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CURVATURE AND THE EQUIVALENCE PROBLEM
IN SUB-RIEMANNIAN GEOMETRY

Erlend Grong

Abstract. These notes give an introduction to the equivalence problem
of sub-Riemannian manifolds. We first introduce preliminaries in terms of
connections, frame bundles and sub-Riemannian geometry. Then we arrive to
the main aim of these notes, which is to give the description of the canonical
grading and connection existing on sub-Riemann manifolds with constant
symbol. These structures are exactly what is needed in order to determine
if two manifolds are isometric. We give three concrete examples, which are
Engel (2,3,4)-manifolds, contact manifolds and Cartan (2,3,5)-manifolds.

These notes are an edited version of a lecture series given at the 42nd
Winter school: Geometry and Physics, Srní, Czech Republic, mostly based
on [8] and other earlier work. However, the work on Engel (2,3,4)-manifolds
is original research, and illustrate the important special case were our model
has the minimal set of isometries.
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1. Introduction

When are two spaces different? Let us start with a simple object. The two-dimen-
sional vector space R2 with its usual Euclidean metric. We give it the standard
coordinates (x, y) with corresponding vector field ∂x, ∂y. The Euclidean metric
gEucl is given by

〈∂x, ∂x〉gEucl = 1 , 〈∂y, ∂y〉gEucl = 1 , 〈∂x, ∂y〉gEucl = 0 ,
which can be written as either

gEucl =
(

1 0
0 1

)
or gEucl = dx2 + dy2 .

A general Riemannian metric g = 〈·, ·〉g on R2 is an inner product of tangent
vectors that varies from point to point. It can be written as

g =
(
g11 g12
g12 g22

)
or g = g11dx

2 + 2g21dx dy + g22dy
2 ,

where gij are smooth function with g11g22 − g2
12 > 0 and g11 > 0. This inner

product can be considered as describing a shape as follows.

Example 1.1. Let us consider the following subsets of R3 with the standard
Euclidean metric.

(i) Consider the subset
M =

{
(x, y, y2) : (x, y) ∈ R2} .

We can view this space as R2

with the inner product
g = dx2 + (1 + 4y2)dy2 .
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(ii) Consider the subset
M =

{
(x, y, xy) : (x, y) ∈ R2} .

We can view this space as R2

with the inner product
g = (1+y2)dx2+(1+x2)dy2+2xy dx dy .

(iii) We finally consider a punctu-
red sphere M = S2 \ {(0, 0, 1)}.
We can see this as R2 using
stereographic projection. Let
(p0, p1, p2) be the coordinates of
R3, and define

x = p1

1− p0 , y = p2

1− p0 .

The corresponding Riemannian
metric is given by

g = 4
(1 + x2 + y2)2 (dx2 + dy2) .

The main question which this note will focus on, the equivalence problem, is the
following: How do we know if two spaces are the same? Roughly speaking, “the
same” in the setting of Riemannian manifolds means that we can preform a change
of variables such that one Riemannian metric transforms into the other, which will
mean that all of the distances are preserved.

Let us look at the Example 1.1 and ask the simple question: Are any of these
examples just a change of variables away from being R2 with the Euclidean
metric? The answer is that this happens only in (i), with coordinate change
(u, v) = (x,

∫ y
0
√

1 + t2dt). But how can we prove that it is impossible for the other
examples, given that there are infinitely many coordinate changes? Or look at the
following example:

g = (1 + x2) dx2 + 2 x+ y

1 + y2 dx dy + 1
1 + y2 dy

2 .

It is very difficult to find the change of variable to obtain the standard Euclidean
space1. Proving directly that a Riemannian metric cannot be rewritten as a flat
metric is even more difficult. The answer is found in the invariant called Gaussian
curvature and we can make a change of variable to get the Euclidean metric if and
only if this invariant vanishes. That the Gaussian curvature is an invariant inde-
pendent of choice of coordinates was observed by Carl Friedrich Gauss’ Theorema

1The change of variable is (u, v) = (x+ 1
2 log(1 + y2), tan−1 y + 1

2x
2).
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Egregium in 1827. It was further generalized by his student Bernhard Riemann to
more dimensions and shapes. The result in the end is the flatness theorem.

Theorem 1.2. A Riemannian manifold is locally isometric to the Euclidean space
Rn if and only the curvature tensor of the Levi-Civita connection vanishes.

For the definition of the Levi-Civita connection, see Section 3.3. “Locally isome-
tric” means that we can locally do a change of variable transforming the manifold
to the Euclidean space with the standard Euclidean metric. We can make similar
theorems for the sphere, hyperbolic space and so forward.

Our dealings with Riemannian manifolds will mainly serve to build intui-
tion for the main topic: the equivalence problem of sub-Riemannian manifolds.
Sub-Riemannian geometry is a much younger subject2, with a much less established
structure. For a sub-Riemannian manifold, we have an inner product, but only
in some directions, since the metric is only defined on a subbundle. Also in this
setting, we can ask: when are two sub-Riemannian manifolds the same? Consider
two sub-Riemannian structures on R3, given by the following orthonormal bases

X1 = ∂x −
1
2y∂z , X2 = ∂y + 1

2x∂z ,

for the first structure and

Y1 =
(π

2 + tan−1 z
)
∂x ,

Y2 = x

(1 + z2)(π2 + tan−1 z)
∂x +

π
2 + tan−1 z

x
∂y + 1

2
x

π
2 + tan−1 z

∂z ,

for the second structure. How would you know that these are just a change of
variable from each other3? The equivalence problem for such manifolds is much
more complicated. Through this notes, we aim to give some insight into challenges
and results in this setting.
Outline. In Section 2 we introduce the concept of affine connections and how
such connections help us give a canonical basis for the frame bundle. In Section 3,
we work with Riemannian metrics and the Levi-Civita connection. We will also
prove the flatness theorem in Riemannian geometry, using the theory of Cartan
connections. In Section 4 we define sub-Riemannian manifolds. We consider the
flat sub-Riemannian spaces called Carnot groups, and define symbols at a point,
which is a local nilpotent approximation of a sub-Riemannian manifold. Finally,
we introduce sub-Riemannian frame bundle, and we use this construction to give
a formula for a canonical choice of connection and grading for sub-Riemannian
manifolds with constant symbol. We end with the following three examples. In
Section 5, we do a complete computation of this connection and grading for the
case of sub-Riemannian manifolds of growth vector (2, 3, 4). In Sections 6 and 7 we
give examples of flatness theorems for respectively contact manifolds and manifolds
with growth vector (2,3,5), while leaving most of the details to [8].

2The term sub-Riemannian was first introduced in 1986 [16].
3The change of variable (x, y, z) 7→ (u, v, w) with z = w, x = u cos v

π
2 +tan−1 w

and u = u sin v
π
2 +tan−1 w

.
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Preliminaries, general references and further reading. These notes assume
that the reader is familiar with the basic theory of manifolds, tangent bundles
and differentials of maps between manifolds. The reader should also be familiar
with Lie theory and principal bundles. Riemannian geometry and connections are
introduced in the text, but it can be an advantage to have some pre-knowledge of
these topics. We recommend the books [10, 11, 15] for more information, which can
also be used as references for the information found in Section 2 and Section 3. For
references and further reading on sub-Riemannian manifolds, which is presented in
Section 4, we recommend books [1, 12].
Formatting choices of the text. The original manuscript of the lecture notes
contained several exercises. These have been turned into results (proposition,
lemmas, etc) inside the text, reformulating them somewhat, and including the
proofs.

2. Connections

2.1. Manifolds, acceleration and connections. On a general manifold with no
further structure, there is really no good definition of a double derivative. Consider
a smooth curve γ : [a, b] → M into a manifold M . We can define the derivative
γ̇ : [a, b]→ TM as a section of the tangent bundle over γ. We note that γ̇(t) = 0
implies that γ is constant. However, if we define d

dt (γ̇) = γ̈ : [a, b]→ T (TM), then
γ̈ = 0 also implies γ is constant. Hence, it is not really a good replacement for the
second derivative in the Euclidean space. The problem can be considered as follows:
If X : M → TM is a vector field, then X∗ : TM → T (TM) determines change
in both the ‘manifold part’ and a ‘fiber part’, but there is no canonical way of
separating these. We could pick local coordinates, but this will not be a canonical
choice, and it can sometimes be difficult to see which part of our expressions are
coordinate dependent and which ones are not.

To get a proper definition of acceleration, we need the following additional
structure. An affine connection on TM is a map

∇ : Γ(TM)× Γ(TM)→ Γ(TM) , (X,Y ) 7→ ∇XY ,

with the properties
(I) Linearly property: the map (X,Y ) 7→ ∇XY is C∞(M)-linear in X and

R-linear in Y .
(1) Leibniz property: If f is a smooth function on M , then

∇X(fY ) = (Xf)Y + f∇XY .

We observe the following important consequences from the definitions of connections.

(i) Since ∇XY is tensorial in X, the vector ∇XY |x only depends on X|x.
Hence, it makes sense to write ∇vY where v is just an element in TM .

(ii) With a little more work, we can show that ∇vY only depends on the values
of Y along a curve tangent to v. We can hence define covariant derivatives
∇γ̇Y (t) where Y (t) is a vector field defined just along the differentiable
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curve γ(t). We note that if f(t) is a function depending on t, we have the
Leibnitz property

∇γ̇f(t)Y (t) = ḟ(t)Y (t) + f(t)∇γ̇Y (t) .

(iii) A vector field Y (t) is called parallel along the curve γ(t) if

∇γ̇Y (t) = 0.

