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ELEMENTARY RELATIVE TRACTOR CALCULUS
FOR LEGENDREAN CONTACT STRUCTURES

Michał Andrzej Wasilewicz

Abstract. For a manifold M endowed with a Legendrean (or Lagrangean)
contact structure E ⊕ F ⊂ TM , we give an elementary construction of an
invariant partial connection on the quotient bundle TM/F . This permits us to
develop a naïve version of relative tractor calculus and to construct a second
order invariant differential operator, which turns out to be the first relative
BGG operator induced by the partial connection.

1. Introduction

In his pioneering paper [4], Masaru Takeuchi introduced a notion of Lagrangean
contact structures modelled on projectivised cotangent bundles. He showed that a
choice of a projective class on a manifold gives rise to a refinement of the canonical
contact structure. More precisely, he observed that given an m-dimensional manifold
M , m ≥ 2, the canonical contact structure H on the projectivised cotangent
bundle π : P(T ∗M)→M admits a decomposition into two Lagrangian subbundles
ker(Tπ) ⊕ E, where the subbundle E is determined uniquely by a choice of a
projective class. This follows from the fact that certain horizontal lifts agree for
projectively equivalent connections. Hence, the bundle E spanned on those lifts
does not depend on a choice of a representative from the class (see [4, Lemma 4.2]).

In the final part of his paper, M. Takeuchi carried out a rather arduous investiga-
tion into Cartan connections associated to Lagrangean contact structures. However,
dealing with objects like second jet prolongations is highly non-trivial, and the
modern approach of encoding the structure into parabolic geometries is preferred.
The advantage is that the language of parabolic geometries provides a unified set
of tools on the interface of differential geometry and representation theory.

We approach the study of Lagrangean contact structures in a more general
setting than that of [4]. We consider an abstract contact structure admitting a
splitting into two Legendrian subbundles E ⊕ F of equal rank. In particular, we
do not impose any involutivity condition on either of the Legendrian subbundles.

2020 Mathematics Subject Classification: primary 53D12.
Key words and phrases: parabolic geometries, relative BGG conctruction, relative tractor

calculus, Legendrean contact structures, Lagrangean contact structures, invariant differential
operators, partial connections.

Received April 20, 2022. Editor M. Čadek.
DOI: 10.5817/AM2022-5-339

http://www.emis.de/journals/AM/
http://dx.doi.org/10.5817/AM2022-5-339


340 M.A. WASILEWICZ

Of our main interest is a quotient of the tangent bundle by one of its Legendrian
subbundles, say F . The crucial observation is that the resulting bundle TM/F
works well with the relative BGG machinery, which was developed in a sequence of
papers [2], [3] by Andreas Čap and Vladimír Souček. In the language of [3], the
bundle TM/F is an example of a relative tractor bundle. This is a completely
novel approach and such a treatment has not appeared in the literature so far.

This work consists of two main parts. The first part focuses on the study of
distinguished partial connections on TM/F . This is mostly done by understanding
the effect of a change of a contact form on the various data associated to it. Rather
than referring to the results of the general theory, throughout the text we will
gradually develop a simplified yet standalone version of so-called relative tractor
calculus. The main result of this section is Theorem 2.1, in which we derive a
well-defined partial connection on TM/F . In the second part, we use the results
of the previous section to construct first- and second-order invariant differential
operators on completely reducible bundles. In particular, we give an elementary
construction of the first relative BGG operator associated to the relative tractor
bundle TM/F .

Finally, it should be mentioned there is something of a problem of a nomen-
clature in this area. In the beginning, authors referred to a decomposition of a
contact structure into two maximally L-isotropic subbundles as Lagrangean contact
structure. On the other hand, in symplectic geometry a Lagrangian submanifold
is the deep-rooted name for a maximal isotropic submanifold. Nowadays, we can
observe an increasing tendency to use the term Legendrean contact structure
instead of Lagrangean contact structure.
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2. Elementary relative tractor calculus

Let M be a (2n+1)-dimensional C∞-manifold endowed with a contact structure
(M,H). We write TM = H ⨮Q for the quotient bundle Q := TM/H, so that the
Levi bracket induces a map L : Λ2H → Q with L(η, ξ) = πQ([η, ξ]) for η, ξ ∈ Γ(H).

