1010 . Then

C
(
A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

Bpj +B
)

= 5
1010 < 1 = B

and

ε
(
B + C

(
A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

Bpj +B
))

= 1
1010

(
1 + 5

1010

)
< 1 = B .
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Thus, (H1)–(H3) hold. Hence and Theorem 3.5, we conclude that the considered
BVP has at least one solution.

Now, take r̃ = 3
2 . Then

C
(
A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

Bpj +B
)

+B = 5
1010 + 1 < 3

2 = r̃ ,

ε
(
B + C

(
A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

Bpj +B
)

+ r̃
)

= 1
1010

(
1 + 5

1010 + 3
2

)
≤ 1 = B ,

C
(
A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

Bpj +B
)

+ r̃

= 5
1010 + 3

2 < 2 = 2B .

So, (H4) holds. Now, applying Theorem 3.8, we conclude that the BVP (5.1) has
at least one nonnegative solution.

Let now
R1 = 10, L = 5, r = 4, m = 1050 .

Then

r < L < R1, 10 = R1 >

(
2

5 · 1050 + 1
)

5 =
(

2
5m + 1

)
L

and

C
(
A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

R
pj
1 +R1

)
= 1

1010

(4
3 ·
(
102 + 103 + 1

)
+ 10

)
<

1
105 < 1 = L

5 .

So, (H5) holds. Then, by Theorem 3.10, it follows that the BVP (5.1) has at least
two nonnegative solutions.

Let now, R = 0 and f , k, a1, a2, a, b, p1, p2, p3, M , R1, L, r, r̃, m, C, ε and g
be as above. Consider the IVP

(5.2)
x′(t) = (x(t))2 + 1

1 + t2
(x(t))4 + 1 , t ∈ [0, 1] ,

x(0) = 0 .

Then

A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

Bpj +B = 1 · (1 + 1 + 1) + 1 = 4
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and

C
(
A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

Bpj +B
)

= 4
1010 < 1 = B

and

ε
(
B + C

(
A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

Bpj +B
))

= 1
1010

(
1 + 4

1010

)
< 1 = B.

Thus, (H1)–(H3) hold. Hence, we conclude that the IVP (5.2) has at least one
solution.

Now, take r̃ = 3
2 . Then

C
(
A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

Bpj +B
)

+B = 4
1010 + 1 < 3

2 = r̃ ,

ε
(
B + C

(
A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

Bpj +B
)

+ r̃
)

= 1
1010

(
1 + 4

1010 + 3
2

)
≤ 1 = B ,

C
(
A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

Bpj +B
)

+ r̃

= 4
1010 + 3

2 < 2 = 2B .

So, (H4) holds we conclude that the IVP (5.2) has at least one nonnegative solution.
Next,

C
(
A
(

1 +
∣∣∣ R

M +R

∣∣∣)(b− a)
k∑
j=1

R
pj
1 +R1

)

= 1
1010

(
1 ·
(
102 + 103 + 1

)
+ 10

)
<

1
105 < 1 = L

5 .

So, (H5) holds. Then the IVP (5.2) has at least two nonnegative solutions.
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