Parallel vector fields are the closest we can get to constant vector fields on
a manifold. For any v ∈ Tγ(t0)M , there exists a unique parallel vector field
Y (t) such that Y (t0) = v. This allows us to define the parallel transport
map

Pt0,t : Tγ(t0)M → Tγ(t)M , Pt0,t : v 7→ Y (t) , Y (t) parallel with Y (t0) = v ,

which is a linear isomorphism of vector spaces. In particular, parallel
transport sends bases of the tangent space to bases of the tangent space.

(iv) Finally, we can take Y (t) = γ̇(t) in (ii), to define a ’double derivative’ ∇γ̇ γ̇.
We define γ to be a geodesic if it satisfies

∇γ̇ γ̇ = 0 .

Geodesics are analogues of constant speed curves in the sense that they
are determined by an initial value and velocity.

We consider the following tensors associated to failure of commutativity of the
covariant derivatives. We first have the torsion tensor

T (X,Y ) = ∇XY −∇YX − [X,Y ] .

This can be interpreted as follows: Let f : (a1, b1)× (a2, b2)→M , (s, t) 7→ f(s, t)
be a parametrized surface in M . Then

∇∂s∂tf −∇∂t∂sf = T (∂sf, ∂tf) .

Hence, derivatives in s, t commute only if the torsion tensor vanishes. Next, we
have the curvature

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z .

It plays a similar role to torsion for vector fields, in the sense that if Z(s, t) is a
parametrized vector field for the surface f(s, t), then

∇∂sf∇∂tfZ −∇∂tf∇∂sfZ = R(∂sf, ∂tf)Z .

We finally note this important property for connections.

Theorem 2.1. Let x ∈ M be any point. Then there is a local basis X1, . . . , Xn

of vector fields around x such that for any vector field Y , we have ∇YXj |x = 0,
j = 1, . . . , n.

The main consequence of this result is that any information of the connection
that is independent on a choice of basis does not depend on covariant derivatives
of vector fields.
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Proof. Let y : U → Rn be a local chart such that the image of U is a convex open
set such that y(x) = 0. We will use this map to identify U with Ũ = y(U) and so
it is sufficient to prove the result for Ũ ⊆ Rn and x = 0. Let (y1, . . . , yn) be the
coordinates and define ∇∂yi∂yj =

∑n
k=1 Γkij∂yk . For any y ∈ Ũ , define γy(t) = ty.

We then define X1|y, . . . , Xn|y by parallel transport along γy(t). In other words, if
Y (y, t) =

∑n
k=1 Yk(y, t)∂yk is the solution of

∂

∂t
Yk +

n∑
i1,i2=1

yi1Yi2Γki1i2(ty) = 0, Y (y, 0) = Xk|0

then Xj |y = Y (y, 1) which is a smooth function in y. Finally, by definition each
Xj is parallel at any direction at 0. The result follows. �

Remark 2.2. Rather than just restricting ourselves to the tangent bundle and
vector fields, we could have defined an affine connection on a general vector bundle
E, where now in the expression ∇XY , X is a section of TM while Y is a section
of E. All of the above properties holds, except that there is no definition of the
torsion tensor or geodesics. Observe from the proof of Theorem 2.1, that it can be
modified to work on any vector bundle choosing an initial basis of the vector bundle
at the initial point. Also, if some property of a basis is preserved under parallel
transport (such as being orthonormal, symplectic, etc), then we may assume that
the local basis in Theorem 2.1 has this property.

2.2. Frame bundles. Let M be a general differential manifold of dimension n
and let Rn be the Euclidean space. Even if M happens to be diffeomorphic to Rn,
there is a structure that exists on Rn that we do not have on M . Namely, Rn has
a canonical basis of vector fields spanning the tangent space, in this case given by
the derivatives corresponding to the standard coordinates. The frame bundle is
a smart construction that steals this property from Rn to M , but at the expense
that we have to work on a fiber bundle above M instead on M directly. We also
need a connection ∇ on M to have the full canonical basis.

Let e1, . . . , en be the standard basis of Rn. A frame at x ∈ M is a choice of
basis u1, . . . , un for TxM . Equivalently, we can consider a frame as an invertible
linear mapping u : Rn → TxM . The correspondence is given by

(2.1) uj = u(ej) .

We write the set of all such frames as GLx(M).
Let GL(n) be the general linear group of real invertible n× n matrices. If we

have a frame u : Rn → TxM , then for any a ∈ GL(n), we can define a new frame
u · a by u · a = u ◦ a : Rn → TxM by precomposition. In other words, if U = u · a,
then

Uj =
n∑
i=1

aijui .

Lemma 2.3. For any pair of elements u, U ∈ GLx(M), there is a unique element
a ∈ GL(n) such that U = u · a.



302 E. GRONG

Proof. Since u1, . . . , un and U1, . . . , Un are bases, every vector should have a
unique decomposition in these bases. Hence, there must exist unique coefficients
(aij) and (Aij) such that we can write

Uj =
n∑
i=1

aijui, uj =
n∑
i=1

AijUi.

Hence

uk =
n∑

i,j=1
Aikajiuj ,

showing that (aij) is invertible with inverse (Aij). If we write a = (aij) ∈ GL(n),
it follows that U = u · a, which is unique by construction. �

We use the above action to construct a principal bundle called the frame bundle

GL(n)→ GL(M) π→M,

with the fiber over x ∈ M being GLx(M). On the frame bundle, we have the
following structures.

(i) The vertical bundle: The frame bundle GL(M) is an n+ n2-dimensional
manifold, and considering differential π∗ of π : GL(M)→M , and taking
its kernel, we obtain the vertical bundle V = kerπ∗ of rank n2. Such a
bundle exists for all fiber bundles.

(ii) Canonical vertical vector fields: If we take a frame u at GLx(M), we can
rotate it at x ∈ M without moving on the manifold. Derivatives of such
rotations will hence be in V . Let gl(n) be the the set of all real n×n-matrices,
the Lie algebra of GL(n). If A ∈ gl(n), we define

ξA|u = d

dt
u · eAt

∣∣∣∣
t=0
∈ Vu.

This formula gives us a globally defined vector field ξA on GL(M). The
map A 7→ ξA|u has a trivial kernel and since gl(n) and Vu have the same
dimension,

Vu = {ξA|u : A ∈ gl(n)} , u ∈ GL(M) .

Hence, V is a trivializable bundle. Such vector fields exists on all principal
bundles.

(iii) The tautological one-form: We define an Rn-valued one-form θ = (θ1, . . . , θn)
by

θ(w) = u−1π∗w, w ∈ Tu GL(M) .

In other words, we take w living in Tu GL(M), use π∗ to send it to Tπ(u)M ,
then θ(w) is the result of writing π∗w in the frame u. Observe that ker θ = V .
The form θ is very special for the frame bundle of the tangent bundle.
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Since we have an action of GL(n) on GL(M), we can also consider the induced
action of GL(n) on T GL(M). To define this, write ra(u) = u · a, u ∈ GL(M),
a ∈ GL(n). For any vector w ∈ T GL(M), define

w · a := (ra)∗w .

Lemma 2.4. For any A ∈ gl(n), a ∈ GL(n),

ξA · a = ξAd(a−1)A .

Proof. For any frame u ∈ GL(n), we observe

ξA|u · a = d

dt
u · exp(At) · a|t=0 = d

dt
u · a · (a−1 exp(At) · a)|t=0

= d

dt
u · a · exp(Ad(a−1)At)|t=0 = ξAd(a−1)A|u·a ,

giving us the desired result. �

2.3. Connections on frame bundles. An Ehresmann connection H on π :
GL(M)→M is a choice of complement to V. In other words,

T GL(M) = H⊕ V .

We can interpret this complement at follows. If u ∈ GLx(M), then π∗,u : Tu GL(M)
→ TxM has kernel Vu. If we choose a complement Hu, then π∗,u|Hu is invertible
and we can define an inverse hu so that huv is the unique element in Hu satisfying
π∗huv = v. An Ehresmann connection is called principal if it is invariant under the
action GL(n). That is

Hu · a = Hu·a .

Equivalently, huv · a = hu·av for any u ∈ GLx(M), v ∈ TxM , x ∈ M , a ∈ GL(n).
We can also describe principal connections in the following way.

Lemma 2.5. Given a principal connection H with corresponding horizontal lifts,
define a one-form ω : T GL(n)→ gl(n) such that

ω(huv) = 0, ω(ξA) = A .

Then ω(w · a) = Ad(a−1)ω(w), w ∈ T GL(M), a ∈ GL(n).

The form ω is called the connection form of H.
Proof. Write an arbitrary vector w ∈ Tu GL(n) as w = huv+ξA|u, where π∗w = v
and ω(v) = A. Then by the previous result,

w · a = hu·av + ξ|Ad(a−1)A|u·a ,

and so
ω(w · a) = Ad(a−1)A = Ad(a−1)ω(w) .

Since w was arbitrary, the result follows. �
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We can construct a principal connection from an affine connection. Let U(t) be
a curve in GL(M) such that π(U(t)) = γ(t). Assume that γ̇(0) = v, that U(0) = u
and that each Uj(t) is parallel along γ(t). We can then define

huv = U̇(0) ,

so the derivative of a parallel frame moving in the direction of v. We then define

Hx = {huv : u ∈ GLx(M), v ∈ TxM} .

Lemma 2.6. H is a principal Ehresmann connection.

Proof. If U(t) is a parallel frame and since linear combinations of parallel vector
fields are still parallel, it follows that U(t) · a is also a parallel frame. If U(0) = u,
then

huv · a = d

dt
(U(t) · a)|t=0 = hu·av .

It follows that H is a principal Ehresmann connection. �

Now something interesting happens: We get a canonical basis of H. For any
j = 1, 2, . . . , n, define

Hj |u = huuj .

For any element in p ∈ Rn, we can define Hp =
∑n
j=1 pjHj .