Definition 2.1. A splitting of the contact subbundle into a direct sum of two
rank-n subbundles H = E ⊕ F such that L|E×E = 0 and L|F×F = 0, is called a
Legendrean contact structure.

Notice that having chosen any of the two rank-n subbundles of H, we can use
it to form a quotient of the tangent bundle. More precisely, taking the bundle F
(resp. E) we obtain TM/F → M (resp. TM/E → M). Definition 2.1 does not
impose any additional conditions on either Legendrean subbundle; however, in case
both E and F are involutive, we arrive at a double fibration picture and picking
one of the two subbundles is equivalent to choosing one side of the fibration. This
arbitrariness should not be surprising in light of the relation to the general theory
of relative BGG sequences, where the choice is an inherent part of the construction.

Instrumental for the construction of relative tractor calculus is the observation
that a choice of a contact form θ ∈ Ω1(M) splits 0 → H → TM → Q → 0, so
the bundle TM/F then decomposes into a direct sum Q ⊕ E. Moreover, since
ker(θ) = H, the contact form descends to the quotient bundle Q. In practice, it is
also convenient to introduce a vector field r, called the Reeb vector field, which is
the unique vector field satisfying ιr θ = 1 and ιr dθ = 0. Using this, we are able
to explicitly express the bundle maps reversing the arrows as Γ(Q) ∋ ρ 7→ θ(ρ)r ∈
Γ(TM) and Γ(TM) ∋ t 7→ (t− θ(t)r) ∈ Γ(H). It is clear that being a section of
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the contact form descends to the quotient bundle Q. In practice, it is also convenient
to introduce a vector field r, called the Reeb vector field, which is the unique
vector field satisfying ιr θ = 1 and ιr dθ = 0. Using this, we are able to explicitly
express the bundle maps reversing the arrows as Γ(Q) 3 ρ 7→ θ(ρ)r ∈ Γ(TM)
and Γ(TM) 3 t 7→ (t − θ(t)r) ∈ Γ(H). It is clear that being a section of the
contact subbundle, t− θ(t)r can be decomposed corresponding to H = E ⊕ F as
(t− θ(t)r)E + (t− θ(t)r)F . Throughout the text, we will follow this convention and
denote the projections from H onto E and F by a lower index.

Definition 2.2. Given a contact form θ on M and a section t of TM , we define
an isomorphism Γ(TM/F ) 3 (t+ F ) 7→ (t)θ ∈ Γ(Q⊕ E) by the formula

(t)θ :=
(

πQ(t)
(t− θ(t)r)E

)
,

where r denotes the Reeb vector field corresponding to the contact form θ.

Lemma 2.1. Let θ and θ̂ be two contact forms on M related by θ̂ = euθ, where
u ∈ C∞(M). Then, the 2-form dθ and the Reeb vector field r corresponding to θ
transform in the following way:

dθ̂ = eu(du ∧ θ + dθ) and r̂ = e−u(r + Υ),

where the section Υ ∈ Γ(H) is characterised by the identity dθ(Υ, ξ) = du(ξ), for
all ξ ∈ Γ(H).

Proof. An explicit computation immediately leads to dθ̂ = eu(du ∧ θ + dθ) and
shows that eur̂ − r = Υ ∈ Γ(H).

Therefore, it only remains to find the expression for Υ in terms of du. For that
purpose, let us take ζ ∈ Γ(TM) and consider dθ̂(r̂, ζ) which, by the definition of
Reeb vector field, vanishes identically

0 = dθ̂(r̂, ζ)
= (du ∧ θ + dθ) (r + Υ, ζ)
= dθ(Υ, ζ) + du(r + Υ)θ(ζ)− du(ζ) .

Substituting r in place of ζ, we readily see that du(Υ) = 0; hence, the last equation
simplifies to −dθ(Υ, ζ) = du(r)θ(ζ)− du(ζ). Now, taking ζ to be a section of the
bundle H we get that dθ(Υ, ζ) = du(ζ). �

Lemma 2.2. Let θ and θ̂ be two contact forms on M related by θ̂ = euθ, where
u ∈ C∞(M), and let Υ ∈ Γ(H) be the section from Lemma 2.1. Then, the images
of t ∈ Γ(TM/F ) under the isomorphisms ( · )θ and ( · )θ̂ are related by’(ρ, µ)ᵀ = (ρ, µ− θ(ρ)ΥE)ᵀ .

