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FOREWORD TO PROCEEDINGS OF EQUADIFF 15

The Conference on Differential Equations and Their Applications – abbreviated
as Equadiff – is one of the oldest active series of mathematical conferences in
the world. The tradition of the Czechoslovak Equadiff dates back to 1962 when
Equadiff 1 took place in Prague. The subsequent Czechoslovak Equadiff conferences
are held since then periodically in Prague, Bratislava, and Brno every four years
(with few exceptions). The Western Equadiff conferences are organized in various
cities in Western Europe, starting in Marseille in 1970 and with the last meeting
in Leiden in 2019.

The last Equadiff was held in Brno in summer 2022 as the 15th conference
within the Czechoslovak Equadiff series, and hence it bears the name Equadiff 15.
The conference was rescheduled to the year 2022 from the original date in July
2021 due to an unstable pandemic situation in the world. The proceedings from
all previous Czechoslovak Equadiff conferences are available via the Czech Digital
Mathematics Library at

https://dml.cz/handle/10338.dmlcz/700001.

The conference Equadiff 15 was organized by joint efforts of the Faculty of
Science of Masaryk University (and its Department of Mathematics and Statistics)
with the Faculty of Civil Engineering of Brno University of Technology, the Institute
of Mathematics of the Czech Academy of Sciences, and the Brno branch of The
Union of Czech Mathematicians and Physicists. The conference took place at the
campus of the Faculty of Economics and Administration of Masaryk University
from July 11 till July 15, 2022. More than 250 participants from 37 countries from
all over the world attended the 241 talks of the conference, including 6 plenary
talks, 17 invited talks, 124 talks in 33 organized minisymposia, 75 contributed
talks, and 19 posters.

The proceedings of Equadiff 15 cover the theory of differential equations in
a broad sense, including their theoretical aspects, numerical methods, and appli-
cations. The proceedings contain 29 scientific articles written by participants of
Equadiff 15. The papers are divided into three sections according to the program
of the conference:

– ordinary differential equations (15 papers),
– partial differential equations (9 papers),
– numerical analysis and applications (5 papers).

Each manuscript underwent a rigorous refereeing process to ensure its scientific
quality. This issue contains the contributions from section Partial differential
equations.
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We would like to take this opportunity to express our special thanks to all
the participants for their active contributions to the success of the Equadiff 15
conference. Our gratitude and appreciation belong to the members of the Scientific
Committee who ensured the high standards of the scientific activities of the
conference, to the organizers and supporting PhD students for their efforts towards
the realization of the conference, to the administration of the Faculty of Economics
and Administration of Masaryk University for providing the venue for the conference
and for their organizational support, to the management and employees of the
Accommodation and Catering Services of Masaryk University for their help with the
organization and realization of the catering during the conference, to the workers of
the Botanical Garden of the Faculty of Science of Masaryk University for providing
the flower decoration, and to the director of the Department of Mathematics and
Statistics of the Faculty of Science of Masaryk University for financial support. We
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for her extensive editorial work on these proceedings.
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A PRIORI BOUNDS FOR POSITIVE RADIAL SOLUTIONS
OF QUASILINEAR EQUATIONS OF LANE–EMDEN TYPE

Soohyun Bae

Abstract. We consider the quasilinear equation ∆pu+K(|x|)uq = 0, and
present the proof of the local existence of positive radial solutions near 0 under
suitable conditions on K. Moreover, we provide a priori estimates of positive
radial solutions near ∞ when r−`K(r) for ` ≥ −p is bounded near ∞.

1. Introduction

We consider the equation
(1.1) ∆pu+K(|x|)uq = 0 ,
where ∆pu = div(|∇u|p−2∇u), n > p > 1 and q > p − 1. Let r = |x| and
d
dru(r) = ur(r). Then, the radial version of (1.1) is
(1.2) r1−n(rn−1|ur|p−2ur)r +K(r)uq = 0 .
For p = 2, the basic assumption of K for local solutions is (K):

(i) K(r) ≥ 0, 6≡ 0; K(r) is continuous on (0,∞);
(ii)

∫
0 rK(r) dr <∞, i.e., rK(r) is integrable near 0.

Under condition (K), (1.2) with p = 2 and u(0) = α > 0, has a unique positive
solution uα ∈ C2(0, ε) ∩ C[0, ε) for small ε > 0. In order to obtain local solutions
(1.2) near 0, we assume (KP): (i) of (K), and for r > 0 small,∫ r

0
t

1−n
p−1 (

∫ t

0
sn−1K(s)ds)

1
p−1 dt <∞ .

For p = 2, this integrability is (ii) of (K). If K(r) = rl, then it is easy to see that
(KP) holds for l > −p. As a typical example, the equation
(1.3) ∆pu+ |x|luq = 0
possesses a local radial solution uα with uα(0) = α for each α > 0, and has the
scaling invariance:
(1.4) uα(r) = αu1(α 1

m r)

2020 Mathematics Subject Classification: primary 35J92; secondary 35B45.
Key words and phrases: quasilinear equation, positive solution, a priori bound.
This research was supported by the research fund of Hanbat National University in 2018.
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with m = p+l
q−(p−1) . Moreover, (1.3) has a singular solution which is invariant under

the scaling in (1.4), the so-called self-similar solution. That is,
U(x) = L|x|−m,

where L is defined by

(1.5) L = L(n, p, q, l) = [mp−1(n− 1− (m+ 1)(p− 1))]
1

q−(p−1) .

This singular solution can be defined for l > −p and q > (p−1)(n+l)
n−p because

n− 1− (m+ 1)(p− 1) > 0. Then, we observe the asymptotic self-similar behavior.

Theorem 1.1. Let n > p > 1 and q > (p−1)(n+l)
n−p with l > −p. If r−lK(r) → 1

as r → ∞, then any positive solution u of (1.2) near ∞ satisfies one of the two
asymptotic behavior: either
(1.6) lim inf

r→∞
rmu(r) ≤ L ≤ lim sup

r→∞
rmu(r) <∞

with L = L(n, p, q, l) given by (1.5) or r(n−p)/(p−1)u(r)→ C > 0 as r →∞.
Moreover, (1.6) can be the asymptotic self-similarity

lim
r→∞

rmu(r) = L .

In a forthcoming paper, we study entire solutions of (1.2) with this asymptotic
behavior in a supercritical range.

1.1. Lower bound. The p-Laplace equation has the radial form

(1.7) (|ur|p−2ur)r + n− 1
r
|ur|p−2ur = 0 ,

where n > p > 1. Then, (1.7) possesses a solution |x|−θ with θ = n−p
p−1 . Let u be a

positive radial solution satisfying the quasilinear inequality

(1.8) r1−n(rn−1|ur|p−2ur)r = (|ur|p−2ur)r + n− 1
r
|ur|p−2ur ≤ 0 .

If ur(r0) ≤ 0 for some r0 > 0, then ur(r) ≤ 0 for r > r0. Hence, u is monotone
near ∞. Assume ur ≤ 0 for r ≥ r0 with some r0 > 1. Setting V (t) = rθu(r)
for t = log r ≥ t0 = log r0, we see that g(t) = θV (t) − V ′(t) = rθ+1(−ur(r)) =
r
n−1
p−1 (−ur(r)) satisfies

d

dt
(gp−1(t)) = (n− 1)gp−1(t) + rn[(−ur)p−1]r ≥ 0

for t ≥ t0. Hence, g is increasing for t ≥ t0. Then, V satisfies that for t > T ≥ t0,
V ′(t)− θV (t) ≤ V ′(T )− θV (T ) .

Suppose V ′(T ) < 0. Setting c = θV (T )−V ′(T ), we have (e−θtV (t))′ ≤ −ce−θt and

V (t) ≤ eθ(t−T )(V (T )− c

θ
) + c

θ
= eθ(t−T )V

′(T )
θ

+ c

θ
.

Hence, V has a finite zero. Therefore, in order for u to be positive near ∞, V must
be increasing and (rθu(r))r ≥ 0 near ∞. This is true obviously in the other case
that ur > 0 near ∞.
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Lemma 1.2. Let n > p > 1. If u is a positive radial solution satisfying (1.8) near
∞, then r

n−p
p−1 u(r) is increasing.

Now, we classify positive solutions of (1.8) near ∞ into two groups according to
their behaviors. If r

n−p
p−1 u converges to a positive constant at ∞, then we call u a

fast decaying solution. Otherwise, u is a slowly decaying solution if r
n−p
p−1 u(r)→∞

as r →∞.

1.2. Known results. One of Liouville’s theorems related to p-Laplace equation is
the nonexistence of nontrivial nonnegative solutions in W 1,p

loc (Rn) ∩ C(Rn) to the
following quasilinear inequality

−∆pu ≥ c|x|luq

with c > 0 and l > −p, when n > p > 1 and

q ≤ (p− 1)(n+ l)
n− p

.

See [1, Theorem 3.3 (iii)]. For the existence of nontrivial solutions to

∆pu+ uq = 0 ,

on Rn with n > p > 1 and q > p−1, it is necessary and sufficient that q ≥ n(p−1)+p
n−p

[6]. On the other hand, (1.3) with q = qs := n(p−1)+p+pl
n−p admits the one-parameter

family of positive solutions given by

uα(x) = α

(1 + ξ(α
p
n−p |x|)

p+l
p−1 )

n−p
p+l

with ξ = ξp,n = p−1
(n−p)(n+l)1/(p−1) and uα(0) = α > 0. A radial solution u(x) = u(|x|)

of (1.3) satisfies the equation

(1.9) (|ur|p−2ur)r + n− 1
r
|ur|p−2ur + rluq = 0 .

For l > −p, (1.9) with u(0) = α > 0, has a unique positive solution u ∈ C1(0, ε) ∩
C[0, ε) for small ε > 0 such that |ur|p−2ur ∈ C1[0, ε). If q < qs, then every local
solution of (1.9) has a finite zero [2, 5]. In the opposite case q > qs, every local
solution of (1.9) is to be a slowly decaying solution [2, 3, 5].

2. Local existence

Let n ≥ p > 1, l > −p and q ≥ p− 1. First, in order to prove the local existence
of positive radial solutions of (1.3), we consider the integral equation

u(r) = α−
∫ r

0
t

1−n
p−1 (

∫ t

0
sn−1+luq(s)ds)

1
p−1 dt

with α > 0.
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2.1. Integral representation. On a space
S = {u ∈ C[0, ε] | 0 ≤ u ≤ α}

we study a nonlinear operator T from S to C[0, ε] by
T (u)(r) = α− T1(u)(r),

where
T1(u)(r) =

∫ r

0
t

1−n
p−1 (

∫ t

0
sn−1+luq(s)ds)

1
p−1 dt .

For ε > 0 small enough, T1 satisfies that

0 ≤ T1 ≤ α
q
p−1

∫ r

0
t

1−n
p−1 (

∫ t

0
sn−1+lds)

1
p−1 dt ≤ ( αq

n+ l
)

1
p−1

p− 1
p+ l

ε
p+l
p−1 ≤ α .

Hence, T (S) ⊂ S. Minkowski’s inequality for p ≥ 2 shows that for u1, u2 ∈ S,

‖T (u2)− T (u1)‖ ≤
∫ r

0
t

1−n
p−1 (

∫ t

0
sn−1+l∣∣u q

p−1
2 − u

q
p−1
1
∣∣p−1

ds)
1
p−1 dt

≤ q

p− 1α
q−(p−1)
p−1

∫ r

0
t

1−n
p−1 (

∫ t

0
sn−1+l ds)

1
p−1 dt ‖u2 − u1‖

= q

p− 1α
q−(p−1)
p−1 ( 1

n+ l
)

1
p−1

p− 1
p+ l

ε
p+l
p−1 ‖u2 − u1‖ .

For 1 < p < 2, we observe that for u1, u2 ∈ S,

‖T (u2)− T (u1)‖ ≤
∫ r

0
t

1−n
p−1

α
q(2−p)
p−1

p− 1 (
∫ t

0
sn−1+l ds)

2−p
p−1 (

∫ t

0
sn−1+l|uq2 − u

q
1| ds) dt

≤ q

p− 1α
q−(p−1)
p−1

∫ r

0
t

1−n
p−1 (

∫ t

0
sn−1+l ds)

1
p−1 dt ‖u2 − u1‖

= q

p− 1α
q−(p−1)
p−1 ( 1

n+ l
)

1
p−1

p− 1
p+ l

ε
p+l
p−1 ‖u2 − u1‖ .

Now, we assume that
p− 1
p+ l

max{( αq

n+ l
)

1
p−1 ,

q

p− 1α
q−(p−1)
p−1 ( 1

n+ l
)

1
p−1 }ε

p+l
p−1 < min{α, 1}.

Then, T is a contraction mapping in S and thus T has a unique fixed point ūα.
Generally, we consider the integral equation under condition (KP),

u(r) = α−
∫ r

0
t

1−n
p−1 (

∫ t

0
sn−1K(s)uq(s)ds)

1
p−1 dt .

Then, the integrability of (KP) shows in the same way the local existence of a
positive solution uα with uα(0) = α > 0 to (1.2). Then, it is easy to see that there
exists a sequence {rj} going to 0 such that
(2.1) lim

j→∞
rn−1
j |ur(rj)|p−2ur(rj) = 0 ,

and uα(r) is decreasing as long as u remains positive. Moreover, uα is strictly
decreasing after K becomes positive.
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2.2. Fowler transform. Let n > p > 1 and q > (n+l)(p−1)
n−p with l > −p. Set

m = p+l
q−(p−1) . Fowler transform V (t) = rmu(r), t = log r, of a positive solution to

(1.2) satisfies
(2.2) (p− 1)(mV − V ′)p−2(V ′′ −mV ′)− ξ(mV − V ′)p−1 + k(t)V q = 0 ,

where ξ = n−1−(m+1)(p−1) = Lq−(p−1)

mp−1 with L given by (1.5), and k(t) = r−lK(r).
Furthermore, if −rm+1ur(r) = mV − V ′ > 0, then (2.2) can be rewritten as

(p− 1)(V ′′ −mV ′)− ξ(mV − V ′) = − k(t)V q
(mV − V ′)p−2

and
(p− 1)V ′′ + aV ′ − ξmV = − k(t)V q

(mV − V ′)p−2 ,

where a = n− 1− (2m+ 1)(p− 1). Setting b = ξm = Lq−(p−1)

mp−2 , we have

(p− 1)V ′′ + aV ′ − (b− k(t)V q−1

(mV − V ′)p−2 )V = 0 .

That is,

(2.3) (p− 1)V ′′ + aV ′ − 1
mp−2L

q−(p−1)V + k(t)
(mV − V ′)p−2V

q = 0 ,

which holds as long as the local solution remains positive.

3. A priori estimates

In order to obtain upper bounds, we argue similarly as in Lemma 2.16, Lemma
2.20, Theorem 2.25 in [4].

3.1. Upper bound. Let n > p ≥ −`. If u is a positive solution satisfying the
inequality
(3.1) (rn−1|ur|p−2ur)r ≤ −crn−1+`uq

near ∞ for some c > 0, then

(3.2) rn−1|ur|p−2ur ≤ rn−1
0 |ur(r0)|p−2ur(r0)− c

∫ r

r0

sn−1+`uq(s) ds

for r > r0, if r0 is sufficiently large. Then, we may assume that ur(r0) ≤ 0. Indeed,
if ur(r0) > 0, then

rn−1|ur|p−2ur ≤ rn−1
0 |ur(r0)|p−2ur(r0)− cuq(r0) 1

n+ `
(rn+` − rn+`

0 )

as long as ur is positive. Hence, ur is eventually negative. Therefore, (3.2) gives

rn−1|ur|p−2ur ≤ −cuq(r)
1

n+ `
(rn+` − rn+`

0 )

and thus,
ur

uq/(p−1) ≤ −c1r
1+`
p−1
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for some c1 > 0. Hence, we obtain

u(r) ≤
{

Cr−
p+`

q−(p−1) if ` > −p ,
C(log r)−

p−1
q−(p−1) if ` = −p

for some C > 0. Combining the a priori estimates and Lemma 1.2, we have the
following assertion.

Theorem 3.1. Let n > p ≥ −` and q > (p−1)(n+`)
n−p . Then, every positive solution

to (3.1) near ∞ satisfies that

C1r
− p+`
q−(p−1) ≥ u(r) ≥ C2r

−n−pp−1

for ` > −p and
C1(log r)−

p−1
q−(p−1) ≥ u(r) ≥ C2r

−n−pp−1

for ` = −p.

In Theorem 3.1, we use the notation ` instead of l to consider the case of ` = −p.
It is interesting to study the existence of positive entire solutions of (1.1) with the
logarithmic asymptotic behavior at ∞.