Lemma 2.7. We have bracket relations for p, q ∈ Rn, A,B ∈ gl(n),

(2.2) [Hp, Hq] = −ξR̄(p,q) −HT̄ (p,q) , [ξA, Hq] = HAq , [ξA, ξB ] = ξ[A,B] ,

where

T̄ (p, q)|u = u−1T
(
u(p), u(q)

)
, R̄(p, q)|u = u−1R(u(p), u(q))u .

Before the proof, we introduce the Hessian ∇2 of a connection ∇, from

∇2
X,Y = ∇X∇Y −∇∇XY , X, Y ∈ Γ(TM) .

Observe that ∇2
X,Y is tensorial in both X and Y . Furthermore,

∇2
X,Y −∇2

Y,X = R(X,Y )−∇T (X,Y ) .

Finally observe that if X, Y , Z are vector fields and α is a one-form, then

X(∇Y α)(Z) = (∇2
X,Y α)(Z) + (∇∇XY α)(Z) + (∇Y α)(∇XZ) .

Proof. We prove the equation (2.2) in the following steps. For any one-from α
and r ∈ Rn, introduce function Fα,r : GL(M)→ R by

Fα,r(u) = α(u(r)) .

For any u ∈ GL(M), and p ∈ Rn, let γ(t) = γu,p(t) be a curve with γ̇(0) = u(p)
and let U(t) = Uu,p(t) be the result of parallel transport of u(p) along γ(t) and we
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have

HqFα,r(u) = d

dt
α
(
Uu,q(t)(r)

)
|t=0 = (∇γ̇u,q(0)α)

(
u(r)

)
= (∇u(q)α)

(
u(r)

)
,

ξAFα,r(u) = d

dt
α
(
u(exp(At)r)

)
|t=0 = α(u(Ar)) = Fα,Ar(u) ,

HpHqFα,r(u) = d

dt
(∇Uu,p(t)(q)α)

(
Uu,p(t)(r)

)
|t=0 = (∇2

u(p),u(q)α)
(
u(r)

)
,

ξAHqFα,r(u) = d

dt
(∇u(exp(At)q)α)

(
u(exp(At)r)

)
|t=0

= (∇u(Aq)α)
(
u(r)

)
+ (∇u(q)α)

(
u(Ar)

)
,

HpξAFα,r(u) = HpFα,Ar(u) = (∇u(p)α)
(
u(Ar)

)
,

ξBξAFα,r(u) = ξBFα,Ar(u) = Fα,BAr(u) .
From the above equations, we see that if w ∈ T GL(M) and if (Fα,r)∗w = 0 for

any α ∈ Γ(T ∗M) and r ∈ Rn, then w = 0. Hence, we can use the functions Fα,r to
determine vectors. Furthermore, using the above relations,

[Hp, Hp]Fα,r(u) = (∇2
u(p),u(q)α)(u(r))− (∇2

u(q),u(p)α)
(
u(r)

)
=
(
R(u(p), u(q))−∇T (u(p),u(q))α

)(
u(r)

)
= −α

(
uR̄(p, q)|ur

)
− (∇uT̄ (p,q)|uα)

(
u(r)

)
= −ξR̄(p,q)|uFα,r(u)−HT̄ (p,q)|uFα,r(u) ,

[ξA, Hp]Fα,r(u) = (∇u(Aq)α)
(
u(r)

)
= HAqFα,r(u) ,

[ξA, ξB ]Fα,r = Fα,[A.B]r = ξ[A,B]Fα,r .

The result follows. �

3. Riemannian manifolds and curvature

3.1. Riemannian manifolds and compatible connections. A Riemannian
manifold (M, g) is a connected manifold M and a smoothly varying inner product
g = 〈·, ·〉g on the tangent space. For any smooth curve γ : [a, b] → M , define its
length by

L(γ) =
∫ b

a

〈γ̇(t), γ̇(t)〉1/2g dt .

Define the Riemannian distance dg(x, y) as the infimum of lengths of curves
connecting x and y. An isometry ϕ between two Riemannian manifolds (M, g) and
(M̃, g̃) is a diffeomorphism such that

〈ϕ∗v, ϕ∗w〉g̃ = 〈v, w〉g .
Let ∇ be an affine connection on TM . We say that ∇ is compatible with the

Riemannian metric g if
X〈Y1, Y2〉g = 〈∇XY1, Y2〉g + 〈Y1,∇XY2〉g .
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We have the following alternative description.

Lemma 3.1. The following are equivalent.
(i) The connection ∇ is compatible with the Riemannian metric g.
(ii) For any point x ∈ M , any orthonormal frame u1, . . . , un of TxM and

any smooth curve γ : [0, T ]→M with γ(0) = x, if U1(t), . . . , Un(t) is the
result of parallel transporting the frame along γ, then this frame is also
orthonormal for any t.

Proof. (i) ⇒ (ii): We see that if U1(t), . . . , Un(t) is a parallel basis along a curve,
then

d

dt
〈ui, uj〉g = 〈∇γ̇Ui(t), Uj(t)〉g + 〈Ui(t),∇γ̇Uj(t)〉g = 0 .

Hence, if the frame was orthonormal at t = 0, it will remain orthonormal.
(ii) ⇒ (i): Let X,Y1, Y2 be any vector field and x ∈M any point. Let γ : (−ε, ε)→
M be a curve such that γ(0) = x and such that γ̇(0) = X|x. Let U1(t), . . . , Un(t)
be a parallel orthonormal frame along γ(t), and write

Yj |γ̇(t) =
n∑
i=1

Y ij (t)Ui(t) .

Then

∇γ̇(t)Yj =
n∑
i=1

Ẏ ij (t)Ui(t) .

Hence, we have that

X〈Y1, Y2〉x(x) = d

dt
〈Y1|γ(t), Y2|γ(t)〉g|t=0

u orthonormal= d

dt

n∑
i=1

Y i1 (t)Y i2 (t)|t=0

=
n∑
i=1

Ẏ i1 (0)Y i2 (0) +
n∑
i=1

Y i1 (0)Ẏ i2 (0)

= 〈∇γ̇(0)Y1, Y2〉g + 〈Y1,∇γ̇(0)Y2〉g = 〈∇XY1, Y2〉g(x)
+ 〈Y1,∇XY2〉g(x) .

Since the vector fields and point were arbitrary, the result follows. �

We will use the above result in the following way. For any x ∈ M , we define
Ox(M) as the space of linear isometries from the Euclidean space Rn to TxM . It
can also be considered as the space of all orthonormal frames of TxM using the
correspondence in (2.1). We then have a transitive action of the orthogonal group
O(n) on Ox(M) by precomposition, u · a = u ◦ a, u ∈ Ox(M), a ∈ O(n). Recall
that O(n) is the group of n× n real matrices satisfying aTa = 1. It has Lie algebra
so(n) of skew-symmetric matrices satisfying AT +A = 0.

We can use this action to build a principal bundle
O(n)→ O(M) π→M ,

called the orthonormal frame bundle. We still have the tautological one-form θ on
this bundle with the same definition, and we have the vector fields ξA which are only
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defined for A ∈ so(n). Since the compatible connection ∇ preserves orthonormal
frames under parallel transport, we can create the principal connection H with
corresponding connection form ω and canonical horizontal vector fields Hp, p ∈ Rn
in the same way we did in Section 2.3.

3.2. Integrability of Lie algebra valued forms. First a definition for Lie
algebra-valued forms. Let α be a real valued k-form on M and let A be an element
in the Lie algebra. Then α⊗A is a k-form with values in g, that is

(α⊗A)(v1, . . . , vk) = (α(v1, . . . , vk))A.

Any g-valued k-form can be written as a sum η =
∑`
j=1 α

j ⊗ Aj , where ` is
the dimension of the Lie algebra. For such forms η =

∑`
j=1 α

j ⊗ Aj and ψ =∑k
j=1 β

j ⊗Bj , we can define

[η, ψ] =
∑̀
i,j=1

(αi ∧ βj)⊗ [Ai, Bj ] .

Observe the following properties.
(i) [η, ψ] = (−1)deg(ψ) deg(η)+1[ψ, η],
(ii) If η is a one-form, then [η, η](v, w) = 2[η(v), η(w)].

Example 3.2. Let G be any Lie group with Lie algebra g. The left Maurer-Cartan
form η on G, is a g-valued one-form given by

η(v) = a−1 · v , v ∈ TaG .
We can check that this one-form then satisfies,

(3.1) dη + 1
2[η, η] = 0 .

To see that this result holds, we only need to check that it holds for left invariant
vector fields. If A,B are elements of the Lie algebra and Â is the vector field defined
by left translation of A, then

dη(Â, B̂) = Âη(B̂)− B̂η(Â)− η([Â, B̂]) = −[A,B] = −[η(Â), η(B̂)] .

since η(Â) and η(B̂) are constant.
Next, let f : M → G be any smooth map and define ψ = f∗η. Then by the

properties of the pull-back, we have that ψ is a g-valued one-form also satisfies
dψ + 1

2 [ψ,ψ] = 0.
We now have the following important result. Recall that a one-form α can locally

be seen as the differential of a function if and only if dα = 0. We have a similar
result for Lie algebra-valued forms.
Theorem 3.3 ([15]). Let G be a Lie group with Lie algebra g an let η be its
Maurer-Cartan form. If ψ is a g-valued one-form on a manifold M , then there is
locally a function f from M to G such that ψ = f∗η if and only if

dψ + 1
2[ψ,ψ] = 0 .
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Let us now return to the orthonormal frame bundle O(M). Recall the brackets
in (2.2) for the vector fields Hp, ξA, p ∈ Rn, A ∈ so(n). Notice that if θ is the
tautological one-from and ω is the connection form, we observe the relations

θ(Hp) = p , θ(ξA) = 0 ,
ω(Hp) = 0 , ω(ξA) = A .