Proof. Let t be a section of the bundle TM/F and set (t)θ̂ = (ρ̂, µ̂)ᵀ, for ρ ∈ Γ(Q)
and µ ∈ Γ(E) as in Definition 2.2. We need to check how this expression changes
when passing to the related contact form θ = e−uθ̂.
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Since the projection πQ : TM → Q is a natural operation, we immediately see
that ρ remains unchanged. As for µ̂, we compute

µ̂ = (t− θ̂(t)r̂)E
= (t− θ(t)(r + Υ))E
= (t− θ(t)r)E − θ(t)ΥE

= µ− θ(ρ)ΥE . �

Lemma 2.3. Let θ and θ̂ be two contact forms on M related by θ̂ = euθ, where
u ∈ C∞(M), with r and r̂ denoting the corresponding Reeb vector fields. Then, for
any section ξ of F we get

[ξ, r̂] = e−u ([ξ, r + Υ]− du(ξ)(r + Υ)) .

In particular,

[ξ, r̂]E = e−u[ξ, r]E + e−udθ(ξ,Υ)ΥE + e−u
(
[ξ,Υ]− θ([ξ,Υ])r

)
E
.

Proof. A quick computation shows that

[ξ, r̂] = [ξ, e−u(r + Υ)]
= e−u[ξ, r + Υ]− e−udu(ξ)(r + Υ)
= e−u ([ξ, r + Υ] + dθ(ξ,Υ)(r + Υ)) ,

which proves the first part of the statement. To see that the E-component of
the Lie bracket has the desired form, recall that [ζ, r] is a section of H for any
ζ ∈ Γ(H). This, together with the fact that θ([ξ,Υ])r = −dθ(ξ,Υ)r is precisely the
Q-component of [ξ,Υ], proves the remaining part of the statement. �

The last crucial ingredient needed to complete the construction of relative tractor
calculus are distinguished connections for Legendrean contact structures associated
to a choice of a contact form. For our purposes, it is sufficient that we characterise
the connections on the bundles E and Q in F -directions only. Of course, we require
that those connections respect the Legendrean contact structure on the manifold.

Let θ be a contact form on M . Since the Reeb vector field r associated to θ
trivialises the bundle Q, we can define a partial connection on the line bundle Q in
the standard way. Explicitly, the connection ∇Q : Γ(F )⊗ Γ(Q)→ Γ(Q) is given by
the formula

∇Qξ ρ =
(
ξ · θ(ρ)

)
πQ(r) .

As for the subbundle E, the general formulae for the distinguished connections
can be found in literature (see [1, Proposition 5.2.14]). However, in the sequel we
will give an ad-hoc description of the partial connection ∇E : Γ(F )⊗ Γ(E)→ Γ(E)
without referring to the general theory.

Lemma 2.4. Let θ be a contact form on M and r the corresponding Reeb vector
field. Moreover, let ξ1, ξ2 be two sections of the bundle F , η a section of E, and ρ
any section of the bundle Q.
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(1) The following formula defines a partial connection ∇E : Γ(F )⊗ Γ(E) →
Γ(E)

dθ(∇Eξ1
η, ξ2) = dθ([ξ1, η], ξ2) .

(2) Upon a change of a contact form θ̂ = euθ, where u ∈ C∞(M), the partial
connections on bundles E and Q transform in the following manner

∇̂Eξ1
η = ∇Eξ1

η + dθ(ξ1, η)ΥE

∇̂Qξ1
ρ = ∇Qξ1

ρ+ du(ξ1)ρ .

Proof.

(1) First of all, let us notice that nondegeneracy of dθ guarantees that the
equation always completely determines the values of ∇E in F -directions.

Next, let us check that the right-hand side of the equation defines a par-
tial connection. For f ∈ C∞(M,R) we get dθ([ξ1, fη], ξ2) = fdθ([ξ1, η], ξ2)+
(ξ1 ·f)dθ(η, ξ2); hence, ∇Eξ1

fη = f∇Eξ1
η+(ξ1 ·f)η. Furthermore, we see that

vanishing of dθ on Λ2F implies that the expression is linear over C∞(M,R)
in ξ1, so the linearity conditions are indeed satisfied.