Lemma 3.2. Let q > (p−1)(n+l)
n−p . Assume K(r) = O(rl) at ∞ for some l > −p. If

u is a positive solution to (3.1) near ∞ and u(r) = O(r−m−ε) with some ε > 0 at
∞, then u(r) = O(r

p−n
p−1 ) at ∞.

Proof. Integrating (1.2) over [r,∞), we obtain

u(r) =
∫ ∞
r

t
1−n
p−1 (

∫ t

0
K(s)uq(s)sn−1 ds)

1
p−1 dt .

On the other hand, we have∫ t

0
K(s)uq(s)sn−1 ds ≤ C + C

∫ t

1
sn−1+l−q(m+ε) ds

=
{
C + Ctn+l−q(m+ε) if n+ l 6= q(m+ ε) ,
C + C log t if n+ l = q(m+ ε) .

If n+ l < q(m+ ε), we are done. If n+ l ≥ q(m+ ε), then

u(r) ≤
{
Cr

p−n
p−1 + Cr

p−n
p−1 (log r)

1
p−1 if n+ l = q(m+ ε) ,

Cr
p−n
p−1 + Cr

p+l
p−1−

q(m+ε)
p−1 if p+ l < q(m+ ε) < n+ l .

In case n + l = q(m + ε), we replace ε by n−p
p−1 −m − δ in the above arguments,

where δ > 0 is so small that δ < n−p
p−1 −m. Note that m < n−p

p−1 iff q > (p−1)(n+l)
n−p .

u(r) ≤

Cr
p−n
p−1 if n+ l = q(m+ ε) ,

Cr
p−n
p−1 + Cr

p+l
p−1 + q(p+l)

(p−1)2−
q2(m+ε)

(p−1)2 if p+ l < q(m+ ε) < n+ l .
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In case q(m+ ε) < n+ l, we iterate this process to obtain

u(r) ≤ Cr
p−n
p−1 + Cr

p+l
p−1

∑j−1
i=0

( q
p−1 )i− q

j(m+ε)
(p−1)j

= Cr
p−n
p−1 + Cr−m−ε( q

p−1 )j

for any positive integer j. Since q > p− 1, we reach the conclusion after a finite
number of iterations. �

Lemma 3.3. Let q > (p−1)(n+l)
n−p . Assume K(r) = O(rl) at ∞ for some l > −p. If

u(r) = o(r−m) at ∞, then (rmu(r))r < 0 near ∞.

Proof. Let V (t) = rmu(r), t = log r. Then, V satisfies (2.3). Suppose V ′(T ) = 0
for some T near ∞ and k(t)V q−(p−1)(t) < mp−2b for t ∈ [T,∞). Then, V ′′(T ) > 0
and V (t) is strictly increasing near T but for t > T . Since V → 0 at∞, there exists
T1 > T such that V ′(T1) = 0 and

V ′′(T1) = 1
p− 1(b− 1

mp−2 k(T1)V q−(p−1)(T1))V (T1) ≤ 0 ,

a contradiction. �

Theorem 3.4. Let q > (p−1)(n+l)
n−p . Assume K(r) = O(rl) at ∞ for some l > −p.

If u(r) = o(r−m) at ∞, then u(r) = O(r
p−n
p−1 ) at ∞.

Proof. Let ϕ(r) = rmu(r). Then, ϕ satisfies

ϕrr + (1 + a

p− 1)1
r
ϕr −

b

(p− 1)r2ϕ+ k

(p− 1)(mϕ− rϕr)p−2r2ϕ
q = 0 .

For ε > 0, define the elliptic operator

Lεϕ = ∆ϕ− [2m+ (n− 1)p− 2
p− 1 ]x · ∇ϕ

|x|2
−m(L

q−(p−1)

mp−1 − ε) ϕ

|x|2
,

where Lq−(p−1)

mp−1 = n− 1− (m+ 1)(p− 1) . It follows from Lemma 3.3 that for any
ε > 0, there exists Rε > 0 such that

Lεϕ = mε
ϕ

r2 −
kϕq

(p− 1)r2(mϕ− rϕr)p−2 ≥ (mε− kϕq−(p−1)

(p− 1)mp−2 ) ϕ
r2 ≥ 0

in Rn\BRε(0). For 0 < ε < n− 1− (m+ 1)(p− 1), let ηε(x) = |x|σε with σε being
the negative root of σ(σ − 1) + (n− 1− 2m− (n− 1)p−2

p−1 )σ −m(Lq−(p−1)

mp−1 − ε) = 0,
i.e.,

σε = 1
2

[
−(n− 2− 2m− (n− 1)p− 2

p− 1)−
√
D

]
,

where D = (n−1−2m−(n−1)p−2
p−1 )2 +4m(Lq−(p−1)

mp−1 −ε). Setting Cε = ϕ(Rε)R−σεε ,
we see that Lε(ϕ−Cεηε) ≥ 0 in Rn\BRε(0) and ϕ(Rε) = Cεηε(Rε), ϕ−Cεηε → 0
as r →∞. Then, the maximum principle implies that ϕ−Cεηε ≤ 0 in Rn\BRε(0).
Hence, ϕ(r) ≤ Cεηε(r) at ∞. Then, Lemma 3.2 implies the conclusion. �
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Proof of Theorem 1.1. When k(t) = r−lK(r) → 1 as t = log r → +∞, it
follows from Theorem 3.1 and (2.3) that slowly decaying solutions satisfy

lim inf
r→∞

rmu(r) ≤ L ≤ lim sup
r→∞

rmu(r) <∞ .

Indeed, at every local minimum (maximum) point of V (t) = rmu(r), V satisfies
1

mp−2L
q−(p−1)V ≥ (≤) k(t)

(mV )p−2V
q .

If V is monotonically increasing near +∞, then it is easy to see that V → L as
t → +∞ by (2.3). If V is monotonically decreasing and V → 0, then it follows
from Lemma 1.2 and Theorem 3.4 that r

n−p
p−1 u(r)→ C for some C > 0. �
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LARGE TIME BEHAVIOR IN A QUASILINEAR
PARABOLIC-PARABOLIC-ELLIPTIC

ATTRACTION-REPULSION CHEMOTAXIS SYSTEM

Yutaro Chiyo

Abstract. This paper deals with a quasilinear parabolic-parabolic-elliptic
attraction-repulsion chemotaxis system. Boundedness, stabilization and blow-up
in this system of the fully parabolic and parabolic-elliptic-elliptic versions
have already been proved. The purpose of this paper is to derive boundedness
and stabilization in the parabolic-parabolic-elliptic version.

1. Introduction and main result

In this paper we consider the quasilinear attraction-repulsion chemotaxis system

ut = ∇ ·
(
(u+ 1)m−1∇u− χu(u+ 1)p−2∇v + ξu(u+ 1)q−2∇w

)
,

vt = ∆v + αu− βv ,
0 = ∆w + γu− δw ,
(∇u · ν)|∂Ω = (∇v · ν)|∂Ω = (∇w · ν)|∂Ω = 0 ,
u(x, 0) = u0(x), v(x, 0) = v0(x)

(1.1)

in a bounded domain Ω ⊂ Rn (n ∈ N) with smooth boundary ∂Ω. Here m, p, q ≥ 1,
χ, ξ, α, β, γ, δ > 0 are constants, ν is the outward normal vector to ∂Ω,

u0 ∈ C0(Ω) , u0 ≥ 0 in Ω and u0 6= 0,(1.2)
v0 ∈W 1,θ(Ω) for some θ > n , v0 ≥ 0 in Ω and v0 6= 0.(1.3)

The model (1.1) was proposed by [12] to describe the aggregation of microglial cells
in Alzheimer’s disease. Also, u, v and w represent the cell density, concentrations
of attractive and repulsive chemical substances; α and γ idealize the rates at which
the cell produces substances; β and δ represent the rates at which substances are
transformed into another ones which do not involve in the movement of the cell.
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Let us overview previous results on the attraction-repulsion chemotaxis system
ut = ∇ ·

(
∇u− χu∇v + ξu∇w

)
,

τvt = ∆v + αu− βv ,
τwt = ∆w + γu− δw ,

(1.4)

where χ, ξ, α, β, γ, δ > 0 are constants and τ ∈ {0, 1}. This system has been
investigated in several studies. For instance, in the case that τ = 1 boundedness
(including global existence) was studied in [5], finite-time blow-up (blow-up for
short) was analyzed in [9] and stabilization was studied in [11]. Also, in the simplified
case that τ = 0 there are more precise studies. Indeed, blow-up with logistic source
was discussed in [2] and stabilization was investigated in [10, 13]. On the other
hand, as to the quasilinear version, such as (1.1), of the above system (1.4) with
τ = 0, there are several studies. Indeed, boundedness and blow-up were classified
by the size of p, q in [4] and stabilization was obtained in [1, 3].

In summary, boundedness, stabilization and blow-up in the attraction-repulsion
system (1.4) have been well studied in the fully parabolic case (τ = 1) and in the
parabolic-elliptic-elliptic case (τ = 0). However, the quasilinear parabolic-parabolic-
-elliptic attraction-repulsion chemotaxis system has not been analyzed. The purpose
of this paper is to derive boundedness and stabilization in (1.1).

The main result of this paper reads as follows.

Theorem 1.1. Let n ∈ N. Let m, p ≥ 1 fulfill p − m ∈ [0, 1] when n = 1,
p −m ∈ [0, 2

n ] when n ≥ 2 and let q ≥ 1. Assume that u0, v0 satisfy (1.2), (1.3).
Then there exists a unique triplet (u, v, w) which solves (1.1) in the classical sense
and is bounded, that is,

‖u(·, t)‖L∞(Ω) ≤ C
for all t > 0 with some C > 0 in the cases that p−m ∈ [0, 1) for n = 1 and that
p−m ∈ [0, 2

n ) for n ≥ 2. Also, there exists λ0 > 0 such that if

‖u0‖L1(Ω) < λ0(1.5)

only in the cases that p−m = 1 for n = 1 and that p−m = 2
n for n ≥ 2, then the

same conclusion on boundedness holds. Moreover, assume further that u0 satisfies

χ‖u0‖p−mL1(Ω) <
1

C〈p−m〉
,(1.6)

where C〈p−m〉 > 0 is a constant appearing in the Poincaré-Sobolev inequality (see
(2.14)). Then the bounded solution (u, v, w) has the property that

(u(·, t), v(·, t), w(·, t))→
(
u0,

α

β
u0,

γ

δ
u0

)
in [L∞(Ω)]3 as t→∞ ,(1.7)

where u0 := 1
|Ω|
∫

Ω u0.

Remark 1.2. We need the condition (1.5) only to assert boundedness.
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2. Proof of Theorem 1.1

We first give a result on local existence in (1.1).

Lemma 2.1. Let m, p, q ≥ 1, χ, ξ, α, β, γ, δ > 0. Then for all u0, v0 satisfying the
conditions (1.2), (1.3) there exists Tmax ∈ (0,∞] such that (1.1) admits a unique
classical solution (u, v, w) such that u ∈ C0(Ω × [0, Tmax)) ∩ C2,1(Ω × (0, Tmax)),
v, w ∈ C0([0, Tmax);W 1,θ(Ω)) ∩ C2,1(Ω× (0, Tmax)). Moreover, if Tmax <∞, then
limt↗Tmax ‖u(·, t)‖L∞(Ω) =∞.

Proof. Let T ∈ (0, 1], M := ‖u0‖L∞(Ω) + 1 and N := ‖v0‖W 1,θ(Ω). We introduce
the set S := {ϕ ∈ X | 0 ≤ ϕ ≤M in Ω× [0, T ]}, where X := C0(Ω× [0, T ]). Also,
we define Φ(û) := u for û ∈ S, where u is the solution of

ut = ∇ ·
(
(û+ 1)m−1∇u− χû(û+ 1)p−2∇v + ξû(û+ 1)q−2∇w

)
in Ω× (0, T )

with (∇u · ν)|∂Ω = 0, u(x, 0) = u0(x), where v and w are the solutions of
vt = ∆v + αû− βv in Ω× (0, T )

with (∇v · ν)|∂Ω = 0, v(x, 0) = v0(x) and
0 = ∆w + γû− δw in Ω× (0, T )

with (∇w · ν)|∂Ω = 0, respectively. Then, by an argument similar to that in [8, 15],
we can verify that Φ is a continuous and compact map of S into S. Therefore, from
the Schauder fixed point theorem and standard regularity theory for parabolic and
elliptic equations, we obtain local existence in (1.1). �

The first purpose of this section is to derive global existence and boundedness.
To achieve this, we obtain an Lr-estimate for u with sufficiently large r.

Lemma 2.2. Let s ∈ (0, Tmax). Let m, p ≥ 1 fulfill p −m ∈ [0, 1] when n = 1,
p−m ∈ [0, 2

n ] when n ≥ 2 and let q ≥ 1. Let u0, v0 satisfy (1.2), (1.3). Then there
exist r0 > 1 and λ0 > 0 such that if u0 satisfies ‖u0‖L1(Ω) < λ0 only in the cases
that p−m = 1 for n = 1 and that p−m = 2

n for n ≥ 2, then for all r > r0,
sup

t∈(s,Tmax)
‖u(·, t)‖Lr(Ω) ≤ Kr(2.1)

with some Kr > 0.

Proof. Let s ∈ (0, Tmax) and r > 1. By the first equation of (1.1) and integration
by parts, we have

1
r

d

dt
‖u(·, t)‖rLr(Ω) = −

∫
Ω

(u+ 1)m−1∇u · ∇ur−1(2.2)

+ χ

∫
Ω
u(u+ 1)p−2∇v · ∇ur−1

− ξ
∫

Ω
u(u+ 1)q−2∇w · ∇ur−1

=: I1(·, t) + I2(·, t) + I3(·, t)
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for all t ∈ (s, Tmax). This corresponds to [6, (28) with D(s) = sm−1, S(s) = sp−1,
ε = 1] with additional term I3, but we use [4, (3.13) and (3.16)] to derive

I3(·, t) ≤ ξ(r − 1)
r + q − 2

(
2δ
∫

Ω
ur+q−2w + δc1

∫
Ω
w − γ

∫
Ω
ur+q−1

)
(2.3)

≤ ξ(r − 1)
r + q − 2

[
2δ
( γ

2δ

∫
Ω
ur+q−1 + c2

)
+ c3 − γ

∫
Ω
ur+q−1

]
= ξ(r − 1)
r + q − 2(2δc2 + c3) =: c4

for all t ∈ (s, Tmax) with some c1, c2, c3 > 0. Thus, combining (2.3) with (2.2), we
can observe from [6, p. 223, lines 12 and 13] that there exist r1, r2 > 1 such that

d

dt
‖u(·, t)‖rLr(Ω)(2.4)

≤ −‖u(·, t)‖rLr(Ω) + (c5r)c6r − 1
2A(r,m, p, u0)‖∇u

r+m−1
2 (·, t)‖2L2(Ω)

+ c7‖∆v(·, t)‖r+p−1
Lr+p−1(Ω) + c8‖∆v(·, t)‖r+1

Lr+1(Ω) + c9

for all t ∈ (s, Tmax) and all r > max{n2 (p−m)− p+ 1, n2 (2−m)− 1, r1, r2} with
some c5, c6, c7, c8, c9 > 0, where A(r,m, p, u0) > 0 is a constant defined as

A(r,m, p, u0) :=


2r(r−1)

(r+m−1)2 if p−m ∈ [0, 1) (n = 1),
p−m ∈ [0, 2

n ) (n ≥ 2),
4r(r−1)

(r+m−1)2 − c10r‖u0‖c11(r+p−1)
L1(Ω) if p−m = 1 (n = 1),

p−m = 2
n (n ≥ 2)

with c10, c11 > 0, where the value −c10r‖u0‖c11(r+p−1)
L1(Ω) in the critical case is derived

from [6, p. 222, line 4]. Then, from an argument parallel to that in the derivation
of [6, (38)], the differential inequality (2.4) implies that

‖u(·, t)‖rLr(Ω) ≤ ‖u(·, s)‖rLr(Ω)

+
[
(c5r)c6r + c9 + (c12rC

r+p−1
MR )c13r + (c14rC

r+1
MR )c15r

]
+ c7rC

r+p−1
MR ‖∆v(·, s)‖r+p−1

Lr+p−1(Ω) + c8rC
r+1
MR ‖∆v(·, s)‖r+1

Lr+1(Ω)

for all t ∈ (s, Tmax) and all r > max{n2 (p−m)− p+ 1, n2 (2−m)− 1, r1, r2} with
some CMR, c12, c13, c14, c15 > 0 via estimates for

∫ t
s
‖∆e

σ−t
r+p−1 v(·, σ)‖r+p−1

Lr+p−1(Ω) dσ

and
∫ t
s
‖∆e

σ−t
r+1 v(·, σ)‖r+1

Lr+1(Ω) dσ by the maximal Sobolev regularity ([6, Lemma 2.1])
and the Young inequality. More precisely, we estimate these two terms as∫ t

s

‖∆e
σ−t
θ1 v(·, σ)‖θ1

Lθ1 (Ω) dσ ≤ c16rC
θ1
MR‖∆v(·, s)‖θ1

Lθ1 (Ω)

+
∫ t

s

eσ−t
[1

4A(r,m, p, u0)‖∇u
r+m−1

2 (·, t)‖2L2(Ω) + (c17rC
θ1
MR)c18r

]
dσ
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with θ1 ∈ {r + p − 1, r + 1} and c16, c17, c18 > 0. Therefore, by following an
argument similar to that in [6] and taking ‖u0‖L1(Ω) sufficiently small such that
A(r,m, p, u0) > 0 only in the cases that p−m = 1 for n = 1 and that p−m = 2

n
for n ≥ 2, we arrive at (2.1). �
Proof of Theorem 1.1 (Boundedness). Taking r = r∗ > 1 in Lemma 2.2 suf-
ficiently large such that r∗ fulfills the assumption of [14, Lemma A.1], we have
supt∈(0,Tmax) ‖u(·, t)‖L∞(Ω) <∞, which means that Tmax =∞ by the extensibility
criterion, and boundedness holds. �

The second purpose of this section is to prove stabilization. To this end, we
introduce the function

Φ(s) :=
∫ s

1

∫ σ

1

1
η(η + 1)p−2 dηdσ , s ≥ 0 ,

where p ≥ 1 is a constant appearing in the attraction term in (1.1). In order to
obtain an energy inequality we first calculate and estimate d

dt

∫
Ω Φ(u).