Using these relations, we have the following.

Proposition 3.4. The equations (2.2) can be rewritten as

(3.2) dθ + [ω, θ] = Θ, dω + 1
2[ω, ω] = Ω ,

where

Θ(ξA, ·) = 0 , Ω(ξA, ·) = 0 , Θ(Hp, Hq) = T̄ (p, q) , Ω(Hp, Hq) = R̄(p, q) .

Proof. We only need to show that the above formulas hold for the vector fields
Hp, p ∈ Rn and ξA, A ∈ so(n). Note that dθ(Hp, Hq) = −θ([Hp, Hq]), since θ(Hp)
is a constant. We then see that

dθ(Hp, Hq) + [ω, θ](Hp, Hq) = dθ(Hp, Hq) = −θ([Hp, Hq])
= θ(ξR̄(p,q) +HT̄ (p,q)) = T̄ (p, q) = Θ(Hq, Hq) .

The other calculations are similar. �

We can rewrite (3.2) in se(n), the Lie algebra of the group of Euclidean trans-
formations E(n). The group E(n) can be written as matrices,(

a p
0 1

)
, a ∈ O(n), p ∈ Rn ,

but we can equivalently consider this group as the space O(n) × Rn with group
operation

(a, p) · (b, q) = (ab, p+ aq) , a, b ∈ O(n), p, q ∈ Rn .

The corresponding Lie algebra can be considered as the space so(n) × Rn with
brackets,

[(A, p), (B, q)] = ([A,B], Aq −Bp) , A,B ∈ so(n), p, q ∈ Rn .

We can then write ψ = (ω, θ) and the equations (3.2) now become

dψ + 1
2[ψ,ψ] = (Ω,Θ) .

We see that the curvature and the torsion is exactly the obstruction to ψ being
able to be integrated, at least locally.
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3.3. The Levi-Civita connection and the flatness theorem revisited. For
a Riemannian manifold (M, g), the Levi-Civita connection is the unique connection
that is compatible with g and with torsion T = 0.

We mentioned in the introduction that we can determine if a manifold is flat
using the Levi-Civita connection. We will do a proof of the flatness theorem in
Riemannian geometry using frame bundles.

Theorem 3.5 (Flatness theorem). A Riemannian manifold (M, g) is locally isome-
tric to the Euclidean space if and only if the curvature of the Levi-Civita connection
vanishes.

Proof. ⇒: We can verify directly that the curvature of the Levi-Civita connection
of the Euclidean space vanishes, and the curvature is a local invariant.
⇐: Let η be the Maurer-Cartan form on se(n). Assume that the curvature of the
Levi-Civita connection vanishes. Then the corresponding form ψ : O(M)→ se(n)
satisfies ψ + 1

2 [ψ,ψ] = 0. This means that locally for some open set V ⊆ O(M), we
have a function f : V → E(n) such that ψ = f∗η. Since ψ is a linear isomorphism at
every point, f is a local diffeomorphism. Since ψ(v ·a) = Ad(a−1)ψ(v) for a ∈ O(n),
we have

f(x · a) = f(x) · a ,
meaning that f descends to a map from V/O(n) to Rn. Finally, since the map
v 7→ huv 7→ θ(huv) is a linear isometry on every point, the descended map is an
isometry on every tangent space. �

Observe that in this proof, we needed two steps:
• Normalize the connection to remove the torsion.
• Then we can set up the condition of the curvature vanishing afterwards.

3.4. Cartan connections. The form ψ is a special case of what is known as a
Cartan connection. Consider first a manifold M of dimension n. Let g be a Lie
algebra with a subalgebra h of codimension n. Let H be a Lie group with Lie
algebra h and let Ad be a representation of H on g extending the usual adjoint
action of H on h. Assume that we have a principal bundle

H → P
π→M .

A Cartan connection ψ on P modeled on (g, h) is a g-valued one form ψ : TP → g,
such that

(i) For each p ∈ P , ψ|p is a linear isomorphism from TpP to g.
(ii) For each a ∈ H, v ∈ TP ,

ψ(v · a) = Ad(a−1)ψ(v) .

(iii) For every D ∈ h, p ∈ P , we have ψ( ddtp · expH(tD)|t=0) = D.
The curvature of a Cartan connection is the obstruction to integrability in the
sense of Section 3.2. It is represented by a smooth function κ : P → ∧2(g/h)∗ ⊗ g
such that,

κ(ψ(·), ψ(·)) = dψ + 1
2[ψ,ψ] .
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It follows from the definition of Cartan connections that if ψ(w) takes values in h,
then w inserted into dψ + 1

2 [ψ,ψ] will vanish. Hence, we write ∧2(g/h)∗ ⊗ g as the
codomain of the curvature.

4. Sub-Riemannian geometry

4.1. Bracket-generating subbundle. Let M be a connected manifold. Let E
be a subbundle of the tangent bundle TM . A subbundle is called bracket-generating
if the following property holds: Let Γ(E) be sections of E, that is, all vector fields
that take values in E. We consider such vector fields and all possible brackets

span{X1, [X1, X2], [X1, [X2, X3]], . . . , } , Xj ∈ Γ(E) .
If the above vector fields span the entire tangent bundle, we say that E is
bracket-generating. Relative to E, we say that an absolutely continuous curve
γ : [a, b]→M is horizontal if γ̇(t) ∈ Eγ(t) for almost every t. The bracket-generating
then has the following consequence

Theorem 4.1 (The Chow-Rashevskiï theorem). Assume that E is bracket-genera-
ting. Then for every pair of points in x, y ∈ M , there exists a horizontal curve
connecting these points.

Example 4.2. We consider M = R3 with a subbundle E = span{X,Y }.
(a) If X = ∂x and Y = ∂y, then E is not bracket-generating.
(b) If X = ∂x − 1

2x∂z and Y = ∂y + 1
2y∂z, then E is bracket-generating since

[X,Y ] = ∂z .

(c) If X = ∂x and Y = ∂y + 1
2x

2∂z, then E is bracket-generating since
[X,Y ] = x∂z , [X, [X,Y ]] = ∂z .

We define E1 = Γ(E), Ek+1 = Ek + [E,Ek] and write Ekx = Ek|x. We call the
minimal number s(x) such that Es(x)

x = TxM the step of E at x. For each point of
x, we define

G(x) = (rankE1
x, rankE2

x, . . . , rankEs(x)
x ),

as growth vector at x ∈ M . We say that E is equiregular if G is independent of
x ∈M .

Example 4.3. We again consider M = R3 with a subbundle E = span{X,Y }.
(a) If X = ∂x − 1

2x∂z and Y = ∂y + 1
2y∂z, with [X,Y ] = ∂z then G = (2, 3) so

E is equiregular.
(b) If X = ∂x and Y = ∂y + 1

2x
2∂z, we have brackets

[X,Y ] = x∂z , [X, [X,Y ]] = ∂z ,

and growth vector

G(x, y, z) =
{

(2, 3) x 6= 0 ,
(2, 2, 3) x = 0

so E is not equiregular.
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4.2. Sub-Riemannian structures. On a connected manifold M , a sub-Riemann-
ian structure is a pair (E, g) where E is a subbundle of the tangent bundle and
g = 〈·, ·〉g is a smoothly varying inner product on E. The triple (M,E, g) is called
a sub-Riemannian manifold. For a horizontal curve γ : [a, b]→M , we define the
length

L(γ) =
∫ b

a

〈γ̇(t), γ̇(t)〉1/2g dt .

We define the Carnot-Carathéodory distance or the sub-Riemannian distance on
M by

dg(x, y) = inf{L(γ) : γ is a horizontal curve from x and y} .

Example 4.4. Let M = R3 and define

X = ∂x −
1
2y∂z , Y = ∂y + 1

2x∂z .

Write E = span{X,Y } and 〈X,X〉g = 〈Y, Y 〉g = 1, 〈X,Y 〉g = 0. The sub-Riemann-
ian manifold (M,E, g) is called the Heisenberg group and is an example of a Carnot
group, which we will return to in Section 4.3.

Unit ball in the Heisenberg groups Examples of geodesics in the Heisenberg group

Example 4.5 (The Hopf fibration). We can consider the Hopf fibration as the
surjective map from S3 ⊆ C2 to the corresponding complex projective line CP 1 ∼=
S2, given by

π : (z, w) 7→ [z, w] (equivalence class) .
Let S3 have its usual metric and define E = (kerπ∗)⊥ with g the restriction of this
metric to E. We then have a sub-Riemannian manifold (S3, E, g).

Identify S3 with the Lie group SU(2) whose Lie algebra su(2) is spanned by
three elements X,Y, Z, having cyclic bracket relations

[X,Y ] = Z , [Y,Z] = X , [Z,X] = Y .

Define K = exp(RZ). We can see π as the map SU(2) 7→ SU(2)/K, E =
span{X,Y } and 〈X,X〉g = 〈Y, Y 〉g = 1 and 〈X,Y 〉g = 0.

An isometry of sub-Riemannian manifolds Φ: (M,E, g)→ (M̃, Ẽ, g̃) is a homeo-
morphism such that dg̃(Φ(x),Φ(y)) = dg(x, y). From [4], we know that when E

and Ẽ are equiregular, then Φ is diffeomorphism Φ: M → M̃ with Φ∗E ⊆ Ẽ and
such that

〈Φ∗v,Φ∗w〉g̃ = 〈v, w〉g .
When (M,E, g) = (M̃, Ẽ, g̃), these isometries together form a Lie group.
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4.3. The flat spaces: Carnot groups. Let g be a nilpotent Lie algebra. A
stratification of a nilpotent Lie algebra is a decomposition

g = g1 ⊕ g2 ⊕ · · · ⊕ gs ,

such that
[g1, gk] = gk+1 , [g1, gs] = 0 .