(2) We start with the connection ∇E on E.

L(∇̂Eξ1
η, ξ2) = −dθ̂([ξ1, η], ξ2)πQ(r̂)

= −eu (du ∧ θ + dθ)([ξ1, η], ξ2)πQ(e−u(r + Υ))
= −dθ([ξ1, η], ξ2)πQ(r) + du(ξ2)θ([ξ1, η])πQ(r)
= L([ξ1, η], ξ2) + dθ(Υ, ξ2)dθ(ξ1, η)πQ(r)
= L(∇Eξ1

η, ξ2) + L(dθ(ξ1, η)Υ, ξ2) ,

As for the connection ∇Q on Q, a straightforward computation gives the
desired result

∇̂Qξ1
ρ =

(
ξ1 · θ̂(ρ)

)
πQ(r̂)

= eu
(
du(ξ1)θ(ρ) + ξ1 · θ(ρ)

)
πQ(e−u(r + Υ))

= ∇Qξ1
ρ+ dθ(Υ, ξ1)ρ . �

Remark. Notice that the formula for ∇E from Lemma 2.4 can be rewritten
explicitly as ∇Eξ η = ([ξ, η]− θ([ξ, η])r)E . Indeed, since a choice of a contact form θ

trivialises the quotient bundle Q, we can subtract from [ξ, η] its projection onto
Q, πQ([ξ, η]) = θ([ξ, η])r. The resulting section of the contact subbundle can be
decomposed, and by leaving out the F -component we arrive at the required formula.

Theorem 2.1. Let θ ∈ Ω1(M) be a contact form on M and r the corresponding
Reeb vector field. Moreover, let t ∈ Γ(TM/F ), so that (t)θ = (ρ, µ)ᵀ for a certain
ρ ∈ Γ(Q) and a certain µ ∈ Γ(E). Then, for any ξ ∈ Γ(F ) the formula

(2.1)
(
∇TM/F
ξ t

)
θ

:=
(
∇Qξ ρ+ L(ξ, µ)
∇Eξ µ+ θ(ρ)[ξ, r]E

)
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gives rise to a well-defined partial connection ∇TM/F on TM/F in F -directions.

Proof. Let t be as in the statement and fix θ̂ a contact form related to θ by
θ̂ = euθ, where u ∈ C∞(M). To prove the theorem we only need to show that the
slot-wise expression for ∇TM/F transforms well upon a change of a contact form.

We start by computing the left-hand side of eq. (2.1) in the splitting determined
by θ̂; for that purpose, we use the result of Lemma 2.2¤�(

∇Qξ ρ+ L(ξ, µ)
∇Eξ µ+ θ(ρ)[ξ, r]E

)
=
(

∇Qξ ρ+ L(ξ, µ)
∇Eξ µ+ θ(ρ)[ξ, r]E − θ

(
∇Qξ ρ+ L(ξ, µ)

)
ΥE

)

=
(

∇Qξ ρ+ L(ξ, µ)
∇Eξ µ+ θ(ρ)[ξ, r]E − (ξ · θ(ρ) + θ([ξ, µ])) ΥE

)
.

As for the right-hand side of eq. (2.1), we take (t)θ̂ = (ρ, µ− θ(ρ)ΥE)ᵀ and use
the results of Lemma 2.4 to express (∇TM/F

ξ t)
θ̂

in terms of un-hatted operators. In
order to make the computations easier, we start by writing out the general formula(

∇TM/F
ξ t

)
θ̂

=
(
∇̂Qξ ρ+ L(ξ, µ− θ(ρ)ΥE)

∇̂Eξ (µ− θ(ρ)ΥE) + θ̂(ρ)[ξ, r̂]E

)
and compute each slot separately. The upper slot reads

∇̂Qξ ρ+ L(ξ, µ− θ(ρ)ΥE) = ∇Qξ ρ+ L(ξ, µ) + du(ξ)ρ− L(ξ, θ(ρ)ΥE)

= ∇Qξ ρ+ L(ξ, µ),

while the bottom slot reads
∇̂Eξ (µ− θ(ρ)ΥE) + θ̂(ρ)[ξ, r̂]E =∇̂Eξ µ− ξ · θ(ρ)ΥE − θ(ρ)∇̂Eξ ΥE + θ(ρ)[ξ, r]E