Lemma 2.3. The first component u satisfies that
d

dt

∫
Ω

Φ(u) +
∫

Ω

(u+ 1)m−p+1

u
|∇u|2 ≤ χ

∫
Ω
∇u · ∇v(2.5)

for all t > 0.

Proof. We see from the first equation in (1.1) and the identity Φ′′(u) = 1
u(u+1)p−2

as well as straightforward calculations that
d

dt

∫
Ω

Φ(u) = −
∫

Ω

(u+ 1)m−p+1

u
|∇u|2 + χ

∫
Ω
∇u · ∇v(2.6)

− ξ
∫

Ω
(u+ 1)q−p∇u · ∇w

for all t > 0. Here we can estimate the third term on the right-hand side by zero.
Indeed, we rewrite the third equation in (1.1) as

0 = ∆
(
w + γ

δ

)
+ γ(u+ 1)− δ

(
w + γ

δ

)
,(2.7)

and thereby we invoke integration by parts to obtain

I := −ξ
∫

Ω
(u+ 1)q−p∇u · ∇w(2.8)

= ξ

q − p+ 1

∫
Ω

(u+ 1)q−p+1∆
(
w + γ

δ

)
= ξδ

q − p+ 1

∫
Ω

(u+ 1)q−p+1
(
w + γ

δ

)
− ξγ

q − p+ 1

∫
Ω

(u+ 1)q−p+2.

Moreover, applying the Hölder inequality to (2.8) and noticing that (2.7) yields∥∥∥w(·, t) + γ

δ

∥∥∥
Lq−p+2(Ω)

≤ γ

δ
‖u(·, t) + 1‖Lq−p+2(Ω)
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for all t > 0, we obtain

I ≤ ξδ

q − p+ 1‖u(·, t) + 1‖q−p+1
Lq−p+2(Ω)

·
(∥∥∥w(·, t) + γ

δ

∥∥∥
Lq−p+2(Ω)

− γ

δ
‖u(·, t) + 1‖Lq−p+2(Ω)

)
≤ 0 ,

which along with (2.6) implies that (2.5) holds. �
In order to state the next lemma we define the function

V (x, t) := v(x, t)− α

β
u0 for x ∈ Ω , t > 0 .

Lemma 2.4. The first component u satisfies that for all t > 0,
d

dt

[ ∫
Ω

Φ(u) + χ

2α

∫
Ω
|∇V |2 + χβ

α

∫
Ω
V 2
]

(2.9)

+
∫

Ω

(u+ 1)m−p+1

u
|∇u|2 + χβ

α

∫
Ω
|∇V |2 + χβ2

α

∫
Ω
V 2 + χ

α

∫
Ω
V 2
t

≤ χ
∫

Ω
(u− u0)2 .

Proof. Noting from the second equation in (1.1) that Vt = ∆V + α(u− u0)− βV
and testing this equation by Vt and V , we can see that

d

dt

[1
2

∫
Ω
|∇V |2 + β

2

∫
Ω
V 2
]

+
∫

Ω
V 2
t(2.10)

= −α
∫

Ω
∇u · ∇v + α

∫
Ω

(u− u0)2 − αβ
∫

Ω
(u− u0)V,

1
2
d

dt

∫
Ω
V 2 +

∫
Ω
|∇V |2 + β

∫
Ω
V 2 = α

∫
Ω

(u− u0)V(2.11)

for all t > 0, respectively. Thus, multiplying (2.10) and (2.11) by χ
α and χβ

α ,
respectively, and adding them to (2.5), we obtain (2.9). �

We finally derive an energy inequality.
Lemma 2.5. Let m, p fulfill p−m ∈ [0, 1] when n = 1, p−m ∈ [0, 2

n ] when n ≥ 2
and let C〈p−m〉 > 0 be a constant appearing in the Poincaré–Sobolev inequality (see
(2.14)). Then the first component u satisfies that

d

dt

∫
Ω
F (u, v) +

[ 1
C〈p−m〉‖u0‖p−mL1(Ω)

− χ
] ∫

Ω
(u− u0)2 ≤ 0(2.12)

for all t > 0, where

F (u, v) :=
∫

Ω
Φ(u) + χ

2α

∫
Ω
|∇v|2 + χβ

α

∫
Ω

(
v − α

β

)2
.

In particular, if u0 meets (1.6), then∫ ∞
0

∫
Ω

(u− u0)2 <∞ .(2.13)
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Proof. We first see from the fact (u+ 1)m−p+1 ≥ um−p+1, the mass conservation
‖u(·, t)‖L1(Ω) = ‖u0‖L1(Ω) (t > 0) and the Poincaré–Sobolev inequality that∫

Ω

(u+ 1)m−p+1

u
|∇u|2 ≥ 1

‖u0‖p−mL1(Ω)

(∫
Ω
|∇u|

2
p−m+1

)p−m+1

≥ 1
C〈p−m〉‖u0‖p−mL1(Ω)

∫
Ω

(u− u0)2(2.14)

for all t > 0, which along with (2.9) implies that

d

dt

∫
Ω
F (u, v) + 1

C〈p−m〉‖u0‖p−mL1(Ω)

∫
Ω

(u− u0)2 ≤ χ
∫

Ω
(u− u0)2

for all t > 0, which entails (2.12). Also, integrating (2.12) over (0, t), using the
positivity of F and (1.6), and taking the limit t→∞, we derive (2.13). �

We are now in a position to complete the proof of Theorem 1.1.
Proof of Theorem 1.1 (Stabilization). We first derive L∞-convergence of u. Since
the first component u is bounded in time, we see from parabolic regularity theory
([7]) that there exist σ ∈ (0, 1) and c1 > 0 such that

‖u‖
C2+σ,1+σ

2 (Ω×[1,∞)) ≤ c1 ,(2.15)

which implies that the function t 7→ ‖u(·, t)− u0‖2L2(Ω) is uniformly continuous in
[0,∞). Hence, in light of time integrability of ‖u(·, t)−u0‖2L2(Ω) (see (2.13)), we infer
that ‖u(·, t)− u0‖L2(Ω) → 0 as t→∞. Also, employing the Gagliardo–Nirenberg
inequality, we can find c2 > 0 such that

‖u(·, t)− u0‖L∞(Ω) ≤ c2‖u(·, t)− u0‖
n
n+2
W 1,∞(Ω)‖u(·, t)− u0‖

2
n+2
L2(Ω) .(2.16)

Noting from the estimate (2.15) that ‖u(·, t) − u0‖W 1,∞(Ω) ≤ c3 := c1 + u0, we
derive from L2-convergence of u and the estimate (2.16) that

‖u(·, t)− u0‖L∞(Ω) → 0 as t→∞ .

We next show L∞-convergences of v and w. We put U(x, t) := u(x, t)−u0, V (x, t) :=
v(x, t) − α

βu0 and W (x, t) := w(x, t) − γ
δ u0 for x ∈ Ω, t > 0. Then the second

equation and boundary condition in (1.1) yield

Vt = ∆V + αU − βV , (∇V · ν)|∂Ω = 0 .

Recalling that (et∆)t>0 acts as a contraction on L∞(Ω), we have that for all t > 0,

‖V (·, t)‖L∞(Ω) ≤ e−tβ‖et∆V (·, 0)‖L∞(Ω) + α

∫ t

0
e−(t−s)β‖e(t−s)∆U(·, s)‖L∞(Ω) ds

≤ e−tβ‖V (·, 0)‖L∞(Ω) + α
(∫ t

2

0
+
∫ t

t
2

)
e−(t−s)β‖U(·, s)‖L∞(Ω) ds .
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Also, using boundedness of U i.e. ‖U(·, s)‖L∞(Ω) ≤ c3 (= c1 + u0) and the estimate
e−(t−s)β ≤ e−

t
2β for s ∈ [0, t2 ], and for all ε > 0, ‖U(·, s)‖L∞(Ω) < ε for s ∈ [ t2 , t]

with sufficiently large t by L∞-convergence of U , we see that
‖V (·, t)‖L∞(Ω) → 0 as t→∞ .

On the other hand, since 0 = ∆W + γU − δW and (∇W · ν)|∂Ω = 0, in view of the
maximum principle we see from L∞-convergence of U that

‖W (·, t)‖L∞(Ω) ≤
γ

δ
‖U(·, t)‖L∞(Ω) → 0 as t→∞ .

Therefore we arrive at (1.7). �
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CRITICAL POINTS FOR REACTION-DIFFUSION SYSTEM
WITH ONE AND TWO UNILATERAL CONDITIONS

Jan Eisner and Jan Žilavý

Abstract. We show the location of so called critical points, i.e., couples of dif-
fusion coefficients for which a non-trivial solution of a linear reaction-diffusion
system of activator-inhibitor type on an interval with Neumann boundary
conditions and with additional non-linear unilateral condition at one or two
points on the boundary and/or in the interior exists. Simultaneously, we show
the profile of such solutions.

1. Introduction

Let us consider a reaction-diffusion system
(1.1) ut = d1uxx + f(u, v) , vt = d2vxx + g(u, v) in (0, `)
with Neumann boundary conditions for u
(1.2) ux(0) = ux(`) = 0
and at first with Neumann boundary conditions also for v
(1.3) vx(0) = vx(`) = 0 .
Let us assume there is (Uc, Vc) a stationary and spatially constant solution to (1.1)
with (1.2), (1.3), in particular f(Uc, Vc) = g(Uc, Vc) = 0. We can assume without
loss of generality that the trivial solution (Uc, Vc) = (0, 0) but keep in mind that in
application where u and v represent e.g. concentrations of two chemicals or of two
population species they are assumed to be positive.

We will allways assume the Jacobi matrix B = (bij) of (f, g) at (Uc, Vc) satisfies
(1.4) TrB < 0 and detB > 0 .
Then it follows from Hurwitz criteria that the trivial solution (Uc, Vc) is stable as
a solution to the corresponding ODE system without diffusion, i.e., for d1 = d2 = 0.

Finally, we will assume that
(1.5) b11 > 0, b12b21 < 0, b22 < 0 .
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Then the RD-system (1.1) is of an activator-inhibitor or a depletion-substrate type
if b12 > 0 or b21 > 0, respectively. It is well known [7] that under (1.5) an effect
of Turing instability appears: Only for some diffusion coefficients (d1, d2) ∈ R2

+ the
trivial solution (Uc, Vc) remains stable but becomes unstable for the rest of positive
diffusion coefficients. More precisely, there is a system of hyperbolas

(1.6) Hn = {(d1, d2) ∈ R+
2 : d2 = (detB − κnd1b22)/(b21κn − d1κ

2
n)} ,

where κn > 0 is a sequence of positive eigenvalues to Neumann BVP

uxx + κu = 0 on (0, `)

with (1.2). Let us remark that there is no H0 for κ0 = 0. Now, the domain of
stability DS of the trivial solution is the set of couples (d1, d2) lying to the right
from all hyperbolas Hn and the domain of instability DU is the set of (d1, d2) lying
to the left from at least one hyperbola.

In the rest of this paper we will study only stationary solutions of (1.1) and
consider only a linear ODE system

(1.7) d1u
′′ + b11u+ b12v = 0 , d2v

′′ + b21u+ b22v = 0 in (0, `)

where the prime denotes the derivative w.r.t. to the variable x ∈ (0, `). We will still
refer to (1.2) and/or (1.3) where ux = u′ and vx = v′.

It is easy to see that for any (d1, d2) ∈ R2
+ the pair (0, 0) is a solution to (1.7)

with (1.2), (1.3). Critical points of a given boundary value problem will be the set
of diffusion coefficients (d1, d2) ∈ R2

+ for which a nontrivial (spatially nonconstant)
solution exists. It follows from [5] (cf. also Lemma 2.2 below) that the set of critical
points of the Neumann BVP (1.7), (1.2), (1.3) is just the system of hyperbolas (1.6).

We will describe and locate the set of critical points if we prescribe, in addition to
Neumann BCs, some unilateral condition(s) for the inhibitor v. More precisely, we
will describe in the following sections the sets of critical points for the BVPs (1.7)
with Neumann boudary conditions (1.2) for activator u and with several types of
unilateral conditions for v. Let us remark that we choose the simplest examples
in order to be at least partially analytically and numerically tractable. This is
the reason to consider only one dimensional space domain and only point-wise
unilateral obstacles. This method could be applied for the higher dimensional
domain only of a very special form (e.g. a rectangle with unilateral conditions on
(a part of) one edge) but we could obtain only a subset of possible critial points
only because we can not analytically express all non-trivial solutions of a given
unilateral BVP.

Let us finally remark that even the system (1.7) is linear, the unilateral condi-
tions break the linearity, the BVP remains only positively homogeneous: only
a non-negative multiple of a solution is also a solution.

2. A unilateral obstacle for inhibitor

We will start with one point-wise unilateral (one-sided) obstacle.
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2.1. A unilateral obstacle on the boundary. The simplest unilateral obstacle
is given by a Signorini condition prescribed at one boundary point, without loss of
generality at x = `

(2.1) v′(0) = 0, v(`) ≥ 0, v′(`) ≥ 0 , v(`)v′(`) = 0 .

The last three conditions allow v(`) to be non-negative with a non-negative de-
rivative v′(`), but only one of them can be positive. If the value is positive, zero
Neumann condition must be fulfilled. This BC can be considered as a certain
regulation allowing the concentration to be above a prescribed value (here Vc = 0)
and then the boundary is closed, there is no flux through this part of the boundary.
But if v(`) decreases below this value, the boudary opens and the inhibitor income
from outside is large enough to stop the decrease of v(`) below Vc (v satisfies
Dirichlet BC in that case). In other words, the simple point of view is that v satifies
Signorini BC at x = ` if and only if it satisfies either Neumann BC with a proper
(non-negative) sign of v(`) or Dirichlet BC with a proper (non-negative) sign of
v′(`). Of course, it can exceptionally happen that both v(`) = v′(`) = 0.

Looking for critical points of the BVP (1.7) with (1.2), (2.1), these considerations
allow us to decompose this unilateral and hence non-linear Neumann-Signorini
BVP onto two problems: on purely Neumann BVP (1.7), (1.2), (1.3) with a proper
sign of v(`) and on Neumann-Dirichlet BVP (1.7), (1.2),

(2.2) v′(0) = 0, v(`) = 0

with a proper sign of v′(`).

Lemma 2.1. Let (u, v) be a solution to one of linear BVPs (1.7), (1.2), (1.3)
or (1.7), (1.2), (2.2). Then (u, v) or (−u,−v) is a solution of the unilateral
BVP (1.7), (1.2), (2.1).

Proof. If (u, v) is a solution to a linear BVP then also (−u,−v) is a solution. Now
it is necessary to realize that in both BVPs we need to control a sign only of one
object. �

Lemma 2.2. The set of critical points KN to the BVP (1.7), (1.2), (1.3) are just
the hyperbolas Hn from (1.6),

KN =
∞⋃
n=1

Hn .

The profiles of the corresponding non-trivial solutions for (d1, d2) ∈ Hn are

(2.3) un(x) = A(d2κn − b22) cos(nx)/b21 ,
vn(x) = A cos(nx)

with arbitrary A ∈ R.