A Carnot algebra is a Lie algebra g with a stratification and an inner product 〈·, ·〉
on g1.

Let G be the corresponding simply connected Lie group. We can then define a
subbundle E by left translation of g1. In other words, Ea = a · g1. We can define a
sub-Riemannian metric g on E by

〈v, w〉g = 〈a−1 · v, a−1 · w〉.

The sub-Riemannian manifold (G,E, g) is then called a Carnot group.

Example 4.6 (The n-th Heisenberg group). Consider the Lie algebra g = g1 ⊕ g2,
where

g1 = span{X1, . . . , Xn, Y1, . . . , Yn} , g2 = span{Z} .

[Xi, Xj ] = 0 , [Yi, Yj ] = 0 , [Xi, Yj ] = δijZ .

The standard metric on g1 is such that X1, . . . , Xn, Y1, . . . , Yn form an orthonormal
basis. We can realize the corresponding group G = {(x, y, z) ∈ Rn × Rn × R, with

(x, y, z) · (x̃, ỹ, z̃) =
(
x+ x̃, y + ỹ, z + z̃ + 1

2(〈x, ỹ〉 − 〈y, x̃〉)
)
.

We have that the corresponding left invariant vector fields are given by

Xj = ∂xj −
1
2y

j∂z, Yj = ∂yj + 1
2x

j∂z, Z = ∂z.

Since the Lie group is nilpotent, we have that the exponential map exp : g→ G is
a diffeomorphism. The group operation is then given by the Baker-Campbell-Haus-
dorff formula

exp(A) · exp(B) = exp
(
A+B + 1

2[A,B] + · · ·
)

= exp
(

s∑
j=1

(−1)j−1

j

∑
i+pi>0
i=1,...,j

[Xp1Y q1 · · ·XpjY qj ]∑j
i=1(pi + qi)

∏j
i=1 pi!qi!

)
.

This sum is finite and gives us a group operation. For Carnot groups, we often use
exponential coordinates and so the identity is often denoted 0 rather than 1.

Example 4.7. The Engel algebra is the algebra given by non-tivial brackets

g = g1 ⊕ g2 ⊕ g3 = span{X,Y } ⊕ span{Z} ⊕ span{W} .

[X,Y ] = Z , [X,Z] = W .
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The corresponding Engel group can be considered as R4 with the product

(x, y, z, w) · (x̃, ỹ, z̃, w̃)

=
(
x+x̃, y+ỹ, z+z̃+ 1

2(xỹ−yx̃), w+w̃+ 1
2(xz̃−zx̃)+ 1

12(x2ỹ+x̃2y−(y+ỹ)xx̃)
)
.

Example 4.8. Let V be an inner product space and consider T s(V ) be the
truncated tensor algebra of V , where we have divided out any tensor product of
length s+ 1 or longer. We can then obtain a Lie algebra f = frees(V ) by dividing
out the elements x⊗ y + y ⊗ x and x⊗ y ⊗ z + y ⊗ z ⊗ x+ z ⊗ x⊗ y. This has a
natural stratification f = f1 ⊕ · · · ⊕ fs, where fj is the image under the quotient of
V ⊗j . Since f1 = V is an inner product space, we have that f has the structure of a
Carnot algebra.

Observe that if g = g1 ⊕ · · · ⊕ gs is a general Carnot algebra, then it will be a
quotient of frees(g1) by dividing out the additional relations.

A special property for Carnot groups is that they have dilations. If g is a Carnot
algebra, for any r > 0, we define a linear map dilr : g→ g by

dilr(A) = rkA for any A ∈ gk .

Lemma 4.9.
(a) For a stratified Lie algebra,

[gi, gj ] ⊆ gi+j ,

where we interpret gi+j = 0 if i+ j > s.
(b) The map dilr is a Lie algebra isomorphism.

Proof.
(a) We will do induction in i. For i = 1, we know that [g1, gj ] ⊆ gj+1, for any

j ≥ 1. Next, assume that for some i, we have [gi, gj ] ⊆ gi+j for any j ≥ 1.
Then any element in gi+1 can be written as [A,B] with A ∈ g1, B ∈ gi,
and with C ∈ gj , we have that

[[A,B], C] = [[A,C], B] + [A, [B,C]] .

We note that [B,C] ∈ gi+j by induction hypothesis and so [A, [B,C]] ∈
gi+j+1. Similarly, [A,C] ∈ gj+1, so by the induction hypothesis [[A,C], B] ∈
gi+j+1. The result now follows.

(b) If A ∈ gi, B ∈ gj , then [A,B] ∈ gi+j and so

[dilr A,dilr B] = [riA, rjB] = ri+j [A,B] = dilr[A,B] ,

so dilr is a Lie algebra homomorphism that is also invertible with dil−1
r =

dil1/r. �

Since G is simply connected, there is a Lie group isomorphism Dilr : G → G
such that

Dilr(exp(A)) = exp(dilr A) .
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Proposition 4.10.
(a) If γ is a horizontal curve in G, then L(Dilr γ) = rL(γ).
(b) For any x, y ∈ G, dg(Dilr(x),Dilr(y)) = rdg(x, y).

Proof.
(a) Since the structure is left invariant, we have that

〈γ̇, γ̇〉g = 〈γ−1 · γ̇, γ−1 · γ̇〉 .

Furthermore,(
Dilr γ(t)

)−1 · d
dt

(Dilr γ) = d

ds

(
Dilr γ(t)

)−1 ·
(

Dilr γ(t+ s)
)
|s=0

= d

ds
Dilr

(
γ(t)−1 · γ(t+ s)

)
|s=0 = dilr

(
γ−1(t) · γ̇(t)

)
.

Finally, since γ(t)−1 · γ̇(t) is in g1 for almost ever t, we have for the same
values of t,

dilr
(
γ−1(t) · γ̇(t)

)
= rγ−1(t) · γ̇(t) .

Computing the length gives us

L(Dilr γ) =
∫ b

a

〈 d
dt

Dilr γ(t), d
dt

Dilr γ(t)
〉1/2

g
dt

=
∫ b

a

r
〈
γ(t)−1 · γ̇(t), γ(t)−1 · γ̇(t)

〉1/2
g

dt = rL(γ) .

(b) Note that Dilr has inverse Dil1/r, so γ 7→ Dilr γ is an invertible map from
all horizontal curves from x to y to all horizontal curves from Dilr(x) and
Dilr(y), and furthermore, Dilr γ has length rL(γ). It follows that

dg
(

Dilr(x),Dilr(y)
)

= inf{rL(γ) : γ is a horizontal curve from x and y}
= rdg(x, y) . �

Since dilations satisfy the property dg(Dilr(x),Dilr(y)) = rdg(x, y), they are the
analogue of scaling by a constant in the Euclidean spaces. We can interpret this fact
as saying that the Euclidean space and the Carnot group look the same when we
“zoom in”. Note that zooming in on any Riemannian manifold by replacing a distance
dg by rdg and letting r become large, it will converge towards the Euclidean space,
not only topologically, but also metrically. Sub-Riemannian manifolds (M,E, g)
with E equiregular will all look like Carnot groups when we “zoom in”, but not
necessarily the same Carnot group at every point. This zooming in can be made
formal using Gromov-Hausdorff convergence of pointed metric spaces. For more
details, we refer to [3].

Remark 4.11. In the definition of Carnot groups, some authors include the
possibility of just having a norm on the space g1, leading to sub-Finsler geometry.
This part of the theory has yet to be fully developed.
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4.4. Isometries of Carnot groups. Let la : G→ G be the left translation la(b) =
a · b, a, b ∈ G. Since the sub-Riemannian structure is left invariant, each such map
will be an isometry. Next, we consider a Lie group isomorphism Φ: G→ G. If we
consider the induced Lie algebra isomorphism ϕ = Φ∗,1 : g→ g, then for Φ to be
an isometry, we must have that ϕ maps g1 to itself isometrically. We will then call
ϕ a Carnot algebra isometry.

Theorem 4.12 ([9]). Assume that Φ: G→ G is an isometry of a Carnot group
with Φ(1) = a. Then la−1 ◦Φ is both an isometry and a Lie group isomorphism. In
other words, any isometry of a Carnot group is the composition of a left translation
and a Lie group isomorphism.

From this result, it follows that after left translation, every isometry Φ is a Lie
group isomorphism uniquely determined by the isometry ϕ = Φ∗,1 of the Carnot
algebra g which in turn is determined by the linear isometry q = ϕ|g1 . However,
if q : g1 → g1 is a linear isometry, it cannot necessarily be extended to a Carnot
algebra isometry.

Example 4.13. We consider the Carnot algebra isometries of the examples of
Section 4.3.

(a) For the free nilpotent Lie algebra frees(V ), any linear isometry of V can
be extended to an isometry of the Carnot algebra.

(b) For the Heisenberg algebra g = g1 ⊕ g2 = span{X1, . . . , Xn, Y1, . . . , Yn} ⊕
span{Z} as described in Example 4.6. Then an isometry q : g1 → g1 can
be extended to an Carnot algebra isometry if it preserves the 2-vector

n∑
i=1

Xi ∧ Yi .

Hence, it can be considered as the intersection of O(2n) and Sp(n), which
is isomorphic to U(n).

(c) The Engel algebra has an isometry group isomorphic to Z/2Z, as only
± idg1 can be extended to a Lie algebra isometry.