− θ(ρ)θ([ξ,Υ])ΥE + θ(ρ) ([ξ,Υ]− θ([ξ,Υ])r)E
=∇Eξ µ+ θ(ρ)[ξ, r]E − (ξ · θ(ρ) + θ([ξ, µ])) ΥE

+ θ(ρ)([ξ,Υ]− θ([ξ,Υ])r)E − θ(ρ)∇Eξ ΥE ,

where the last line vanishes as ∇Eξ ΥE = ([ξ,Υ]− θ([ξ,Υ])r)E . �

Remark. In case the bundle F is involutive, we know that TM/F is endowed
with a so-called Bott connection ∇B. This connection is given by a Lie bracket of a
section of F with a lift of a section of TM/F . It can be shown that the connections
∇B and ∇TM/F coincide.

3. The first relative BGG operator

The fact that the bundle TM/F has a nontrivial composition series is the main
motivation for the sequel. The aim of this section is to construct a second-order
invariant differential operator with values in simpler bundles. In the general theory,
simple bundles are usually understood to be bundles induced by completely reducible
representations. In our setting, these are exactly bundles which arise from E, F
and Q by tensorial operations.
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Recall that non-degeneracy of the Levi bracket L : Λ2H → Q entails the existence
of a bundle isomorphism E → F ∗ ⊗Q, given by η 7→ L(η, · ). What is more, since
the natural projection idF∗ ⊗πQ maps F ∗ ⊗ TM/F to F ∗ ⊗Q, we can compose it
with the inverse of the isomorphism induced by L to obtain a natural bundle map
from F ∗ ⊗ TM/F to E. Finally, applying the natural inclusion E → TM/F gives
rise to a map from F ∗ ⊗ TM/F to TM/F , which we will henceforth denote by ∂∗.
This notation is very natural as ∂∗ turns out to be a scalar multiple of the relative
Kostant codifferential customarily denoted by the same symbol (see [2, Section
2.2]).

In the following, it is important to notice that the isomorphism F ∗ ⊗Q→ E
induced by the Levi bracket L gives us yet another useful identification. Namely,
for any section ρ of Q we can view ∇Qρ as a section of E.

Lemma 3.1. For every section ρ of Q there exists a unique section t of TM/F
such that πQ(t) = ρ and ∂∗∇TM/F t = 0. This gives rise to a first-order differential
operator Γ(Q) 3 ρ 7→ S(ρ) ∈ Γ(TM/F ); in a splitting corresponding to θ ∈ Ω1(M)
it can be expressed as S(ρ) = (ρ, ∇Qρ)ᵀ.

Proof. First of all, notice that since ∂∗ is an isomorphism, the condition that
∂∗∇TM/F t vanishes for a certain section t ∈ Γ(TM/F ) reduces to vanishing of the
upper slot of (∇TM/F t)θ with respect to all contact forms θ. On the other hand,
Theorem 2.1 guarantees that if the upper slot of (∇TM/F t)θ vanishes identically
for one contact form θ, then it must vanish for all.

Now, let ρ be as in the statement and let t be any section of TM/F such
that (t)θ = (ρ, µ)ᵀ, where µ ∈ Γ(E). The upper slot of (∇TM/F t)θ equals to
∇Qρ+ L( · , µ). Using the fact that µ can be seen both as a section of the bundle
E and a section of the bundle F ∗ ⊗Q, we conclude that ∇Qρ+ L( · , µ) vanishes
if and only if µ = ∇Qρ. Thus, the operator S is well-defined and it is of the form
S(ρ) = (ρ, ∇Qρ)ᵀ. �

Notice that the defining condition of S implies that the composition ∇TM/F ◦S,
seen as a map on Q⊗F , has its values in the subbundle E of TM/F . On the other
hand, via the canonical isomorphism we can identify the bundle E with F ∗ ⊗Q.

Definition 3.1. The second-order invariant differential operator D := ∇TM/F ◦ S
mapping sections of Q to sections of F ∗ ⊗ F ∗ ⊗ Q is known as the first relative
BGG operator (see [3, Definition 3.5]).

In order to further investigate the properties of D, it is convenient to introduce a
so-called Rho-tensor P. The name emphasises the relation with the usual P-tensor
present in the general theory (see [1, Section 5.1.2]).