Proof. The assertion follows e.g. from [5]. �
Characteristic equation corresponding to the system (1.7) is biquadratic

d1d2r
4 + (d2b11 + d1b22)r2 + detB = 0
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and has the (possibly complex) roots ±r1 and ±r2. We obtain for any (d1, d2) ∈ R2
+

with the exception of two half-lines
(b11d2 + b22d1)2 − 4d1d2 detB = 0

(where the upper one is a joint tangent to all hyperbolas Hn) a general solution

(2.4) u(x) = Aer1x +Be−r1x + Cer2x +De−r2x ,
v(x) = −(d1u

′′(x) + b11u(x))/b12

with arbitrary A, B, C, D ∈ R.
Let us define on (0, `) some auxiliary functions

C1(x) := er1x + e−r1x , S1(x) := er1x − e−r1x ,
C2(x) := er2x + e−r2x , S2(x) := er2x − e−r2x

and denote
R1 := r2

1 + b11
d1

, R2 := r2
2 + b11

d1
.

Lemma 2.3. The set of critical points KD to the BVP (1.7), (1.2), (2.2) are the
positive roots of the complex-valued function

FD(d1, d2) = d1r1R2S1(`)C2(`)− d1r2R1S2(`)C1(`) .
The profiles of the corresponding non-trivial solutions for d = (d1, d2) ∈ KD are

(2.5) u(x) = A(C1(x)− C2(x)β(d)) ,
v(x) = −A(d1(r2

1C1(x)− r2
2C2(x)β(d)) + b11(C1(x)− C2(x)β(d)))/b12

with arbitrary A ∈ R and β(d) = r2S2(`)/(r1S1(`)).
Proof. The function FD corresponds to the determinant of the linear system of 4
equations for coefficients A,B,C,D from (2.4) derived by using BCs (1.2), (2.2).
Since these conditions are linear, a nontrivial quadruplet exists if and only if this
determinant is zero. The form (2.5) then follows from (2.4). See e.g. [3] or [6] for
details. �
Remark 2.4. Let us emphasize that the coefficients r1, r2 and therefore also the
functions Ci(x) and Si(x), i = 1, 2, and the numbers R1, R2 and β are in general
complex and depend on diffusion parameters (d1, d2) ∈ R2

+. The form (2.4) and
hence also (2.5) are written in a complex form, nevertheless one can rewrite them
to obtain a couple (u, v) of non-trivial real solutions to the corresponding BVP.
Theorem 2.5. The set of critical points KS to the unilateral BVP (1.7), (1.2),
(2.1) is given by

KS = KN ∪KD =
∞⋃
n=1

Hn ∪ {(d1, d2) ∈ R2
+ : FD(d1, d2) = 0} .

The profiles of the corresponding non-trivial solutions for (d1, d2) lying on some
Hn or in KD are given by (2.3) or (2.5) with any A ∈ R having the proper sign,
i.e. such that v(`) ≥ 0 or v′(`) ≥ 0, respectively.
Proof. The assertion follows from Lemmas 2.1, 2.2 and 2.3 and considerations
above. �
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2.2. A unilateral obstacle in the interior of the domain. Let us consider
our system (1.7) with (1.2), (1.3) and let us add for v a one-sided obstacle given
by a unilateral condition at x = x1 ∈ (0, `) of the form
(2.6) v(x1) ≥ 0, v′(x1−) ≥ v′(x1+) , v(x1) (v′(x1−)− v′(x1+)) = 0 .
It is clear that if (u, v) is a non-trivial solution to (1.7), (1.2), (1.3) then (u, v) or
(−u,−v) (or exceptionally both) satisfies also (2.6). Such pairs are the C2-smooth
solutions to the unilateral problem (1.7), (1.2), (1.3), (2.6) and hence KN is one
part of the set of corresponding critical points.

The other type of solutions are those, for which the obstacle is ‘active’ and they
are broken in the derivative of v (we write one-sided derivatives in (2.6)). The
smoothness of activator u remains ‘full’, i.e. u ∈ C[0, `] ∩ C2(0, `) but

v ∈ C[0, `] ∩ C2(0, x1) ∩ C2(x1, `)
and (1.7) separates to two systems, on (0, x1) and on (x1, `), and four conditions
connecting the left (uL, vL) and right (uR, vR) solutions appear from (2.6)
(2.7) uL(x1) = uR(x1) , u′L(x1−) = u′R(x1+) , vL(x1) = 0 , vR(x1) = 0 ,
together with the proper sign of the jump of derivatives
(2.8) v′(x1−) ≥ v′(x1+) .
Expressing general solution on (0, x1) and on (x1, `) and using BCs (1.2), (1.3) and
conditions (2.7) we obtain a linear system for 8 coefficients AL, BL, CL, DL and
AR, BR, CR, DR. Determinant of the matrix corresponding to this linear system
is the desired function Fx1(d1, d2), positive roots of which are critical points
corresponding to solutions satisfying v(x1) = 0 (they touch the obstacle) and
which can be (obstacle is not active) or are not (obstacle is active and breaks v)
C1-smooth on the whole domain (0, `).

Lemma 2.6 ([3]). The set of critical points Kx1 to the BVP (1.7) on (0, x1) and
on (x1, `) with (1.2), (1.3), (2.7) are the roots of the complex-valued function

Fx1(d1, d2) = r1
r2

(
S1(x1) + S1(`− x1) C1(x1)

C1(`−x1)

)
− R1

R2
C1(x1)

(
S2(`−x1)
C2(`−x1) + S2(x1)

C2(x1)

)
.

The profiles of the corresponding non-trivial solutions for (d1, d2) ∈ Kx1 are

(2.9)
uL(x) = AL(C1(x)− β1(d)C2(x)) ,
vL(x) = −AL

d1(r2
1C1(x)−β1(d)r2

2C2(x))+b11(C1(x)−β1(d)C2(x))
b12

on (0, x1) and

(2.10)
uR(x) = ALβ3(d)(C1(`− x)− β2(d)C2(`− x)) ,
vR(x) = −ALβ3(d)d1(r2

1C1(`−x)−β2(d)r2
2C2(x))+b11(C1(`−x)−β2(d)C2(`−x))

b12

on (x1, `) with arbitrary AL ∈ R and

β1(d) = R1C1(x1)
R2C2(x1) , β2(d) = R1C1(`− x1)

R2C2(`− x1) , β3(d) = C1(x1)
C1(`− x1) .

Proof. The expressions follow from [3, Section 5.5]. �
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Theorem 2.7. The set of critical points Ux1 to the unilateral BVP (1.7), (1.2),
(1.3) and (2.6) is given by

Ux1 = KN ∪Kx1 =
∞⋃
n=1

Hn ∪ {(d1, d2) ∈ R2
+ : Fx1(d1, d2) = 0} .

The profiles of the corresponding non-trivial solutions for (d1, d2) lying on Hn or
in Kx1 are given by (2.3) or by (2.9), (2.10), with any A or AL having the proper
sign, i.e. such that v(x1) ≥ 0 or (2.8) holds, respectively.

Proof. The assertion follows from the analogy of Lemma 2.1 together with Lem-
mas 2.2 and 2.6. �

3. Two unilateral obstacles for inhibitor

3.1. Two obstacles from below. Let us focus now on the example of two
one-sided obstacles at x = x1 and at x = ` (both acting from below) for v,
i.e., we will consider the BVP (1.7), (1.2), (2.1) and (2.6). Two obstacles mean that
there is no analogy of Lemma 2.1. We can still decompose the task: the critical
points are such pairs (d1, d2) for which the corresponding solutions have no active
contact with obstacles or for which only one or even both obstacles are active. In
the last cas we have

Lemma 3.1. The set of critical points Kx1` to the BVP (1.7) on (0, x1) ∪ (x1, `)
with (1.2), (2.2), (2.7) are positive pairs (d1, d2) for which the algebraic linear
system

(3.1)

r1(AR −BR) + r2(CR −DR) = 0 ,
R1(AR +BR) +R2(CR +DR) = 0 ,
R1(ARer1x1 +BRe

−r1x1) +R2(CRer2x1 +DRe
−r2x1) = 0 ,

ARe
r1x1 +BRe

−r1x1 + CRe
r2x1 +DRe

−r2x1 = ALC1(x1)
(

1− R1
R2

)
,

r1
r2

(ARer1x1−BRe−r1x1) + CRe
r2x1−DRe

−r2x1 = ALC1(x1)
(
r1
r2
− R1

R2

)
,

has a non-trivial solution (AL, AR, BR, CR, DR). Then the nontrivial left and right
solutions (uL, vL) and (uR, vR) of our BVP are given by (2.9) and (2.4) with this
AL and (AR, BR, CR, DR), respectively.

Proof. We obtain (3.1) by using boundary and inner conditions (1.2), (2.2), (2.7)
for general solution (2.4) considered on (0, x1) and on (x1, `). �
Theorem 3.2. The set of critical points Ux1` to the unilateral BVP (1.7), (1.2),
(2.1) and (2.6) is given by
(3.2) Ux1` ⊂ (KN ∪Kx1 ∪KD ∪Kx1`)
such that the profiles of the corresponding non-trivial solutions satisfy both (2.1)
and (2.6).

Remark 3.3. Nodal properties of the v-part of corresponding non-trivial solutions
are preserved along the individual branches of critical points only to purely Neumann
BVP (i.e. only along hyperbolas Hn). This is not true in general for the unilateral
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Fig. 1: Critical points KS (Hn for n = 1, 2, 3, 4, and violet KD) for BVP (1.7), (1.2),
(2.1). Profile of solution (u, v) for (d1, d2) = (0.913, 2) ∈ KD on the horizontal branch

and for (d1, d2) = (0.407, 10) ∈ KD on the second violet branch.

BVPs. Therefore, it strongly depends on the location of x1 ∈ (0, `) which parts
of these branches are simultaneously critical points also for the 2-obstacles BVP.
Hence we can not characterize explicitely Ux1` by the equality in (3.2).
Remark 3.4. Numerically it seems that the nodal properties of v are preserved
along a large part of the right-most branches (going to the right which seems to
be bounded in d2) of KD, Kx1 as well as of Kx1`. This boundedness perfectly fits
with the theoretical results for BVPs with unilateral conditions prescribed on the
boundary, see [1, 2, 4]. As far as (more precisely, as close as to the origin) we can
go with d = (d1, d2) along the right-most branches while the profile of v satisfies
simultaneously sharp inequality in (2.8) and v(`) ≥ 0, such d belongs also to Ux1`.
3.2. Two obstacles from opposite sides. Let us consider the similar BVP but
with obstacles acting from the opposite sides and without loss of generality take
(3.3) v(x1) ≤ 0, v′(x1−) ≤ v′(x1+), v(x1)(v′(x1−)− v′(x1+)) = 0
instead of (2.6). We obtain an analogue of Theorem 3.2 with different subset U−x1`

of KN ∪Kx1 ∪KD ∪Kx1`. Irrespectively to Remark 3.4, if d ∈ KD or d ∈ Kx1 lies
on the righ-most branch and close enough to the origin, v with proper sign of A or
AL, resp., satisfies both (3.3) and v(`) ≥ 0, hence such d ∈ U−x1`

.
Remark 3.5. The second right-most branch of Kx1` lies completely to the right
from all Hn, i.e., in the domain of stability DS of the trivial solution.

Let d ∈ Kx1` be from the second right-most branch. Let the corresponding v
satisfy (2.8). Then numerically we observe that this inequality is sharp. Moreover,
v′(`) ≥ 0 (hence d ∈ Ux1`) or v′(`) ≤ 0 (hence (−u,−v) satisfies (2.1) and (3.3), so
d ∈ U−x1`

) for d being sufficiently close to or far from, respectively, the origin.

4. Examples and numerical results for given obstacles

Let us consider unilateral BVP (1.7), (1.2), (2.1) with a matrix B =
(

1 −2
2 −2

)
.

The set of critical points KS from Lemma 2.3 and Theorem 2.5 is visible on Fig. 1.
One can observe just one branch going to the right and being bounded in d2. This
branch are the only critical points from KD and hence from KS lying in DS , i.e.
to the right from all hyperbolas Hn. The other branches belong to DU .
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STABILIZATION IN DEGENERATE PARABOLIC EQUATIONS
IN DIVERGENCE FORM AND APPLICATION

TO CHEMOTAXIS SYSTEMS

Sachiko Ishida and Tomomi Yokota

Abstract. This paper presents a stabilization result for weak solutions of
degenerate parabolic equations in divergence form. More precisely, the result
asserts that the global-in-time weak solution converges to the average of the
initial data in some topology as time goes to infinity. It is also shown that the
result can be applied to a degenerate parabolic-elliptic Keller-Segel system.

1. Introduction: stabilization result

Let Ω ⊂ RN (N ∈ N) be a bounded domain with smooth boundary ∂Ω. Then we
consider the initial-boundary value problem for the degenerate parabolic equation,

(1.1)


ut = ∇ · (f(u)∇u+ g(u, x, t)) , x ∈ Ω, t > 0 ,
(f(u)∇u+ g(u, x, t)) · ν = 0 , x ∈ ∂Ω, t > 0 ,
u(x, 0) = u0(x) , x ∈ Ω ,

where f is supposed to be a non-negative function satisfying

f ∈ C([0,∞)) ∩ C2((0,∞)) ,(1.2)
f(σ) ≥ k0σ

m−1 with some k0 > 0, m ≥ 1 (∀σ ≥ 0) , lim sup
σ↘0

σf ′(σ) <∞ ,(1.3)

and moreover, g is assumed to be a vector-valued function approximated by
gε ∈ C([0,∞) × Ω × [0,∞); RN ) ∩ C1,1,0([0,∞) × Ω × (0,∞); RN ) with some
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{ε} ⊂ (0, 1) fulfilling ε→ 0 such that for all T > 0,

0 ≤ wε, w ∈ L∞(0, T ;L∞(Ω)) ,(1.4)
wε → w a.e. on Ω× (0, T ) and weakly* in L∞(0, T ;L∞(Ω))
⇒ gε(wε, ·, ·)→ g(w, ·, ·) weakly in L2(0, T ; (L2(Ω))N ) ,

0 ≤ w ∈ L∞(0,∞;L∞(Ω)) with ‖w‖L∞(0,∞;L∞(Ω)) ≤ c(1.5)
⇒ ‖gε(w, ·, ·)‖L2(0,∞;(L2(Ω))N ) ≤M(c) ,

where M(c) ≥ 0 is a constant depending on c.
We first state the definition of weak solutions to (1.1) as follows:

Definition 1.1. A non-negative function u(x, t) defined in Ω× (0,∞) is called a
global weak solution of (1.1) if the following conditions are satisfied for all T > 0:

– u ∈ L∞(0, T ;L∞(Ω)),

–
∫ u

0
f(σ) dσ ∈ L2(0, T ;H1(Ω)), g(u, x, t) ∈ L2(0, T ; (L2(Ω))N ),

– u fulfills (1.1) in the distributional sense: for every ϕ ∈ L2(0, T ;H1(Ω)) ∩
W 1,1(0, T ;L1(Ω)) with suppϕ(x, ·) ⊂ [0, T ) (a.a. x ∈ Ω),∫ T

0

∫
Ω

(
∇
(∫ u

0
f(σ) dσ

)
· ∇ϕ− g(u, x, t) · ∇ϕ− uϕt

)
dx dt

=
∫

Ω
u0(x)ϕ(x, 0) dx .

We next give the following approximate problem:
(uε)t = ∇ · (f(uε + ε)∇uε + gε(uε, x, t)) , x ∈ Ω, t > 0 ,(
f(uε + ε)∇uε + gε(uε, x, t)

)
· ν = 0 , x ∈ ∂Ω, t > 0 ,

uε(x, 0) = u0ε(x) , x ∈ Ω ,

(1.6)

where gε ∈ C([0,∞) × Ω × [0,∞); RN ) ∩ C1,1,0([0,∞) × Ω × (0,∞); RN ) with
some {ε} ⊂ (0, 1) fulfilling ε→ 0 is an approximation of g, which also appears in
(1.4), (1.5). The initial data u0ε is the regularization of u0 such that u0ε ∈ C∞0 (Ω)
and u0ε → u0 in Lp(Ω) as ε→ 0 for any p ∈ [1,∞). For example, we define it as
u0ε := [ζε(ρε∗ũ0)]|Ω, where ũ0 denotes the zero extension of u0 on RN . The function
ρε is the mollifier such that 0 ≤ ρε ∈ C∞0 (RN ), supp ρε ⊂ B(0, ε),

∫
RN ρε(x) dx = 1,

and ζε is the cut-off function defined as ζε(x) := ζ(εx), where ζ is a fixed function
in C∞0 (RN ) such that 0 ≤ ζ ≤ 1, ζ(x) = 1 (|x| ≤ 1), ζ(x) = 0 (|x| ≥ 2). We assume
that (1.6) possesses global classical solutions uε ∈ C0(Ω× [0,∞))∩C2,1(Ω×(0,∞)).