4.5. Symbols. Let (M,E, g) be a sub-Riemannian manifold. Assume that E is
equiregular. Then we have a growing flag

E0 = 0 ⊆ E1 = E ⊆ E2 ⊆ · · · ⊆ Es = TM ,

of subbundles. Define

symbx = Ex ⊕ E2
x/Ex ⊕ · · · ⊕ Esx/Es−1

x .

and a Lie algebra structure on symbx by

[[Xx mod Ei−1
x , Yx mod Ej−1

x ]] = [X,Y ]|x mod Ei+j−1
x , Xx ∈ Eix, Yx ∈ Ejx .

whereX and Y are any vector field extendingXx and Yx. Since [X,Y ]|x mod Ei+j−1
x

is tensorial in X and Y , this map does not depend on the extensions of Xx and
Yx. This makes (symbx, [[ ·, · ]]) into a nilpotent Lie algebra with a stratification
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symbx,j = Ejx/E
j−1
x and with an inner product on symbx,1 = Ex; in other words,

a Carnot algebra.
From the Carnot algebra symbx, we get a corresponding Carnot groups

(Symbx, Ẽ, g̃). This Carnot group is what (M,E, g) looks like when we “zoom in”
close to x. We refer to [3, 6] for details.

We say that (M,E, g) has constant symbol g if symbx is isometric to Carnot
algebra g for any x ∈M .
Example 4.14 (Hopf fibration). We consider again SU(2) with the sub-Riemannian
structure as in Example 4.5. Then for any point symbx = span{X,Y } ⊕ span{Z
mod E}, with

[[X,Y ]] = Z mod E, [[X,Z mod E ]] = [[Y,Z mod E ]] = 0.
We see that symbx is the Heisenberg algebra.
Example 4.15. Consider R5 with coordinates (x1, x2, y1, y2, z) with (E, g) given
by an orthonormal basis

A1 = ∂x1 , B1 = (1 + y2
1)(∂y1 + x1∂x1) .

A2 = ∂x2 , B2 = ∂y2 + x1∂x1 .

Then symbx1,x2,y1,y2,z is isometric to the 2nd Heisenberg algebra
[X1, Y1] = [X2, Y2] = Z ,

but with an orthonormal basis given by
√

1 + y2
1X1,

√
1 + y2

1Y2, X2, Y2, where y1
is now considered as a constant. These are not isometric for different values of y2

1 .
If there is just one Carnot algebra in the class of growth vectors, then all

sub-Riemannian manifolds with that growth vector will have constant symbol.
Example 4.16. Consider two 2-dimensional Riemannian manifolds Σ and Σ̃,
whose Gaussian curvature never coinsides. On M̂ = O(Σ) × O(Σ̃), consider the
sub-Riemannian structure (Ê, ĝ) with orthogonal vector fields He1 + H̃e1 and
He2 + H̃e2 . Here Hej and H̃ej corresponds to the canonical horizontal vector fields
of the Levi-Civita connection on the orthonormal frame bundle of respectively
Σ and Σ̃, as defined in Section 2.3. Define M = M̂/O(n) as the quotient by
the diagonal action and let (E, g) be the induced sub-Riemannian structure on
(M,E, g). Then (M,E, g) has growth vector (2, 3, 5). Since there is only one Carnot
group with this growth vector, these have all constant symbol.

This sub-Riemannian manifold correspond to the dynamical system of rolling Σ
on Σ̃ without twisting or slipping. For details, see [5, 7].
4.6. Affine connections: Why we cannot have everything we want. Let
(M,E, g) be a sub-Riemannian manifold. Let ∇ be an affine connection of TM .
If we want ∇ to preserve the sub-Riemannian structure, we should demand that
parallel transport take orthonormal frames of E to orthonormal frames of E. We
therefore introduce the following definition.
Definition 4.17. A connection∇ is said to be compatible with the sub-Riemannian
structure (E, g) if
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(i) for any Y ∈ Γ(H) and X ∈ Γ(TM), we have that ∇XY takes values in E
as well,

(ii) for any Y1, Y2 ∈ Γ(H) and X ∈ Γ(TM), we have

X〈Y1, Y2〉g = 〈∇XY1, Y2〉g + 〈Y1,∇XY2〉g .

We can also describe this property using parallel transport.

Lemma 4.18. A connection ∇ is compatible with the sub-Riemannian metric if
and only if ∇ always takes an orthonormal basis of E to another orthonormal basis
of E.

Proof. Let E have rank k. First assume that (i) and (ii) holds for ∇. Let γ(t) be a
curve in M , and let Y1(t), . . . , Yk(t) be an orthonormal frame of vector fields along
γ(t). We see that

∇γ̇
k∑
j=1

aj(t)Yj(t) =
k∑
i=1

(
ȧj(t)Yj(t) + aj(t)∇γ̇Yj(t)

)
.

By property (i), there are coefficients cji such that ∇γ̇Yi =
∑k
k=1 c

i
jYi, and we can

write

∇γ̇
n∑
j=1

aj(t)Yj(t) =
k∑
i=1

(
ȧj(t) +

k∑
i=1

ai(t)cij(t)
)
Yj(t) .

We can then solve the equation
d

dt
aj = −(cij)(ai) ,

to get a parallel vector field with an arbitrary initial value in E. It follows that any
vectors in E remains in E under parallel transport. Next, if Y1(t), . . . , Yk(t) is a
parallel basis along γ that has orthonormal initial value. then from (ii)

d

dt
〈Yi(t), Yj(t)〉g = 0 ,

so they remain orthonormal.
Conversely, we can prove (i) and (ii) from the property of parallel transporting

orthonormal bases to orthonormal basis, by using that ∇XY = ∇γ̇Z(t) for Z(t) =
Y |γ(t). �

Proposition 4.19. Assume that E is a proper subbundle4 of TM and that E is
bracket-generating. Then there are no torsion-free affine connections that are also
compatible with (E, g).

This result highlights that we cannot use the same normalization condition for
a connection of a sub-Riemannian manifold as we did for a Riemannian manifold.

4meaning that E is not the full tangent bundle
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Proof. Assume that ∇ is an affine connection that is both compatible with (E, g)
and torsion-free. Let Y1, Y2 be any pair of vector fields with values in E. Then by
(i), we have that

[Y1, Y2] = ∇Y1Y2 −∇Y2Y1 ,

takes values in E as well. This shows that any bracket of vector fields in E, also
takes values in E. Since E is bracket-generating, it follows that E = TM . But we
assumed that this is not the case, so we have a contradiction. �

4.7. Sub-Riemannian frame bundles. From now on, we will restrict ourselves
to sub-Riemannian manifolds with constant symbol g. Let G be the corresponding
Carnot group with sub-Riemannian structure (Ẽ, g̃). Define G0 = Isom(g) as the
Lie group of Cartan isometries with Lie algebra g0 = isom(g). We then see that g0
consists of derivations of g preserving the stratification and whose restriction to g1
is skew symmetric. Define a new algebra ĝ = g0 ⊕ g such that both g0 and g are
subalgebras and with

[D,A] = DA .

Proposition 4.20. ĝ is the Lie algebra of isometries of the isometry group Ĝ =
Isom(G, Ẽ, g̃).

Proof. Let ϕ : g→ g be a Carnot algebra isometry with corresponding isometry
Φϕ : G → G that is also a Lie algebra automorphism. By Theorem 4.12, we can
define an invertible map from G0×G to Ĝ by (ϕ, a) 7→ Ψϕ,a = la ◦Φϕ. We observe
that

Φϕ1 ◦ Φϕ2 = Φϕ1ϕ2 , Φϕ ◦ la = lΦϕ(a) ◦ Φϕ .
Hence

Φϕ1,a1 ◦ Φϕ2,a2 = la1Φϕ1 (a2) ◦ lΦϕ1 (a−1
2 )Φϕ1 la2Φϕ2 = la1Φϕ1 (a2) ◦ Φϕ1ϕ2 .

As such, we can consider Ĝ as G0×G with the group operation (ϕ1, a1) · (ϕ2, a2) =
(ϕ1ϕ2, a1ϕ2(a2)). Computing the Lie algebra from this multiplication rule, we get
the Lie algebra ĝ. �

Let (M,E, g) be a sub-Riemannian manifold with constant symbol g. Define a
vector bundle of symbols symb = (symbx)x∈M →M over M . We will call this the
non-holonomic tangent bundle. We now define non-holonomic frame as a Carnot
isomorphism u : g→ symbx. We will write the space of all such frames as Fx. We
again have a right action of G0 on Fx by precomposition. This gives us a principal
bundle

G0 → F →M .

Let ψ be a Cartan connection with values in ĝ. We can write it as ψ = (ω, θ) where
ω and θ have values in respectively g0 and g. Observe the following.

• The form ω : TF → g0 is a principal connection on the bundle F . It
corresponds to an affine connection ∇̃ on symb such that parallel transport
maps are Carnot algebra isometries.
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• Write H = kerω and define huv as the horizontal lift of v ∈ TxM to TuF ,
u ∈ F with respect to this connection. The form θ : TF → g corresponds
to a vector bundle isomorphism I : TM → symb in the following way. For
any v ∈ TxM , and u ∈ Fx,

(4.1) I : v 7→ huv ∈ TuF 7→ θ(huv) ∈ g 7→ u(θ(huv)) ∈ symbx .
We can see this map as a way choosing complements to

Ek+1 = V k+1 ⊕ Ek ,
by I−1(Ek+1/Ek). We will call such an I an E-grading.

• From the previous structures, we can define a connection ∇ = I−1∇̃I on
TM .

The above definition makes sense because of the following.

Lemma 4.21. The map I is well defined, that is, the mapping Ix = I|TxM in (4.1)
does not depend on the choice of element u ∈ Fx.