Lemma 3.2. Let θ be a contact form on M and r the corresponding Reeb vector
field. Then, for ξ a section of F , the map

ξ 7→ P(ξ) := [ξ, r]E ∈ Γ(E)

is bilinear over C∞(M). Thus, for fixed θ, we obtain a section P ∈ Γ(F ∗ ⊗ E).
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Proof. Let ξ be as in the statement and take any f ∈ C∞(M). A direct computa-
tion shows that

P(fξ) = [fξ, r]E
= (f [ξ, r]− df(r)ξ)E
= f P(ξ) ,

where the last equation follows from the fact that df(r)ξ is a section of F and,
therefore, vanishes when projected to E. �

Having all necessary ingredients at hand, we can proceed with a computation of
the explicit expression for D. Recall that ∇Qρ can be seen both as a section of the
bundle E and a section of the bundle F ∗⊗Q. In particular, an expression of the form
∇E∇Qρ makes sense. Moreover, we can view P as a section of F ∗⊗E ∼= F ∗⊗F ∗⊗Q.

Theorem 3.1. The first relative BGG-operator D has values in the subbundle
Sym2(F ∗)⊗Q of F ∗ ⊗ F ∗ ⊗Q. Moreover, for any contact form θ ∈ Ω1(M) and
any ρ ∈ Γ(Q), the operator takes the following form

D(ρ) = ∇E∇Qρ+ θ(ρ)P ,

where P is as in Lemma 3.2.

Proof. First, we want to find the image of ∇TM/FS(ρ) for any ρ ∈ Γ(Q). By
the defining property of S, we know that the upper slot of must vanish. As for
the bottom slot, we only need to apply Theorem 2.1 to S(ρ) = (ρ, µ)ᵀ. Simple
calculations show that

bottom slot of ∇TM/F
ξ1

S(ρ) = ∇Eξ1
µ+ θ(ρ)[ξ1, r]E ,

where ξ1 is any section of the bundle F and the last summand is θ(ρ)P(ξ1). However,
it is not immediately clear that this is indeed a section of F ∗⊗F ∗⊗Q. To see that,
we need to rewrite the equation using the canonical isomorphism induced by L as

D(ρ)(ξ1, ξ2) = L(∇Eξ1
µ+ θ(ρ)[ξ1, r], ξ2)

= −dθ([ξ1, µ] + θ(ρ)[ξ1, r], ξ2)πQ(r) .

Thus, it only remains to show that the tensor D(ρ) is symmetric with respect
to its F -entries. For the sake of clarity, we will consider the two components
dθ([ξ1, η], ξ2) and θ(ρ)dθ([ξ1, r], ξ2) separately. In either case, however, the argument
follows from the identity d2θ = 0. Let ζ be any section of TM and ξ1, ξ2 be two
sections of F . The usual invariant formula for exterior derivative gives

0 = d2θ(ξ1, ζ, ξ2) = dθ([ξ1, ζ], ξ2)− dθ([ξ2, ζ], ξ1)
+ ξ2 · dθ(ζ, ξ1)− ξ1 · dθ(ζ, ξ2)− dθ([ξ1, ξ2], ζ) .(3.1)

To deal with the component dθ([ξ1, r], ξ2) it is enough that we substitute r for
ζ in eq. (3.1). We can immediately see that vanishing of the bottom line follows
as a consequence of ιrdθ = 0. This leads to 0 = dθ([ξ1, r], ξ2)− dθ([ξ2, r], ξ1) and
shows that the component is symmetric.



ELEMENTARY RELATIVE TRACTOR CALCULUS. . . 347

Analogously, we show that the component dθ([ξ1, µ], ξ2) is symmetric by sub-
stituting µ for ζ in eq. (3.1). The definition of µ implies that dθ(µ, ξ) = −ξ · θ(ρ),
and the equation simplifies to

0 = dθ([ξ1, µ], ξ2)− dθ([ξ2, µ], ξ1)
− ξ2 · ξ1 · θ(ρ) + ξ1 · ξ2 · θ(ρ)− [ξ1, ξ2] · θ(ρ) .

By expanding the Lie bracket [ξ1, ξ2] we obtain two terms, which cancel out the
bottom line of the equation. This leads to the equality dθ([ξ1, µ], ξ2) = dθ([ξ2, µ], ξ1).

�
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