We now present a stabilization result established in [7].

Theorem 1.2. Let f , g satisfy (1.2), (1.3), (1.4), (1.5) and u0 ∈ L∞(Ω), u0 ≥ 0.
Let uε be a global classical solution of (1.6). Suppose that there exists a constant
umax > 0, which is independent of ε and t, such that

‖uε(t)‖L∞(Ω) ≤ umax for all t > 0 .
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Then there exists a global weak solution to (1.1), which is given by

uε → u weakly* in L∞(0,∞;L∞(Ω)) as ε→ 0

for some subsequence of {ε}, satisfying

u ∈ Cw−∗([0,∞);L∞(Ω)) ,
‖u(t)‖L∞(Ω) ≤ umax for all t ≥ 0 ,
u(t)→ u0 weakly* in L∞(Ω) as t→∞ ,

where u0 :=
∫

Ω u0(x) dx.

The above theorem is applicable to some degenerate parabolic equations with
drift terms in divergence form, whereas a similar result on stabilization in the
case of non-divergence form with reaction terms has already been developed by [9].
In [7] we applied Theorem 1.2 to a parabolic–parabolic Keller-Segel system with
degenerate diffusion. In this paper we give another application.

2. Application to chemotaxis systems

Consider the following degenerate parabolic–elliptic Keller-Segel system:

(2.1)


ut = ∇ · (D(u)∇u− u∇v) , x ∈ Ω, t > 0 ,
0 = ∆v − v + u , x ∈ Ω, t > 0 ,(
D(u)∇u+ S(u)∇v

)
· ν = ∇v · ν = 0 , x ∈ ∂Ω, t > 0 ,

u(x, 0) = u0(x) , x ∈ Ω ,

where Ω ⊂ RN (N ∈ N) is a bounded domain with smooth boundary ∂Ω. Assume
that the diffusivity function D fulfills the following conditions:

D ∈ C([0,∞)) ∩ C2((0,∞)),(2.2)
D(σ) ≥ k0σ

m−1 (σ ≥ 0) with some k0 > 0, m ≥ 1, lim sup
σ↘0

σD′(σ) <∞(2.3)

and that the initial data (u0, v0) satisfies

(2.4) u0 ≥ 0 , u0 ∈ L∞(Ω) .

We define weak solutions of (2.1).

Definition 2.1. A couple (u, v) of non-negative functions satisfying the following
is called a global weak solution of (2.1):
• u ∈ L∞(0, T ;L∞(Ω)),

∫ u
0 D(σ) dσ ∈ L2(0, T ;H1(Ω)) for all T > 0,

• v ∈ L∞(0, T ;W 1,∞(Ω)) for all T > 0,
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• (u, v) fulfills (2.1) in the distributional sense: for all ϕ ∈ L2(0, T ;H1(Ω)) ∩
W 1,1(0, T ;L1(Ω)) with suppϕ(x, ·) ⊂ [0, T ) (a.a. x ∈ Ω),∫ T

0

∫
Ω

(
∇
(∫ u

0
D(σ) dσ

)
· ∇ϕ− u∇v · ∇ϕ− uϕt

)
dx dt

=
∫

Ω
u0(x)ϕ(x, 0) dx ,∫ T

0

∫
Ω

(∇v · ∇ϕ+ vϕ− uϕ) dx dt = 0 .

In this section we deal with the sub-critical case that 2 − 2
N < m, where

m = 2 − 2
N is the critical exponent whether (2.1) possesses a global bounded

solution or not. In view of the results in [10] which dealt with a general quasilinear
chemotaxis term with N ≥ 3, solutions are global and bounded if 2 − 2

N < m,
whereas there are many initial data producing unbounded solutions if m < 2− 2

N .
A similar situation is found in the parabolic-parabolic system: for boundedness in
the case 2− 2

N < m, see [5, 12, 14] on bounded domains, [6, 13] on the whole space;
for blow-up in the case m ≤ 2− 2

N , see [2, 4, 11] and [16].
We would like to turn to the asymptotic behavior of global solutions. To the

best of our knowledge, there are few papers on this topic, e.g., the sub-critical
parabolic–parabolic case is studied in [1, 3, 8] and [15]. For instance, the solution
(u, v) of non-degenerate systems converges to (u0, u0) in (L∞(Ω))2, where u0 :=

1
|Ω|
∫

Ω u0(x) dx, under some smallness condition for initial data ([1, 3, 15]), whereas,
when m ≥ 2, an energy solution (u, v) tends to a non-negative stationary solution
(U, V ) which is potentially non-constant or constant equilibria ([8]). From these
results, solvability has already been achieved for 2− 2

N < m and stabilization has not
been achieved in the case that 2− 2

N < m < 2. In [7] we could establish stabilization
in the fully parabolic version of (2.1) by applying Theorem 1.2. However, there
seems to be still room for consideration in the parabolic–elliptic Keller–Segel system
(2.1). In this section, we will extend the range of the application of Theorem 1.2.

In stating the main theorem, we use the constant in the Poincaré inequality
through the embedding W 1,α(Ω) ↪→ L2(Ω) for any α ≥ 2N

N+2 :

‖ψ − ψ‖2L2(Ω) ≤ kP‖∇ψ‖
2
Lα(Ω) (∀ψ ∈W 1,α(Ω)),(2.5)

where ψ := 1
|Ω|
∫

Ω ψ and kP = kP(α,N,Ω) is a positive constant.

Theorem 2.2. Let D satisfy the conditions (2.2), (2.3) with

2− 2
N

< m ≤ 2 .

Let (u0, v0) satisfy (2.4) and assume that

(2.6) ‖u0‖2−mL1(Ω) <
k0
kP

,
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where kP is the same one as in (2.5) with α = 2
3−m . Then, there exists a global

weak solution (u, v) of (2.1) which satisfies

u ∈ Cw−∗([0,∞);L∞(Ω)),
‖u(t)‖L∞(Ω) ≤ umax for all t ≥ 0,
‖v(t)‖W 1,∞(Ω) ≤ vmax for all t ≥ 0,
u(t)→ u0 weakly* in L∞(Ω) as t→∞,
v(t)→ u0 strongly in L∞(Ω) as t→∞ ,(2.7)

where umax, vmax ≥ 0 are constants that appear in Lemma 2.3 and u0 := 1
|Ω|
∫

Ω u0.

As in Theorem 1.2, we consider the approximate problem

(2.8)


(uε)t = ∇ · (D(uε + ε)∇uε)−∇ · (uε∇vε) , x ∈ Ω, t > 0 ,
0 = ∆vε − vε + uε , x ∈ Ω, t > 0 ,
∂uε
∂ν = ∂vε

∂ν = 0 x ∈ ∂Ω, t > 0 ,
uε(x, 0) = [ζε(ρε ∗ ũ0)]|Ω , x ∈ Ω ,

where ũ0 denotes the zero extension of u0 on RN , ρε is the mollifier and ζε is the
cut-off function.

We first give existence of global bounded solutions to the approximate problem
(2.8), which can be proved by the same way as in [6] for the fully parabolic case;
note that in the parabolic-elliptic case it suffices to replace ∆v with v − u instead
of the use of the maximal Sobolev regularity in [6, (28)].

Lemma 2.3. Assume that D satisfy the conditions (2.2), (2.3) with 2− 2
N < m.

Then for any initial data satisfying (2.4), there exists a pair (uε, vε) of non-negative
functions

uε, vε ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)) ,(2.9)

which solves (2.8) classically, and (uε, vε) fulfills

‖uε(t)‖L∞(Ω) ≤ umax, ‖vε(t)‖W 1,∞(Ω) ≤ vmax for all t ∈ (0, T ) ,

where umax, vmax are positive constants which are independent of t, ε. Moreover,
there exist a subsequence {εn}n ⊂ {ε} and non-negative functions

u ∈ L∞(0,∞;L∞(Ω)), v ∈ L∞(0,∞;W 1,∞(Ω))

such that

uεn → u weakly* in L∞(0,∞;L∞(Ω)),
uεn → u a.e. on Ω× (0,∞),
vεn → v weakly* in L∞(0,∞;W 1,∞(Ω))(2.10)

as n→∞.
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In order to apply Theorem 1.2, we will verify the conditions (1.2)–(1.5) with

f(σ) = D(σ) , g(w, x, t) = w∇v , gε(w, x, t) = w∇vε ,

where ε := εn for large n. In the following proof, ci (i = 1, 2, · · · ) denote positive
constants independent of t and ε.
Proof of Theorem 2.2. We first observe that (1.2) and (1.3) are satisfied by
(2.2) and (2.3). In view of (2.9) we can define gε ∈ C([0,∞)× Ω× [0,∞); RN ) ∩
C1,1,0([0,∞)× Ω× (0,∞); RN ) as

gε(w, x, t) := w∇vε ,

where {ε} ⊂ (0, 1) fulfilling ε→ 0 is defined as ε := εn appearing in Lemma 2.3 for
large n. From now on we omit the proviso that ε→ 0.

Next, we will confirm (1.4). Let wε, w be non-negative functions which belong
to L∞(0, T ;L∞(Ω)) for all T > 0 and satisfy

wε → w a.e. on Ω× (0, T ) and weakly* in L∞(0, T ;L∞(Ω)) .

Since there exists c1 such that ‖wε‖L∞(0,T ;L∞(Ω)) ≤ c1, we see from the Lebesgue do-
minated convergence theorem that wε → w strongly in L2(0, T ;L2(Ω)). Combining
this convergence with (2.10) ensures that

gε(wε, ·, ·)→ w∇v = g(w, x, t) weakly in L2(0, T ; (L2(Ω))N ) .

We next consider (1.5). Let w ∈ L∞(0,∞;L∞(Ω)) with ‖w‖L∞(0,∞;L∞(Ω)) ≤ c2.
Then we have ∫ ∞

0

∫
Ω
|gε(w)|2 dx dt ≤ c22

∫ ∞
0

∫
Ω
|∇vε|2 dx dt .(2.11)

Set
zε(t) := vε(t)− vε(t) = vε(t)−

1
|Ω|

∫
Ω
vε(t).

Then, due to vε(t) = u0ε, which is obtained by integrating the second equation in
(2.8) over Ω, zε satisfies

(2.12)
{

0 = ∆zε − zε + (uε − u0ε) , x ∈ Ω, t > 0 ,
∇zε · ν = 0 , x ∈ ∂Ω .

Testing the equation in (2.12) by uε − u0ε and zε, we obtain

0 = −
∫

Ω
∇uε · ∇vε dx−

∫
Ω

(uε − u0ε)zε dx+
∫

Ω
(uε − u0ε)2 dx,

0 = −
∫

Ω
(|∇zε|2 + |zε|2) dx+

∫
Ω

(uε − u0ε)zε dx .

From the first equation in (2.8) we see that
d

dt

∫
Ω

(uε log uε − uε) dx = −
∫

Ω

D(uε + ε)
uε

|∇uε|2 dx+
∫

Ω
∇vε · ∇uε dx .
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Adding the above three identities, we have

d

dt

∫
Ω

(uε log uε − uε) dx(2.13)

= −
∫

Ω
(|∇zε|2 + |zε|2) dx−

∫
Ω

D(uε + ε)
uε

|∇uε|2 dx+
∫

Ω
(uε − u0ε)2 dx .

The condition (2.6) and m ≤ 2 help us to control the last term on the right-hand
side of the above identity by the second term on the same side. The fact that
W 1, 2

3−m (Ω) ↪→ L2(Ω) as 2− 2
N < m and (2.5) provide the constant kP such that

‖uε(t)− u0ε‖2L2(Ω) ≤ kP‖∇uε(t)‖2
L

2
3−m (Ω)

.

From Hölder’s inequality along with ‖uε(t)‖L1(Ω) ≤ ‖u0‖L1(Ω) (∀t ≥ 0) we infer

‖∇uε(t)‖2
L

2
3−m (Ω)

≤
(∫

Ω

|∇uε|2

(uε + ε)2−m dx

)
(‖u0‖L1(Ω) + ε|Ω|)2−m.

Thanks to (2.3), it clearly holds that∫
Ω

|∇uε|2

(uε + ε)2−m dx ≤ 1
k0

∫
Ω

D(uε + ε)
uε

|∇uε|2 dx .

Connecting the above three estimates, we obtain

‖uε(t)− u0ε‖2L2(Ω) ≤
kP
k0

(‖u0‖L1(Ω) + ε|Ω|)2−m
∫

Ω

D(uε + ε)
uε

|∇uε|2 dx .(2.14)

By virtue of (2.6), if we take ε0 small enough to fit

kP
k0

(‖u0‖L1(Ω) + ε|Ω|)2−m − 1 < 0 (ε ∈ (0, ε0)) ,

then (2.13) together with (2.14) warrants that for ε ∈ (0, ε0),

d

dt

∫
Ω

(uε log uε − uε) dx ≤ −
∫

Ω
(|∇zε|2 + |zε|2) dx− c3

∫
Ω

D(uε + ε)
uε

|∇uε|2 dx ,

where c3 = 1 − kP
k0

(‖u0‖L1(Ω) + ε0|Ω|)2−m > 0. Integrating this inequality with
respect to the time variable provides c4 such that for ε ∈ (0, ε0),∫ ∞

0

∫
Ω
|∇vε|2 dx dt =

∫ ∞
0

∫
Ω
|∇zε|2 dx dt

≤ −
∫

Ω
(uε log uε − uε) dx+

∫
Ω

(u0ε log u0ε − u0ε) dx

≤ c4(2.15)

in light of boundedness of f(ξ) = |ξ log ξ − ξ| for ξ ∈ [0, umax]. Plugging (2.15)
into (2.11), we deduce that (1.5) holds. Thus, we can apply Theorem 1.2 to the
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parabolic-elliptic Keller-Segel system (2.1), so that there exists a global weak
solution (u, v) fulfilling

u ∈ Cw−∗([0,∞);L∞(Ω)) ,
‖u(t)‖L∞(Ω) ≤ umax for all t ≥ 0 ,
u(t)→ u0 weakly* in L∞(Ω) as t→∞ .

Moreover, from the Sobolev embedding W 2,N+1(Ω) ↪→ W 1,∞(Ω) and elliptic
regularity as well as ‖u(t)‖L∞(Ω) ≤ umax (t ≥ 0) we have

‖v(t)‖W 1,∞(Ω) ≤ c5‖v(t)‖W 2,N+1(Ω) ≤ c6‖u(t)‖LN+1(Ω) ≤ c6|Ω|
1

N+1umax = vmax

with some c5, c6 > 0. We finally verify (2.7). Since u(t)→ u0 weakly in LN+1(Ω)
as t→∞, the compactness of (I−∆)−1 from LN+1(Ω) in W 1,N+1(Ω) implies that
v(t)− u0 = (I −∆)−1(u(t)− u0)→ 0 strongly in W 1,N+1(Ω) as t→∞ ,

and also strongly in L∞(Ω) by the Sobolev embedding theorem, which implies
(2.7). This completes the proof. �
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UNIFORM ATTRACTORS IN SUP-NORM FOR SEMI LINEAR
PARABOLIC PROBLEM AND APPLICATION TO THE ROBUST

STABILITY THEORY

Oleksiy Kapustyan, Olena Kapustian, Oleksandr Stanzytskyi,
and Ihor Korol

Abstract. In this paper we establish the existence of the uniform attractor for
a semi linear parabolic problem with bounded non autonomous disturbances
in the phase space of continuous functions. We applied obtained results to
prove the asymptotic gain property with respect to the global attractor of the
undisturbed system.

1. Introduction

Stability property of stationary points plays an important role in robust control
theory. The notion of input-to-state stability, firstly appeared in [23] now is widely
used to nonlinear systems of different nature [24]. Other approaches in the control
theory for nonlinear systems can be found in [2]–[11]. In recent years there have
appeared many papers devoted to adaptation of input-to-state stability theory
to infinite dimensional case [7]–[13]. One of the central object in the qualitative
theory of dissipative infinite-dimensional systems is a global attractor [19], [22].
Stability properties of global attractors, including impulsive perturbations, can
be found in [1]–[5], [9]. Recently in [6], [21] there have been obtained results
about input-to-state stability and asymptotic gain properties with respect to global
attractors of semi linear heat and wave equations in L2 space. This results requires
that the corresponding non autonomous problem generated semi process family
with uniform attractor [3] which tends to the global attractor of undisturbed system.
In the present paper we apply this scheme to the case of the phase space C0 of
continuous functions supplied with sup-norm. Similar results for other type of
perturbations were studied in [25], [26]. The work consists of two parts. In the
first part we set the problem, provide necessary definitions and auxiliary results,
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and prove that under suitable assumptions mild solutions of the perturbed system
generate a semi process family on C0 which has a uniform attractor. In the second
part we use this result to establish the asymptotic gain properties with respect to
the global attractor of the unperturbed system.