Proof. If u ∈ Fx, then any other element is on the form u · a = u ◦ a with a ∈ G0,
we then observe that

(u · a)
(
θ(hu·av)

)
= u

(
a(θ(huv · a))

)
= u

(
a(a−1θ(huv · a))

)
= u

(
θ(huv)

)
. �

In summary, any choice of Cartan connection on F gives us an identification
I : TM → symb and connection ∇ on TM . The connection ∇ has the following
properties.

(i) The connection ∇ is compatible with sub-Riemannian metric (E, g),
(ii) Recall that I gives a decomposition TM = V1⊕ · · · ⊕ Vs such that Ek+1 =

Ek ⊕ V k+1. Each vector bundle V k will be parallel with respect to ∇.
(iii) Define a tensor T such that

T(v, w) = −I−1 [[ Iv, Iw ]] .
Then ∇T = 0. We can consider T as the degree-zero part of the torsion T
of ∇ since

T(v, w) =
∑
i,j=1

prVi+j T (prVi v,prVj w).

We will call (E, g, I) a graded sub-Riemannian manifold and say that a connection
satisfying the above is strongly compatible with (E, g, I). We refer to [8] for details,
where also the following result is found.

Theorem 4.22 (Partial flatness theorem). If ∇ is strongly compatible with (E, g, I),
and if
(4.2) R = 0 , T = T ,
then (M,E, g) is locally isometric to a Carnot group.

To make the converse statement, we need a canonical choice for such gradings I
and connections ∇.
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4.8. Canonical grading and connection. Let (M,H, g) be a sub-Riemannian
manifold with constant symbol g, and with sub-Riemannian frame bundle G0 →
F → M . Then on F , there is a canonical condition for the curvature given by
Morimoto [13, 14]. Let us introduce some preliminary concepts below in order to
understand this theory.

• On the set of linear k-forms on g with values in ĝ = g0 ⊕ g, we define
the Spencer differential/the Lie algebra cohomology differential by ∂ :
∧kg∗ ⊗ ĝ→ ∧k+1g∗ ⊗ ĝ, k = 1, . . . , n, by

(∂α)(A0, . . . , Ak) =
n∑
i=0

(−1)i[Ai, α(A0, . . . , Âi, . . . , Ak)]

+
∑
i<j

(−1)i+jα([Ai, Aj ], A0, . . . , Âi, . . . , Âj , . . . , Ak) .

• We can introduce an inner product on ĝ from the inner product on g1 in
the following way. Let B(A,B) = [A,B] be the Lie bracket. First, give
∧2g1 an inner product such that if A1, . . . , An1 is an orthonormal basis
of g1, then Ai ∧ Aj is an orthonormal basis for 1 ≤ i ≤ j ≤ n. Then
we can then define an inner product on g2 by requiring B to map the
orthogonal complement of ker B∩∧2g1 onto g2. Next, since gk is the image
of {A ∧B : A ∈ gj ∧B ∈ gk−j , j = 1, . . . , k − 1} under B, we can proceed
iteratively in the same manner to define an inner product on gk for any
k = 3, . . . , s. In conclusion, there is a unique way to extend the inner
product to g such that the map B|(ker B)⊥ : (ker B)⊥ → g2 ⊕ · · · ⊕ gs is a
linear isometry.

We can see g1 ⊕ · · · ⊕ gs as the image of a surjection from the truncated
tensor algebra T s(g1) by dividing out the additional relations. Induce the
inner product from this surjection P : T s(g1)→ g by requiring P to map
(kerP )⊥ onto g isometrically.

Next, any element D ∈ g0 is a map from g to itself and can be considered
as an element in g∗ ⊗ g, the latter having an induced inner product from
the previous statement.

• We finally write ∂∗ for the dual of ∂ with respect to the inner product on g.
With these definitions in place, we have the following result [14].

Theorem 4.23. There is a unique (ĝ, g0)-Cartan connection ψ : TF → ĝ with
curvature κ : F → ∧2g∗ ⊗ ĝ satisfying ∂∗κ = 0.

Following [8], we can use this result to define a canonical choice of grading I
and connection ∇. Let us first introduce some definition,

• By I we can get a Carnot algebra structure on each TxM . We can extend
the sub-Riemannian metric g to a Riemannian metric gI , by using the
argument in Section 4.7 (ii).

• Define a subbundle s of EndTM consisting of isometry algebras sx =
isom(TxM) on each fiber.
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• Finally define χ : TM → ∧2TM by 〈χ(v), w1 ∧ w2〉gI = −〈v,T(w1, w2)〉gI .
In other words, sx = I−1g0I.

Theorem 4.24. There is a unique grading I and connection ∇ that is strongly
compatible with (M,E, g, I) and whose torsion T and curvature R satisfies for any
D ∈ s and any v ∈ V i, w ∈ V j with 0 ≤ j < i ≤ s,

〈R(χ(v)), D〉gI = 〈T (v, ·), D〉gI ,(4.3)
〈T (χ(v)), w〉gI = −〈T (v, ·),T(w, ·)〉gI .(4.4)

We can now state the full flatness theorem.

Theorem 4.25. Let (M,E, g) be a sub-Riemannian manifold with constant symbol
and let I and ∇ be the canonical grading and connections. Then (M,E, g) is locally
isometric to a Carnot group if and only if the curvature and torsion of ∇ satisfies
(4.2).

We will look at the canonical grading and curvature in three concrete examples.

5. Example: Engel-type sub-Riemannian manifolds

Let us consider the Engel algebra given by g = g1 ⊕ g2 ⊕ g3 = span{A1, A2} ⊕
span{B} ⊕ span{C} with identities

[A1, A2] = B , [A1, B] = C .

We can make it a Carnot algebra by making A1 and A2 into an orthonormal basis.
We remark that the isometry algebra for the Engel algebra satisfies g0 = 0.

Let (M,E, g) be a sub-Riemannian manifold with growth vector (2, 3, 4). Then
the only possible symbol is the Engel algebra. Since s = 0, we have no condition in
(4.3) and any strongly compatible connection ∇ will be flat. Consider the symbol
at every point

symb = E ⊕ E2/E ⊕ E3/E2 .

We note that the map

E ⊗ E2/E → E3/E2 , (Xx, Yx mod E) 7→ [[Xx, Yx mod E ]] = [X,Y ]x mod E2 ,

has a one-dimensional kernel E[0] ⊆ E. Let E[1] be the orthogonal complement of
E[0] in E.

Working locally, we can choose a local orthonormal vector field X1 in E[1] and
X0 in E[0]. Then there is a unique local AnnE2 section ψ, such that

dψ(X1, [X0, X1]) = −1 .

Next, define θ = −dψ(X1, ·). Then there are unique vector fields Z and Y such
that

θ(Y ) = 0 , θ(Z) = 1 , dθ(Z, ·)|E = 0 ,
ψ(Y ) = 1, ψ(Z) = 0, dθ(Y, ·)|E = 0 .

From these definitions, it follows that [X0, X1] = Z mod E and that [X1, [X0, X1]] =
Y mod E2. We now have the following result
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Theorem 5.1. Assume that
[X0, X1] = Z + c0X0 + c1X1 ,

Define X2 = Z + 2
5c0X0 + 1

2c1X1, and if
[X1, X2] = Y + C0X0 + C1X1 + C2Z ,

we define

X3 = Y − 1
5c0Z + 1

2

(
C0 −

1
5X1c0 + 3

25c
2
0

)
X0

+ 1
2

(
C1 + 1

5X0c0 + ψ([X2 − 1
5c0X0, Y ]) + 1

10c1c0
)

Then the canonical grading I is given by E = V1,
V 2 = span{X2}, V 3 = span{X3} ,

Finally, the canonical connection ∇ is the unique connection making X0, X1, X2,
X3 parallel.

Remark 5.2 (Complexity of Morimoto’s connection). One observation we can
make from Theorem 5.1 is that the connection and grading given above does not
seem like the most simple solution. In fact, it would seam like a more natural choice
to considerer V 2 and V 3 spanned by respectively Z and Y . We run into similar
problems in other examples, and for this reason, gradings and connections presented
in Section 6 and Section 7 will actually be simplified alternatives to those defined
by Morimoto’s result. The apparent complexity of Cartan connections satisfying
Morimoto’s normalization conditions has previously also been observed in [2]. These
observations could indicate that there exists an alternative normalization condition
for Cartan connections on sub-Riemannian manifolds that would be preferable for
practical computations.

Proof of Theorem 5.1. Let I be the canonical grading. Relative to I, define X2
and X3 by,

X2 = prV2 [X0, X1] , X3 = prV 3 [X1, X2] .
Then X0, X1, X2 and X3 form an orthonormal basis of gI . We see that all vector
fields Xj are parallel, so we have that

T (Xi, Xj) = −[Xi, Xj ] .
Furthermore, these are orthonormal with respect to gI . We also see that

χ(X2) = X0 ∧X1 , χ(X3) = X1 ∧X2 .

We can define
X2 = Z −W1 , and X3 = Y − ϕZ −W2 ,

for vector fields W1, W2 with values in E. Define a form αW with W ∈ Γ(E) by
αW (Y ) = 0 , αY (Z) = 0 , αW (X) = 〈W,X〉g , X ∈ Γ(E) .

We can then describe gI such that for X ∈ Γ(E),
〈X, · 〉I = αX + αW1(X)θ + αW2(X)ψ , 〈X2, · 〉I = θ + ϕψ , 〈X3, · 〉I = ψ .
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Using the above notation, we can then look (4.4) for all relevant cases: We first
consider degree 2 and 1, giving us

−〈T (χ(X2)), X0〉I = 〈[X0, X1], X0〉I = αX0([X0, X1]) + 〈X0,W1〉

= 〈T (X2, X1),T(X0, X1)〉I = 〈[X1, X2], X2〉I

= θ([X1, X2]) + ϕ = −〈W1, X0〉+ ϕ ,

and

−〈T (χ(X2)), X1〉I = 〈[X0, X1], X1〉I = αX1([X0, X1]) + 〈X1,W1〉

= 〈T (X2, X0),T(X1, X0)〉I = 〈[X0, X2], X2〉I

= θ([X0, X2]) = −〈W1, X1〉 .