2. Setting of the problem and uniform attractors

We consider the following problem

(2.1)


∂u
∂t = Au+ f(u) + h(t, x) , (t, x) ∈ (0,∞)× Ω ,
u|∂Ω = 0 ,
u(0, x) = u0(x) ,

where u(t, x) is an unknown function, Ω ⊂ RN is a bounded domain with sufficiently
smooth boundary,

Au =
N∑

i,j=1

∂

∂xj

(
aij(x) ∂u

∂xi

)
+

n∑
i=1

bi(x) ∂u
∂xi

+ c(x)u .

Assume that

(2.2) −A is a strongly elliptic self adjoint operator with bounded sufficiently
smooth coefficients,

f : R→ R is locally Lipschitz, f(0) = 0 and

(2.3) ∃C > 0 such that ∀ |s| ≥ C s · f(s) ≤ 0 .
Assume that h ∈ L∞(0,+∞;X), where

X = C0(Ω) =
{
v ∈ C(Ω)|v = 0 on ∂Ω

}
supplied with the sup-norm ‖v‖X = sup

x∈Ω
|v(x)|. In the future we will use the spaces

H1 = W 1,2(Ω), H1
0 =

{
v ∈ H1, v|∂Ω = 0

}
, H2 = W 2,2(Ω), L2 = L2(Ω). We will

study qualitative behaviour of mild solutions of (2.1) in the phase space X.

Definition 2.1. The function u ∈ C([0, T ];X) is a mild solution of (2.1) with
initial data u0 ∈ X if for all t ∈ [0, T ] we have

(2.4) u(t) = T (t)u0 +
t∫

0

T (t− s)F (u(s))ds+
t∫

0

T (t− s)h(s) ds ,

where F : X → X, F (u)(x) = f(u(x)), T (t) is a C0 semigroup of bounded operators,
generated by A in X.

We prove that for all initial condition u0 ∈ X there exists a unique global mild
solution of (2.1) with u(0) = u0, which will be denoted by u(t) = Sh(t, 0, u0).

Taking the set Σ(h) of all time shifts of h we show that the semiprocess family
{Sσ}σ∈Σ(h) (see definition below) has uniform attractor ΘΣ(h) in the phase space
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X and, moreover, for the global attractor Θ of the unperturbed system (h ≡ 0) we
have:

(2.5) distX(ΘΣ(h),Θ)→ 0 as h→ 0 ,

where
distX(A,B) = sup

a∈A
inf
b∈B
‖a− b‖X .

Limit equality (2.5) allow us to get the following result concerning robust stability:
there exists a continuous strictly increasing function γ, vanishing at the origin,
such that ∀u0∈X

(2.6) lim
t→∞
‖Sh(t, 0, u0)‖Θ ≤ γ(‖h‖∞) ,

where
‖u‖Θ := inf

ξ∈Θ
‖ξ − u‖X , ‖h‖∞ = sup

t≥0
‖h(t)‖X .

To prove (2.5), (2.6) we need some auxiliary results. First let us assume that
h ∈ L2

loc(0,+∞;X). Then, using Lipschitz continuity of f , we can use the classical
result [17] (see Th. 1.4, Ch. 6) and claim that for every u0 ∈ X there exists T =
T (u0, h) > 0 such that there exists a unique mild solution of (2.1), u ∈ C([0, T ];X)
with u(0) = u0. Moreover, condition (2.3) allow us to use well-known comparison
principle [12] and deduce the following estimate holds

(2.7) ‖u(t)‖X ≤Me−λt‖u0‖X + MC1
λ

+
t∫

0

Me−λ(t−s)‖h(s)‖X ds ,

where constant C1 > 0 depends on f and positive constants M,λ are taken from
the inequality

(2.8) ‖T (t)‖ ≤Me−λt ∀ t ≥ 0 .

This estimate shows that every mild solution is global, i.e., defined on [0,+∞).
In the sequel we will use the following facts. It is known that A is the infinitesimal

generator of an analytic semigroup (still denoted by T (t)) in Lp(Ω), p ≥ 2 [17].
Both in Lp(Ω), p ≥ 2 and in X, we have the following estimates [3], [10]: there
exist c > 0, α ∈ (0, 1), δ ∈ ( 1

2 , 1) such that

∀u0 ∈ L2(Ω) ‖T (t)u0‖H2 ≤ c

t
‖u0‖L2 ,(2.9)

]3pt]∀u0 ∈ X ‖T (t)u0‖C1+α ≤ c

tδ
‖u0‖X .(2.10)

Let us consider linear nonhomogeneous problem

(2.11)
{
du
dt = Au+ g(t) ,
u|t=0 = u0 ∈ L2(Ω) ,

where g ∈ L2(0, T ;L2(Ω)) is a given function.



194 O. KAPUSTYAN, O. KAPUSTIAN, O. STANZYTSKYI AND I. KOROL

We consider mild solution of (2.11), i.e. u ∈ C([0, T ];L2(Ω)),

(2.12) u(t) = T (t)u0 +
t∫

0

T (t− s)g(s) ds .

It is known [17] that mild solution of (2.11) is a weak solution of (2.11), i.e.
u ∈ L2(0, T ;H1

0 ) such that ∀ v ∈ H1
0 , ∀ η ∈ C∞0 (0, T )

(2.13)
T∫

0

(u(t), v)η ds+
T∫

0

(A 1
2u(t), A 1

2 v)η ds =
T∫

0

(g(t), v)η ds ,

where (·, ·) is a scalar product in L2, ‖u‖ =
√

(u, u). Moreover, every weak solution
u of (2.11) is a mild continuous of (2.11) in [0, T ]. Additionally, if u0 ∈ H1

0 then
u ∈ C([0, T ];H1

0 )
⋂
L2(0, T ;H2), ut ∈ L2(0, T ;L2). All this facts help us to prove

the global existence result.
Now we are in position to construct the semi processes family, generated by the

equation (2.1).
Let h ∈ L∞(0,+∞;X) and let Σ(h) ⊂ L2

loc(0,+∞;X), (Σ(0) = {0}) be an
arbitrary shift invariant (i.e. ∀ d ∈ Σ(h), ∀ s ≥ 0 d(s+ ·) ∈ Σ(h)) topological space
generated by h.

Let us consider the problem (2.1) where h is replaced by d ∈ Σ(h)

(2.14)


∂u
∂t = Au+ f(u) + d(t, x) , (t, x) ∈ (0,∞)× Ω
u|∂Ω = 0 ,
u(0, x) = u0(x) ,

From the previous arguments we deduce that every solution of (2.14) is global. We
denote by

Sd(t, τ, uτ )
the solution of (2.14) at the moment t ≥ τ with initial data (τ, uτ ) ∈ [0,∞)×X.
Then the family {Sd(t, τ, uτ )}d∈Σ(h) generates a semiprocess family [19], i.e. ∀ t ≥
τ ≥ 0 ∀uτ ∈ X ∀ d ∈ Σ(h)

Sd(τ, τ, uτ ) = uτ ,

Sd(t, s, Sd(s, τ, uτ )) = Sd(t, τ, uτ ) ∀ t ≥ s ≥ τ ,
Sd(t+ p, τ + p, uτ ) = Sd(·+p)(t, τ, uτ ) ∀ p ≥ 0 .

Every semiprocess family satisfies the cocycle property
Sd(t+ p, 0, u) = Sd(·+p)

(
t, 0, Sd(p, 0, u)

)
.

In particular, for d ≡ 0
S0(t+ p, 0, u) = S0

(
t, 0, S0(p, 0, u)

)
,

i.e. S0 is a semigroup.
It is known [8] that under conditions (2.2), (2.3) the semigroup S0 processes a

global attractor Θ ⊂ X, that is
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1) Θ is a compact set;
2) Θ = S0(t, 0,Θ) ∀ t ≥ 0;
3) for every bounded set B ⊂ X

sup
u∈B

distX(S0(t, 0, u),Θ)→ 0 as t→∞ .

In the sequel we denote for Σ = Σ(h), B ⊂ X

SΣ(t, τ, B) =
⋃
d∈Σ

⋃
u∈B

Sd(t, τ, u) .

Definition 2.2. A compact set ΘΣ ⊂ X is called a uniform attractor of the
semiprocess family {Sd}d∈Σ if for every bounded set B ⊂ X we have

(2.15) distX(SΣ(t, 0, B),ΘΣ)→ 0 as t→∞ ,

and ΘΣ is the minimum among all closed sets satisfying (2.15).

The following well known result provides conditions for existence of uniform
attractor.

Lemma 2.3 ([3]). Let {Sd}d∈Σ be a semiprocess family with a first countable space
Σ, and

1) there exists a bounded set B0 ⊂ X such that for every bounded set B ⊂ X,

∃T = T (B) ∀ t ≥ T SΣ(t, 0, B) ⊂ B0 ;

2) ∀ dn ⊂ Σ ∀tn →∞ ∀ bounded {un} ⊂ X the sequence {Sdn(tn, 0, un)} is
precompact in X.

Then {Sd}d∈Σ has a uniform attractor ΘΣ.
If, additionally, for all t ≥ 0 the map

(2.16) X × Σ � (u, d)→ Sd(t, 0, u) ∈ X

is continuous, then ΘΣ is negatively invariant, i.e.

(2.17) ∀ t ≥ 0 ΘΣ ⊂ SΣ(t, 0,ΘΣ) .

Remark 2.4. From (2.17) we get inclusion: ΘΣ ⊂ B0.

Assume that

(2.18) h(t, x) =
K∑
j=1

hj(t)ϕj(x) ,

where K ≥ 1, hj ∈ L∞(0,+∞), ϕj ∈ X.
Let us put

W := cl(L2,w
loc

(0,+∞))K {(h1(·+ s), . . . , hK(·+ s)) s ≥ 0} ,

(2.19) Σ = Σ(h) =
{ K∑
j=1

dj(t)ϕj(x) | {d1, . . . , dK} ∈W
}
.
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It is known [22] that the set

Wg := clL2,w
loc

(0,+∞) {g(·+ s) | s ≥ 0}

is compact in L2,w
loc (0,+∞)⇔ ‖g‖+ := supt≥0

t+1∫
t

‖g(s)‖2Xds <∞. Moreover, such

a set is shift-invariant, and ∀ξ ∈Wg

‖ξ‖+ ≤ ‖g‖+ .

Therefore, the set Σ defined by (2.19) is shift-invariant, and

(2.20) ∀d ∈ Σ(h) ‖d‖+ ≤ ‖h‖∞ .

Theorem 2.5. Assume that conditions (2.2), (2.3), (2.18) take place. Then the
semiprocess family {Sd}d∈Σ generated by mild solutions of the problem (2.1), has a
uniform attractor AΣ, which satisfies (2.17).

Proof. For every d with ‖d‖+ <∞ inequality (2.7) implies

‖u(t)‖X ≤Me−λt‖u0‖X + MC1
λ

+ ‖d‖
1
2
+(1− e−λ)− 1

2 .

So, from (2.20) for every d ∈ Σ(h) we get that for all bounded B ⊂ X ∃T = T (B)
∀t ≥ T

(2.21) SΣ(t, 0, B) ⊂ B0 = {u ∈ X | ‖u‖X ≤ 1 + C} ,

for some positive constant C, which does not depend on B. Therefore, assumption
1) from Lemma 2.3 takes place. Moreover, for every bounded B ⊂ X and every
u(·) with u(0) = u0 there exists K = K(B) such that for all d ∈ Σ and all u0 ∈ B,
t ≥ 0

‖f(u(t))‖∞ ≤ K .

Then due to (2.10) for t > 0 and δ ∈
( 1

2 , 1
)

(2.22) ‖u(t)‖C1+α ≤ C

tδ
‖u0‖X +

t∫
0

C

sδ
Kds+

t∫
0

C

sδ
‖h‖∞ds ≤ r(t) .

Due to compact embedding C1+α b X and inclusions: for {dn} ⊂ Σ, tn → ∞,
‖un0‖X ≤ r

ξn = Sdn(tn, 0, un0 ) = Sdn(tn, tn − 1, Sdn(tn − 1, 0, un0 )) =

= Sdn(·+tn−1)(1, 0, Sdn(tn − 1, 0, un0 )) ⊂ SΣ(1, 0, B0)

for sufficiently large n ≥ 1, where B0 is taken from (2.21). So, we conclude that
{ξn} is precompact in X, and, therefore, semiprocess family {Sd}d∈Σ possesses a
uniform attractor ΘΣ. �

Let us prove (2.17). For this aim we prove the following result.
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Lemma 2.6. Assume that for dn = (dn1 , . . . , dnk ), d = (d1, . . . , dk)

(2.23) dn → d in
(
L2,w

loc (0,+∞)
)K

, un0 → u0 in X .

Then for all t ∈ [0, T ] we have

(2.24) un(t) = Sdn(t, 0, u0)→ u(t) = Sd(t, 0, u0) in X .

Proof. Due to (2.21) both {un} and {f(un)} are bounded in C([0, T ];X). Let us
consider un as a weak solution of (2.11) with right side

gn(t) = f(un) +
K∑
j=1

dnj (t)ϕj .

Then {gn} is bounded in L2(0, T ;X), {un} is bounded in L2(0, T ;H1
0 ), {unt} is

bounded in L2(0, T ;H−1). So, due to Aubin-Lions Lemma there exists a function
u ∈ C([0, T ];L2) such that up to subsequence:

un → u weakly in L2(0, T ;H−1) ,

un → u in L2(0, T ;L2) and almost everywhere (a.e.) in (0, T )× Ω ,

(2.25) ∀ t ∈ [0, T ] un(t)→ u(t) weakly in L2 .

Then f(un(t, x))→ f(u(t, x)) a.e. and, therefore,

gn → g = f(u) +
K∑
j=1

dj(t)ϕ weakly in L2(0, T ;L2) .

So, u is a weak solution of (2.11) with the right hand side g. Thus, due to the
previous arguments we have that u is a mild solution of (2.11) in L2 and, therefore,
a mild solution of (2.1) in L2. Then u is a mild solution of (2.1) in X. Indeed, due
to the (2.22) and (2.25) ∀ t ∈ [0, T ] un(t) → u(t) in X. Then for all t ∈ [0, T ]
u(t, ·) ∈ X ⇒ f(u(t, ·)) ∈ X ⇒ g ∈ L2(0, T ;X) ⇒ u(t) ∈ Sd(t, 0, u0). Lemma is
proved.

Property (2.24) implies (2.16), and, therefore, (2.17). Theorem is proved. �

3. Application to the robust stability theory

In this section we want to obtain asymptotic gain property (2.6).

Theorem 3.1. Under conditions (2.2), (2.3), (2.18) problem (2.1) for ‖h‖∞ ≤ R0
possesses asymptotic gain property w.r.t. global attractor Θ of the undisturbed
(h ≡ 0) system.

Proof. Let us assume that we have the limit property

(3.1) dist
(
ΘΣ(h),Θ

)
→ 0 as ‖h‖∞ → 0 .
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Let us prove that (3.1) implies (2.6). Indeed, according to construction Σ(0) = {0},
and h ∈ Σ(h). So, for u0 ∈ X, z ∈ ΘΣ(h) , t > 0, u(t) = Sh(t, 0, u0) we have: for
θ ∈ Θ:

‖u(t)− θ‖X ≤ ‖u(t)− z‖X + ‖z − θ‖X ⇒

inf
θ∈Θ
‖u(t)− θ‖X ≤ ‖u(t)− z‖X + inf

θ∈Θ
‖z − θ‖X ⇒

inf
θ∈Θ
‖u(t)− θ‖X ≤ inf

z∈ΘΣ(h)
‖u(t)− z‖X + sup

z∈ΘΣ(h)

inf
θ∈Θ
‖z − θ‖X ⇒

‖u(t)‖Θ ≤ distX
(
u(t),ΘΣ(h)

)
+ distX

(
ΘΣ(h),Θ

)
⇒

‖Sh(t, 0, u0)‖Θ ≤ distX
(
SΣ(h)(t, 0, u0),ΘΣ(h)

)
+ distX

(
ΘΣ(h),Θ

)
.

The first summand in the right part of this inequality tends to zero for every h.
Let us put

γ(s) := sup
‖h‖∞≤s

distX(AΣ(h), A) + s .