Putting these results together, we have

[X0, X1] = Z − 2W1 + ϕX0

If we next consider degree 3 and 2, then

−〈T (χ(X3)), X2〉I = 〈[X1, X2], X2〉I = θ([X1, X2])+ϕψ([X1, X2]) = 〈X0,W1〉+ϕ

= 〈T (X3, X1),T(X2, X1)〉I = 〈[X1, X3], X3〉I

= ψ([X1, X3]) = −dψ(X1, X3) = θ(X3) = −ϕ

giving us that

−2ϕ = 〈W1, X0〉 .

Summarizing we have

ϕ = −1
2 〈W1, X0〉 = 1

5c0 , 〈W1, X1〉 = −1
2c1 , X2 = Z + 2

5c0X0 + 1
2c1X1 .

Finally, using degree 3 and 1, we obtain

−〈T (χ(X3)), X0〉I = 〈[X1, X2], X0〉
= αX0([X1, X2]) + 〈W1, X0〉θ([X1, X2]) + 〈W2, X0〉

= αX0([X1, X2]) + 〈W1, X0〉2 + 〈W2, X0〉

= 〈T (X3, X1),T(X0, X1)〉I = −〈[X1, X3], X2〉I

= −θ([X1, X3])− ϕψ([X1, X3])

= X1ϕ− 〈W2, X0〉+ ϕ2
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and

−〈T (χ(X3)), X1〉I = 〈[X1, X2], X1〉
= αX1([X1, X2]) + 〈W1, X1〉〈W1, X0〉+ 〈W2, X1〉

= 〈T (X3, X0),T(X1, X0)〉I + 〈T (X3, X2),T(X1, X2)〉I
= 〈[X0, X3], X2〉I − 〈[X2, X3], X3〉I

= θ([X0, X3]) + ϕψ([X0, X3])− ψ([X2, X3])

= −X0ϕ− 〈W2, X1〉+ ϕψ([X0, Y ])

− ψ([X2, Y ])− ϕ〈W1, X1〉 − 〈X1,W2〉 .

From these we summarize that

2〈W2, X0〉 = −αX0([X1, X2])− 〈W1, X0〉2 +X1ϕ+ ϕ2

= −αX0([X1, X2]) + 1
5X1c0 −

3
25c

2
0

and

2〈W2, X1〉 = −X0ϕ− ψ([X2 − ϕX0, Y ])− ϕ〈W1, X1〉
− αX1([X1, X2])− 〈W1, X1〉〈W1, X0〉

= −1
5X0c0 − ψ([X2 − ϕX0, Y ]) + 1

10c0c1

− αX1([X1, X2])− 1
5c1c0 .

Combining these equations, the result follows. �

6. Example: Contact manifolds

6.1. The Heisenberg algebra. As in Example 4.6, the n-th Heisenberg algebra
is the step 2 nilpotent algebra hn = g1 ⊕ g2 where

g2 = span{Z}, g1 = span{X1, . . . , Xn, Y1, . . . , Yn} ,

and with the only non-zero brackets being

[Xj , Yj ] = Z, j = 1, 2 . . . , n.

For any vector λ = (λ1, . . . , λn) ∈ Rn such that 1 = λ1 ≤ λ2 ≤ · · · ≤ λn , we define

〈Xj , Xj〉g1 = 〈Yj , Yj〉g1 = λ2
j .

We write this Carnot algebra as hn(λ). All Carnot algebra structures on hn are
isometric to one of these structures. The isometry algebra g0 = isom(hn(λ)) is
given by

g0 = span{Dij : i < j, λi = λj} ∪ {Qij : i ≤ j, λi = λj} .
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Dij(Xk) = δkiXj − δkjXi , Qij(Xk) = 1
2δkiTj + 1

2δkjYi ,

Dij(Yk) = δkiYj − δkjYi , Qij(Yk) = −1
2δkiXj −

1
2δkjXi ,

DijZ = 0 , QijZ = 0 .

6.2. Contact manifolds with constant symbols. Let (M,E, g) be a sub-Rie-
mannian manifold of dimension 2n + 1 assume that E has rank 2n. We assume
that E is a contact distribution, that is X ∧ Y 7→ [[X,Y ]] = [X,Y ] mod E is
non-degenerate.

Working locally, we can assume that E = ker θ for a one-form θ. We normalize
θ by requiring that the maximal imaginary part of the eigenvalues of dθ is 1. We
can then write

dθ(v, w) = 〈v,Λ−1Jw〉g, v, w ∈ E, J2 = − idE

where Λ|x is symmetric on E and has eigenvalues 1 ≤ λ1,x ≤ · · · ≤ λx,n, each
appearing twice. The symbol of (M,E, g) at each point hn(λx). Hence (M,E, g)
only has constant symbol if λx = λ is constant.

Let 1 = λ[1] < λ[2] < · · · < λ[k] be the eigenvalues without repetition, with
corresponding eigenspace decomposition E = E[1]⊕ · · · ⊕E[k]. Let pr[1], . . . ,pr[k]
be the corresponding projections. We define the Reeb vector field Z such that

θ(Z) = 1, dθ(Z, ·) = 0 .

We define I such that V 1 ⊕ V 2 = E ⊕ span{Z} with gI defined such that Z is a
unit vector field. We define a tensor τ and connections ∇,∇′ such that for any
Y, Y1, Y2 ∈ Γ(E), X ∈ Γ(TM),

〈τXY1, Y2〉 = 1
2

k∑
j=1

(LX−pr[j]XgI)(pr[j]Y1,pr[j]Y2) ,

∇Z = ∇′Z = 0 ,

∇XY =
k∑
j=1

pr[j]∇gIpr[j]X pr[j]Y +
k∑
j=1

pr[j][X − pr[j]X,pr[j]Y ] + τXY ,

∇′XY = ∇XY + 1
2(∇XJ)JY .

We then have the following result.

Theorem 6.1. For I and ∇′ as above, ∇′ is strongly compatible with (M,E, g, I)
for any contact manifold with constant symbol. It is locally isometric to a Carnot
group if and only if ∇′ has curvature R′ = 0 and torsion T ′ = dθ ⊗ Z.

We remark that ∇′ is not the connection of Theorem 4.24, but can still be used
for flatness theorems of contact manifolds. See [8] for details.
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7. Example: (2,3,5)-manifolds

We consider finally a sub-Riemannian manifold (M,E, g) with growth vector
G = (2, 3, 5). Then there is only one Carnot algebra with this growth vector, namely
the free nilpotent Lie algebra g = free3(R2) on a two-dimensional vector space and
of step 3 as introduced in Example 4.8. This can be considered as a Lie algebra

g = g1 ⊕ g2 ⊕ g3 = span{A1, A2} ⊕ span{B} ⊕ {C1, C2} ,

with brackets
[A1, A2] = B , [Aj , B] = Cj ,

and with A1, A2 being an orthonormal basis. Computing the canonical grading
and connection in this case becomes very complicated and we refer to [8]. We
can however give the following explicit result for when such a manifold is locally
isometric to a Carnot group.

Theorem 7.1 (Flatness theorem for (2, 3, 5)-manifolds). Let (M,E, g) be a sub-Rie-
mannian manifold where E has growth vector (2, 3, 5). Let X1, X2 be any local
orthonormal basis of E. Introduce a basis X3 = [X1, X2], X4 = [X1, X3] and
X5 = [X2, X3] with [Xi, Xj ] =

∑5
k=1 c

k
ijXk. Define vector fields Z, Y1 and Y2 by

Z = X3 + (c323 + c424 + c525)X1 − (c313 + c414 + c515)X2 ,

Y1 = X4 − (c414 + c515)X3 + (c324−X2(c414+ c515)+ c424(c414+ c515)+ c524(c424 + c525))X1

− (c314 −X1(c414 + c515) + c414(c414 + c515) + c514(c424 + c525))X2 ,

Y2 = X5 − (c424 + c525)X3 + (c325 −X2(c425+ c525)+ c425(c414+ c515)+ c525(c424+ c525))X1

− (c315 −X1(c425 + c525) + c415(c414 + c515) + c515(c424 + c525))X2 ,

and let ḡ be the Riemannnian metric making X1, X2, Z, Y1, Y2 into an orthonormal
basis. Write ∇ḡ for the corresponding Levi-Civita connection.

Then ḡ, V2 = span{Z} and V3 = span{Y1, Y2} are independent of choice of
basis X1, X2. Furthermore, if we define a connection ∇ making the decomposition
V = E ⊕ V2 ⊕ V3 parallel and further determined by the rules ∇Z = 0 and

〈∇XiXj , Xk〉ḡ = 〈∇XiYj , Yk〉ḡ = 〈∇ḡXiXj , Xk〉ḡ ,

〈∇ZXj , Xk〉ḡ = 〈∇ZYj , Yk〉ḡ = 〈[Z,Xj ], Xk〉ḡ + 1
2(LZ ḡ)(Xj , Xk) ,

〈∇YiXj , Xk〉ḡ = 〈∇YiYj , Yk〉ḡ = 〈[Yi, Xj ], Xk〉ḡ + 1
2(LYi ḡ)(Xj , Xk)

then (M,E, g) is locally isometric to the Carnot group with growth vector (2, 3, 5)
if and only if the curvature vanishes and the only non-zero parts of the torsion T
are given by

T (X2, X1) = Z , T (Z,X1) = Y1 , T (Z,X2) = Y2 .
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