Due to (3.1) γ ∈ K and distX(ΘΣ(h),Θ) ≤ γ(‖h‖∞), so we have the required result.
Let us prove (3.1). Assume that (3.1) does not take place. It means that there
exists hn → 0 in L∞(0,+∞;X), there exist ε > 0 and zn ∈ ΘΣ(hn) such that
(3.2) dist(zn,Θ) ≥ ε .
From Theorem 2.5 we have that ΘΣ(h) ⊂ K, where compact K depends on R0 (see
estimation (2.22)). Then

zn ∈ ΘΣ(hn) ⊂ SΣ(hn)(t, 0,ΘΣ(hn)) ⊂ SΣ(hn)(t, 0,K) .
Therefore, zn = un(t) = Sdn(t, 0, ξn), where ξn → ξ in X, ‖dn‖+ ≤ ‖hn‖∞ → 0.
Then from Lemma 2.6
(3.3) un(t)→ u(t) = S0(t, 0, ξ) ⊂ S0(t, 0, B0) .
Due to the uniform attraction we can choose t > 0 such that

distX(S0(t, 0, B0),Θ) < ε

2 .

Then from (3.3)
zn → u(t) ∈ O ε

2
(Θ),

that is a contradiction with (3.2). Theorem is proved. �
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WEAK-STRONG UNIQUENESS FOR A CLASS
OF DEGENERATE PARABOLIC CROSS-DIFFUSION SYSTEMS

Philippe Laurençot and Bogdan-Vasile Matioc

Abstract. Bounded weak solutions to a particular class of degenerate par-
abolic cross-diffusion systems are shown to coincide with the unique strong
solution determined by the same initial condition on the maximal existence
interval of the latter. The proof relies on an estimate established for a relative
entropy associated to the system.

1. Introduction

Let Ω be a bounded domain of RN , N ≥ 1, with smooth boundary ∂Ω and outer
unit normal n, and assume that the constants a, b, c, and d satisfy
(1.1) (a, b, c, d) ∈ (0,∞)4 and ad > bc .

We consider the evolution equations

(1.2a)
∂tf = div

(
f∇[af + bg]

)
∂tg = div

(
g∇[cf + dg]

) } in (0,∞)× Ω ,

supplemented with homogeneous Neumann boundary conditions
(1.2b) ∇f · n = ∇g · n = 0 on (0,∞)× ∂Ω ,

and non-negative initial conditions
(1.2c) (f, g)(0) = (f in, gin) in Ω .

The porous medium equation [27] as well as the thin film Muskat problem [10]
arise as special cases of (1.2a).

We point out that (1.2a) is a quasilinear degenerate parabolic system with a full
diffusion matrix, so that the study of its well-posedness is already a challenging
issue. On the one hand, owing to its parabolic structure, the system (1.2) fits into
the theory developed in [2], from which the local existence and uniqueness of a
strong solution starting from an initial condition with positive components can be
inferred, see Theorem 2.1 below. However, comparison principles cannot be applied
in the context of (1.2) and the degeneracy featured in (1.2a) might lead to the
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breakdown of the positivity of the components in finite time and thus to that of
their regularity. As a consequence, strong solutions cannot be extended beyond
a finite time in general. On the other hand, non-negative global weak solutions
to (1.2), which are also bounded, are constructed in [20, 22], but the uniqueness
of such solutions is an open problem, even in dimension N = 1. This is in sharp
contrast with the porous medium equation for which several uniqueness results
for weak solutions are available in the literature, see [1, 3, 7, 21, 24, 25, 27] and
the references therein. It is actually the strong coupling in (1.2a) which makes it
difficult to generalize the methods from the above references to this two-phase
version of the porous medium equation.

The goal of this paper is to prove a weaker result, namely that, given a sufficiently
smooth initial condition (f in, gin) with positive components, all bounded weak solu-
tions to (1.2) coincide on the time interval on which the strong solution exists. For
that purpose, we shall rely on the availability of a suitable relative entropy functional,
an idea which has proved instrumental in several recent works on weak-strong unique-
ness/stability results for (systems of) partial differential equations. In particular, this
method has been applied in various settings such as: the compressible Navier-Stokes
system [11] and the Fourier-Navier-Stokes system [12], the (isentropic) Euler equa-
tions [5, 16], hyperbolic-parabolic systems [9], the Navier-Stokes-Korteweg and the
Euler-Korteweg systems [6, 15], the Navier-Stokes equation with surface tension [14],
(reaction-)cross-diffusion systems [8, 19], entropy-dissipating reaction-diffusion equa-
tions [13], energy-reaction-diffusion systems [17], and Maxwell-Stefan systems [18].

Before stating precisely our main result, let us first make precise the meaning
of weak and strong solutions to (1.2). Here and below, for p ∈ [1,∞], Lp,+(Ω,R2)
denotes the positive cone of Lp(Ω,R2); that is,

Lp,+(Ω,R2) := {(f, g) ∈ Lp(Ω,R2) : f ≥ 0 and g ≥ 0 a.e. in Ω} .

Definition 1.1 (Bounded weak solution). Assume (1.1) and let uin := (f in, gin)
be an element of L∞,+(Ω,R2). Given T ∈ (0,∞], a bounded weak solution u to (1.2)
on [0, T ) is a pair of functions u = (f, g) such that:

(i) for each t ∈ (0, T ),
(1.3) (f, g) ∈ L∞,+((0, t)×Ω,R2)∩L2((0, t), H1(Ω,R2))∩W 1

2 ((0, t), H1(Ω,R2)′) ;
(ii) for all ϕ ∈ H1(Ω) and t ∈ (0, T ),∫

Ω
(f(t, x)− f in(x))ϕ(x) dx

+
∫ t

0

∫
Ω
f(s, x)∇[af + bg](s, x) · ∇ϕ(x) dxds = 0(1.4a)

and ∫
Ω

(g(t, x)− gin(x))ϕ(x) dx

+
∫ t

0

∫
Ω
g(s, x)∇[cf + dg](s, x) · ∇ϕ(x) dxds = 0 .(1.4b)



WEAK-STRONG UNIQUENESS 203

Observe that the boundedness and weak differentiability required on f and g
in (1.3) guarantee that the integrals in (1.4) are finite.

We next turn to strong solutions to (1.2) and first introduce some notation: for
p > N and s ∈ (1 +N/p, 2], we set

Hs
p,B(Ω) := {z ∈ Hs

p(Ω) : ∇z · n = 0 on ∂Ω} ,

where Hs
p(Ω) denotes the Bessel potential space, see [2, Section 5] for instance, and

(1.5) Osp := {u = (f, g) ∈ Hs
p,B(Ω,R2) : f > 0 and g > 0 in Ω} .

We observe that the continuous embedding of Hs
p(Ω) in C1(Ω) for p > N and

s ∈ (1 +N/p, 2] guarantees that Osp is an open subset of Hs
p,B(Ω,R2).

Definition 1.2 (Strong solution). Assume (1.1) and let p > N , s ∈ (1 +N/p, 2),
T ∈ (0,∞], and uin = (f in, gin) ∈ Osp. A strong solution u to (1.2) on [0, T ) is a
pair u = (f, g) such that

u ∈ C([0, T ),Osp) ∩ C1((0, T ), Lp(Ω,R2)) ∩ C((0, T ), H2
p,B(Ω,R2)) ,

which satisfies (1.2) in a strong sense (and in particular a.e. in (0, T )× Ω).

One may easily check that a strong solution to (1.2) on [0, T ) in the sense of
Definition 1.2 is also a bounded weak solution on [0, T ) in the sense of Definition 1.1.
We emphasize here that strong solutions emanate from initial conditions with
positive components, while only non-negativity of initial conditions is required for
weak solutions.

The aim of this paper is to establish a weak-strong uniqueness result for (1.2)
as stated in Theorem 1.3 below. As in [13], the main tool to be used in the proof is
the relative entropy functional

(1.6) H(u1|u2) :=
∫

Ω

{[
f1 ln

(f1
f2

)
−(f1−f2)

]
+
b

c

[
g1 ln

(g1
g2

)
−(g1−g2)

]}
dx ,

which is well-defined for ui = (fi, gi) ∈ L2,+(Ω,R2), i = 1, 2, provided that f2 and
g2 are bounded from below by positive constants. It is important to remark that
H(u1|u2) controls the square of the L2-norm of u1− u2, see (2.14) below, if u1 and
u2 are additionally bounded functions.

The main step in the proof of Theorem 1.3 is to derive the integral inequality (1.7)
which measures the “distance” between a bounded weak solution in the sense of
Definition 1.1 and a strong solution in the sense of Definition 1.2. Gronwall’s
inequality then provides the weak-strong uniqueness property for the evolution
problem (1.2).

Theorem 1.3. Consider uin1 ∈ L∞,+(Ω,R2) and uin2 ∈ Osp for some s ∈ (1+N/p, 2)
and p > N . Let u2 = (f2, g2) be the strong solution to (1.2) with initial condition uin2
defined on its maximal existence interval [0, T+), T+ ∈ (0,∞], see Theorem 2.1 be-
low. If u1 = (f1, g1) is a bounded weak solution to (1.2) on [0, T+) with initial condi-
tion uin1 and T ∈ (0, T+), there exists a positive constant C = (a, b, c, d, u1, u2, T )
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such that

(1.7) H(u1(t)|u2(t)) ≤ H(uin1 |uin2 )+ C

∫ t

0
H(u1(s)|u2(s)) ds for all t ∈ [0, T ] .

In particular, if uin1 = uin2 ∈ Osp, then u1(t) = u2(t) for all t ∈ [0, T+).

We emphasize that Theorem 1.3 applies to any pair of initial conditions uin1 ∈
L∞,+(Ω,R2) and uin2 ∈ Osp for some s ∈ (1 + N/p, 2) and p > N . Indeed, the
existence of a bounded weak solution to (1.2) on [0,∞) with initial condition uin1
follows from [20, 22], while that of a strong solution to (1.2) on some maximal time
interval with initial condition uin2 is provided in Theorem 2.1 below.

2. Proof of the main result

We start this section by considering the evolution problem (1.2) in the setting
of strong solutions as specified in Definition 1.2. Using the quasilinear parabolic
theory developed in [2], we then prove in Theorem 2.1 that (1.2) is well-posed in
this strong setting. The remaining part is then devoted to the proof of Theorem 1.3.

2.1. Strong solutions to the evolution problem (1.2). In order to construct
strong solutions to (1.2) we reformulate (1.2a) in a suitable framework. For that
purpose, we fix p > N and s ∈ (1 +N/p, 2) and introduce the mobility matrix

(2.1) M(X) = (mjk(X))1≤j,k≤2 :=
(
aX1 bX1
cX2 dX2

)
, X = (X1, X2) ∈ R2 .

The problem (1.2) can then be recast as

(2.2) du
dt (t) = Φ(u(t))[u(t)], u(0) = uin ,

where the quasilinear operator Φ : Osp → L(H2
p,B(Ω,R2), Lp(Ω,R2)) is defined by

the relation

Φ(u)[v] := div(M(u)∇v) =
N∑
i=1

∂i(M(u)∂iv), u ∈ Osp, v ∈ H2
p,B(Ω,R2) .

Observing that, for u ∈ Osp, the matrix-valued functionM(u) belongs to C1(Ω,R2×2)
and that M(u(x)), x ∈ Ω, has its spectrum contained in the right-half plane
{Re z > 0}, we infer from [2, Theorem 4.1 and Example 4.3 (e)] that Φ(u) is, for
each u ∈ Osp, the generator of an analytic semigroup in L(Lp(Ω,R2)). Since

[Lp(Ω), H2
p,B(Ω)]s/2 = Hs

p,B(Ω) ,
where [·, ·] is the complex interpolation functor, see [26, Theorem 4.3.3], we may
now apply to (2.2) the quasilinear parabolic theory presented in [2, Section 12]
(see also [23, Remark 1.2 (ii)]) to obtain the following result.

Theorem 2.1. Let p > N , s ∈ (1 + N/p, 2), and assume that (1.1) is satisfied.
Then, given uin ∈ Osp, the problem (1.2) has a unique maximal strong solution

u ∈ C([0, T+),Osp) ∩ C1((0, T+), Lp(Ω,R2)) ∩ C((0, T+), H2
p,B(Ω,R2)) ,
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where T+ ∈ (0,∞] denotes the maximal existence time.

2.2. Proof of Theorem 1.3. Let T ∈ (0, T+). Since {u2(t) : t ∈ [0, T ]} is a
compact subset of Osp, there is σ ∈ (0, 1) (possibly depending on T ) such that, for
t ∈ [0, T ],

(2.3)
σ ≤ min

x∈Ω
min

{
f2(t, x), g2(t, x)

}
and

max
{
‖∇f2(t)‖∞, ‖∇g2(t)‖∞

}
≤ σ−1 .

Moreover, since u1 is a bounded weak solution, we may assume that also
(2.4) |u1(t, x)|+ |u2(t, x)| ≤ σ−1 a.e. in (0, T )× Ω .

Given η ∈ (0, 1), let

Hη(u1(t)|u2(t)) :=
∫

Ω

[
f1(t) ln

(f1(t) + η

f2(t)

)
− (f1(t)− f2(t))

]
dx

+
b

c

∫
Ω

[
g1(t) ln

(g1(t) + η

g2(t)

)
− (g1(t)− g2(t))

]
dx, t ∈ [0, T ] .

As a consequence of (2.4) and of Definition 1.1, we have ui(t) ∈ L∞(Ω,R2) for
i = 1, 2 and all t ∈ [0, T ], and the dominated convergence theorem, together with
the lower bound in (2.3), yields
(2.5) lim

η→0
Hη(u1(t)|u2(t)) = H(u1(t)|u2(t)) , t ∈ [0, T ] .

Furthermore, by virtue of Definition 1.1, Definition 1.2, (2.3), (2.4), and the
continuous embedding of Osp in C1(Ω,R2) we have

f1, g1 ∈ L2((0, T ), H1(Ω)) ∩W 1
2 ((0, T ), H1(Ω)′)

and
ln f2, ln g2 ∈ L2((0, T ), H1(Ω)) ∩W 1

2 ((0, T ), H1(Ω)′) .
These properties, together with (2.3), (2.4), and suitable versions of the Lions-Mage-
nes lemma, see, e.g., [4, Theorem II.5.12] and Lemma A.1, imply that

[t 7→ Hη(u1(t)|u2(t))] : [0, T ]→ R

is continuous and

(2.6)

Hη(u1(t)|u2(t))−Hη(uin1 |uin2 )

=
∫ t

0

〈
∂tf1, ln

(f1 + η

f2

)
+ f1
f1 + η

〉
(H1)′,H1

ds

−
∫ t

0

〈
∂tf2,

f1
f2

〉
(H1)′,H1

ds

+
b

c

∫ t

0

〈
∂tg1, ln

(g1 + η

g2

)
+ g1
g1 + η

〉
(H1)′,H1

ds

−
b

c

∫ t

0

〈
∂tf2,

f1
f2

〉
(H1)′,H1

ds
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for all t ∈ [0, T ], where 〈·, ·〉(H1)′,H1 is the duality bracket between H1(Ω) and
H1(Ω)′. Reformulating (2.6) with the help of (1.4), we find

Hη(u1(t)|u2(t))−Hη(uin1 |uin2 )

= −
∫ t

0

∫
Ω
f1∇(af1 + bg1) ·

( ∇f1
f1 + η

− ∇f2
f2

)
dxds

−
∫ t

0

∫
Ω

[
f1∇(af1 + bg1) · ∇

( f1
f1 + η

)
− f2∇(af2 + bg2) · ∇

(f1
f2

)]
dxds

−
b

c

∫ t

0

∫
Ω
g1∇(cf1 + dg1) ·

( ∇g1
g1 + η

− ∇g2
g2

)
dxds

−
b

c

∫ t

0

∫
Ω

[
g1∇(cf1 + dg1) · ∇

( g1
g1 + η

)
− g2∇(cf2 + dg2) · ∇

(g1
g2

)]
dxds .

Hence,

(2.7) Hη(u1(t) | u2(t))−Hη(uin1 |uin2 ) = T 1
η (t) + T 2(t) ,

where

T 1
η (t) := η2

∫ t

0

∫
Ω
∇(af1 + bg1) · ∇f1

(f1 + η)2 dxds

+ η2 b

c

∫ t

0

∫
Ω
∇(cf1 + dg1) · ∇g1

(g1 + η)2 dxds

and

T 2(t) :=−
∫ t

0

∫
Ω

[
∇(af1+bg1) ·

(
∇f1−

f1
f2
∇f2

)
−f2∇(af2+bg2) · ∇

(f1
f2

)]
dxds

−
b

c

∫ t

0

∫
Ω

[
∇(cf1+ dg1) ·

(
∇g1−

g1
g2
∇g2

)
−g2∇(cf2+dg2) · ∇

(g1
g2

)]
dxds .

In view of Definition 1.1 (i), both functions ∇(af1 +bg1) ·∇f1 and ∇(cf1 +dg1) ·∇g1
belong to L1((0, t)× Ω) and

lim
η→0

η2 ∇f1
(f1 + η)2 = 0

lim
η→0

η2∇ g1
(g1 + η)2 = 0

 a.e. in (0, t)× Ω ,

as∇f1 = 0 a.e. on {(s, x) : f1(s, x) = 0} and∇g1 = 0 a.e. on {(s, x) : g1(s, x) = 0}.
The dominated convergence theorem now implies that

(2.8) lim
η→0

T 1
η (t) = 0 for all t ∈ [0, T ] .

Hence, letting η → 0 in (2.7), we deduce from (2.5) and (2.8) that

(2.9) H(u1(t)|u2(t))−H(uin1 |uin2 ) = T 2(t) for t ∈ [0, T ] .
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With respect to T 2(t), we note that

(2.10)

T 2(t)
a

=−
∫ t

0

∫
Ω

[
∇f1 · ∇

(
f1+ b

a
g1

)
+ b

a
∇g1 · ∇

(
f1 + d

c
g1

)]
dxds

+
∫ t

0

∫
Ω

[
f1
f2
∇f2 · ∇

(
f1+ b

a
g1

)
+ b

a

g1
g2
∇g2 · ∇

(
f1+ d

c
g1

)]
dxds

+
∫ t

0

∫
Ω

[
∇f1 · ∇

(
f2+ b

a
g2

)
+ b

a
∇g1 · ∇

(
f2+ d

c
g2

)]
dxds

−
∫ t

0

∫
Ω

[
f1
f2
∇f2 · ∇

(
f2+ b

a
g2

)
+ b

a

g1
g2
∇g2 · ∇

(
f2+ d

c
g2

)]
dxds .

Introducing

T 2
I (t) := −

b(ad− bc)
ac

∫ t

0

∫
Ω

[
|∇g1|2 −

(
1 + g1

g2

)
∇g1 · ∇g2 + g1

g2
|∇g2|2

]
dxds

and T 2
II(t) := T 2(t)− T 2

I (t), we note that

T 2
I (t) = −b(ad− bc)

ac

∫ t

0

∫
Ω

[∣∣∣∇g1 −
1
2

(
1 + g1

g2

)
∇g2

∣∣∣2 − ∣∣∣g1 − g2
2g2

∇g2

∣∣∣2] dxds

≤ b(ad− bc)
ac

∫ t

0

∫
Ω

∣∣∣g1 − g2
2g2

∇g2

∣∣∣2 dxds ,(2.11)

thanks to (1.1). Furthermore, in view of the relation

d

c
= b

a
+ ad− bc

ac
,

T 2
II(t)
a

=−
∫ t

0

∫
Ω

∣∣∣∇(f1 + b

a
g1

)∣∣∣2 dxds

−
∫ t

0

∫
Ω
∇
(
f1 + b

a
g1

)
·
[(

1 + f1
f2

)
∇f2 + b

a

(
1 + g1

g2

)
∇g2

]
dxds

−
∫ t

0

∫
Ω
∇
(
f2 + b

a
g2

)
·
(f1
f2
∇f2 + b

a

g1
g2
∇g2

)
dxds

=−
∫ t

0

∫
Ω

∣∣∣∣∇(f1 + b

a
g1

)
− 1

2

[(
1 + f1

f2

)
∇f2 + b

a

(
1 + g1

g2

)
∇g2

]∣∣∣∣2 dxds

+ 1
4

∫ t

0

∫
Ω

∣∣∣(1 + f1
f2

)
∇f2 + b

a

(
1 + g1

g2

)
∇g2

∣∣∣2 dxds

−
∫ t

0

∫
Ω
∇
(
f2 + b

a
g2

)
·
(f1
f2
∇f2 + b

a

g1
g2
∇g2

)
dxds .
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Observing that

1
4

∣∣∣(1+ f1
f2

)
∇f2 + b

a

(
1 + g1

g2

)
∇g2

∣∣∣2 −∇(f2 + b

a
g2

)
·
(f1
f2
∇f2 + b

a

g1
g2
∇g2

)
= 1

4

∣∣∣∇(f2+ b

a
g2

)
+ f1
f2
∇f2+ b

a

g1
g2
∇g2

∣∣∣2−∇(f2+ b

a
g2

)
·
(f1
f2
∇f2+ b

a

g1
g2
∇g2

)
= 1

4

∣∣∣∇(f2+ b

a
g2

)
− f1
f2
∇f2 −

b

a

g1
g2
∇g2

∣∣∣2
= 1

4

∣∣∣(1− f1
f2

)
∇f2 + b

a

(
1− g1

g2

)
∇g2

∣∣∣2
≤ 1

2

∣∣∣f1 − f2
f2

∇f2

∣∣∣2 + b2

2a2

∣∣∣g1 − g2
g2

∇g2

∣∣∣2 ,
the last estimate resulting from Young’s inequality, we are led to

(2.12) T 2
II(t)
a
≤ 1

2

∫ t

0

∫
Ω

[∣∣∣f1 − f2
f2

∇f2

∣∣∣2 + b2

a2

∣∣∣g1 − g2
g2

∇g2

∣∣∣2] dxds .

On behalf of (2.9), (2.11), and (2.12) we conclude that

H(u1(t)|u2(t)) ≤ H(uin1 |uin2 ) + b(ad− bc)
ac

∫ t

0

∫
Ω

∣∣∣g1 − g2
2g2

∇g2

∣∣∣2 dxds

+ a

2

∫ t

0

∫
Ω

[∣∣∣f1 − f2
f2

∇f2

∣∣∣2 + b2

a2

∣∣∣g1 − g2
g2

∇g2

∣∣∣2] dxds .

Recalling (2.3), we deduce that there exists a positive constant C = C(a, b, c, d)
such that

(2.13) H(u1(t)|u2(t)) ≤ H(uin1 |uin2 ) + Cσ4
∫ t

0

∫
Ω

[
|f1 − f2|2 + b

c
|g1 − g2|2

]
dxds

for all t ∈ [0, T ]. In view of the inequality

(2.14) x ln
(x
y

)
− (x− y) ≥ 1

2
|x− y|2

max{x, y} , (x, y) ∈ [0,∞)× (0,∞) ,

which follows from [18, Lemma 18], it is not difficult to infer from (2.13), by taking
also into account the boundedness of u1 and u2 in (0, T ) × Ω provided by (2.4),
that

H(u1(t)|u2(t)) ≤ H(uin1 |uin2 ) + C

∫ t

0
H(u1(s)|u2(s)) ds(2.15)

for all t ∈ [0, T ]. This completes the proof of (1.7).
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Annexe A. A version of the Lions-Magenes lemma

In this section we establish a version of the Lions-Magenes lemma, see Lemma A.1
below, which is used in the proof of Theorem 1.3 when differentiating the mapping[

t 7→
∫

Ω
[f(t) ln(f(t) + η)− f(t)] dx

]
: (0, T )→ R , with η > 0 ,

for some appropriate non-negative function f . Before stating the result, we note
that the function Φ(s) := s ln (s+ η)− s, s ≥ 0, satisfies Φ′′(s) = (s+ 2η)/(s+ η)2,
s ≥ 0. Thus

‖Φ′′‖∞ <∞ .

Lemma A.1 (Lions-Magenes lemma). Let Ω ⊂ RN be a bounded open set and Φ ∈
C2(R) satisfy ‖Φ′′‖∞ <∞. Assume that

f ∈ L2((0, T ), H1(Ω)) ∩W 1
2 ((0, T ), H1(Ω)′) .

Then [
t 7→ I(t) :=

∫
Ω

Φ(f(t)) dx
]
∈ C([0, T ],R)

and for all 0 ≤ t0 ≤ t ≤ T we have

(A.1)
∫

Ω
Φ(f(t)) dx−

∫
Ω

Φ(f(t0)) dx =
∫ t

t0

〈
∂tf(τ),Φ′(f(τ))

〉
(H1)′,H1

dτ .

As we are lacking a precise reference for Lemma A.1, we include below a proof
for the sake of completeness. As a first step, we establish in Lemma A.2 an auxiliary
result which is used in the proof of Lemma A.1.

Lemma A.2. Let Ω ⊂ RN be a bounded open set and let f ∈ C1(I, L2(Ω)), where
I ⊂ R is an interval. Let further Φ ∈ C2(R) satisfy ‖Φ′′‖∞ =: L <∞. Then,[

t 7→ I(t) :=
∫

Ω
Φ(f(t)) dx

]
∈ C1(I,R)

and

(A.2) I ′(t) = d
dt

∫
Ω

Φ(f(t)) dx =
∫

Ω
Φ′(f(t))∂tf(t) dx, t ∈ I .

Proof. We may assume without loss of generality that Φ(0) = Φ′(0) = 0 (as the
claim is obvious for affine functions). Then

(A.3) |Φ(r)−Φ(s)| ≤ L(|r|+|s|)|r−s| , |Φ′(r)−Φ′(s)| ≤ L|r−s| , (r, s) ∈ R2 .

In particular, since Φ(0) = Φ′(0) = 0,

|Φ(f(t))| ≤ L|f(t)|2 and |Φ′(f(t))| ≤ L|f(t)| , t ∈ I ,

and it follows that

Φ(f(t)) ∈ L1(Ω) and Φ′(f(t))∂tf(t) ∈ L1(Ω) , t ∈ I .
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Let t 6= t0 ∈ I. We then have∣∣∣I(t)− I(t0)
t− t0

−
∫

Ω
Φ′(f(t0))∂tf(t0) dx

∣∣∣
≤
∫

Ω

∣∣∣Φ(f(t))− Φ(f(t0))
t− t0

− Φ′(f(t0))∂tf(t0)
∣∣∣dx

≤
∫

Ω

∫ 1

0

∣∣∣Φ′((1− s)f(t0) + sf(t))f(t)− f(t0)
t− t0

− Φ′(f(t0))∂tf(t0)
∣∣∣dsdx

≤ J1(t) + J2(t) ,
where

J1(t) :=
∫

Ω

∫ 1

0

∣∣∣Φ′((1− s)f(t0) + sf(t))
[f(t)− f(t0)

t− t0
− ∂tf(t0)

]∣∣∣dsdx ,
J2(t) :=

∫
Ω

∫ 1

0

∣∣∣[Φ′((1− s)f(t0) + sf(t))− Φ′(f(t0))]∂tf(t0)
∣∣∣ dsdx .

By (A.3), Hölder’s inequality, and the regularity of f ,

J1(t) ≤ L(‖f(t0)‖2 + ‖f(t)‖2)
∥∥∥f(t)− f(t0)

t− t0
− df

dt
(t0)

∥∥∥
2
→
t→t0

0 ,

J2(t) ≤ L‖f(t)− f(t0)‖2
∥∥∥∂tf(t0)

∥∥∥
2
→
t→t0

0 .

Therefore, I is differentiable at t0 and its derivative is given by (A.2). It next
readily follows from (A.3) and the regularity of f that Φ′(f) and ∂tf both belong
to C(I, L2(Ω)), from which we deduce that I ′ ∈ C(I) with the help of Hölder’s
inequality. �

We now recall a basic property which is used in the proof of Lemma A.1 below.
Let X, Y be Banach spaces such that the embedding of X in Y is continuous and
dense and let T > 0. Then, C∞([0, T ], X) is dense in

E2(X,Y ) := L2((0, T ), X) ∩W 1
2 ((0, T ), Y ) ,

see, e.g., [4, Lemma II.5.10].
Proof of Lemma A.1. Since C∞([0, T ], H1(Ω)) is dense in E2(H1(Ω), H1(Ω)′),
there is a sequence (fn)n≥1 ∈ C∞([0, T ], H1(Ω)) such that
(A.4) lim

n→∞
‖fn − f‖L2((0,T ),H1(Ω)) = lim

n→∞
‖∂tfn − ∂tf‖L2((0,T ),H1(Ω)′) = 0 .

Moreover, thanks to the continuous embedding of E2(H1(Ω), H1(Ω)′) in C([0, T ],
L2(Ω)), see, e.g., [4, Theorem II.5.13], we deduce from (A.4) that
(A.5) lim

n→∞
sup
t∈[0,T ]

‖fn(t)− f(t)‖2 = 0 .

Let 0 ≤ t0 ≤ t ≤ T . By Lemma A.2

(A.6)
∫

Ω
Φ(fn(t)) dx−

∫
Ω

Φ(fn(t0)) dx =
∫ t

t0

〈
∂tfn(τ),Φ′(fn(τ))

〉
(H1)′,H1 dτ .
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On the one hand, we infer from (A.3), (A.5), and Hölder’s inequality that

(A.7)
lim
n→∞

∫
Ω

Φ(fn(t)) dx =
∫

Ω
Φ(f(t)) dx and

lim
n→∞

∫
Ω

Φ(fn(t0)) dx =
∫

Ω
Φ(f(t0)) dx .

On the other hand, it readily follows from (A.3) and (A.4) that

lim
n→∞

∫ T

0
‖Φ′(fn(τ))− Φ′(f(τ))‖22 dτ = 0 .

Moreover, the boundedness and continuity of Φ′′, (A.4), and Lebesgue’s dominated
convergence theorem entail that

Φ′(fn) ∈ L2((0, T ), H1(Ω)) with ∇Φ′(fn) = Φ′′(fn)∇fn , n ≥ 1 ,
and

lim
n→∞

∫ T

0
‖Φ′′(fn(τ))∇fn(τ)− Φ′′(f(τ))∇f(τ)‖22 dτ = 0 .

Therefore,
lim
n→∞

‖Φ′(fn)− Φ′(f)‖L2((0,T ),H1(Ω)) = 0 .

Combining this convergence with (A.4), leads us to

(A.8) lim
n→∞

∫ t

t0

〈
∂tfn(τ),Φ′(fn(τ))

〉
(H1)′,H1 dτ

=
∫ t

t0

〈
∂tf(τ),Φ(f(τ))

〉
(H1)′,H1 dτ = 0 .

The identity (A.1) is then a direct consequence of (A.6), (A.7), and (A.8). �
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FINITE-TIME BLOW-UP IN A TWO-SPECIES
CHEMOTAXIS-COMPETITION MODEL

WITH SINGLE PRODUCTION

Masaaki Mizukami and Yuya Tanaka

Abstract. This paper is concerned with blow-up of solutions to a two-species
chemotaxis-competition model with production from only one species. In
previous papers there are a lot of studies on boundedness for a two-species
chemotaxis-competition model with productions from both two species. On
the other hand, finite-time blow-up was recently obtained under smallness
conditions for competitive effects. Now, in the biological view, the production
term seems to promote blow-up phenomena; this implies that the lack of the
production term makes the solution likely to be bounded. Thus, it is expected
that there exists a solution of the system with single production such that
the species which does not produce the chemical substance remains bounded,
whereas the other species blows up. The purpose of this paper is to prove that
this conjecture is true.

1. Introduction and main result

In this paper we deal with the two-species chemotaxis-competition model with
single production,

∂u

∂t
= d1∆u− χ1∇ · (u∇w) + µ1u(1− uκ1−1 − a1v

λ1−1) ,
∂v

∂t
= d2∆v − χ2∇ · (v∇w) + µ2v(1− a2u

λ2−1 − vκ2−1) ,
0 = d3∆w + αu− γw ,
(∇u · ν)|∂Ω = (∇v · ν)|∂Ω = (∇w · ν)|∂Ω = 0 ,
u(x, 0) = u0(x), v(x, 0) = v0(x)

(1.1)

in a ball Ω := BR(0) ⊂ Rn (n ≥ 3, R > 0). Here, ν is the outward normal vector
to ∂Ω; d1, d2, d3, χ1, χ2, µ1, µ2, a1, a2, α, γ > 0 and κ1, κ2, λ1, λ2 > 1; u0,
v0 ∈ C0(Ω) are nonnegative and radially symmetric. This system describes a
situation in which multi species move toward higher concentrations of the signal
substance (which is produced by the spesies), and compete with each other.

2020 Mathematics Subject Classification: primary 35K51; secondary 35B44, 92C17.
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In a two-species chemotaxis-competition model obtained on replacing the third
equation in (1.1) by

0 = d3∆w + αu+ βv − γw (β > 0) ,
boundedness and stabilization in the case κ1 = κ2 = λ1 = λ2 = 2 were established
under smallness conditions for χ1 and χ2 in [2, 5, 7, 8]; more related works can be
found in [1, 9]. On the other hand, a result on finite-time blow-up in the two-species
chemotaxis system was recently obtained in [6, Theorem 4.1] under the condition

max{κ1, λ1, κ2, λ2} <

{
7
6 if n ∈ {3, 4} ,
1 + 1

2(n−1) if n ≥ 5 .

Now, in the biological view, the production term seems to promote blow-up
phenomena; this implies that the lack of the production term makes the solution
likely to be bounded. Thus, since the third equation in (1.1) lacks the production
term βv, it is expected that there exists a solution of (1.1) such that v remains
bounded, whereas u blows up. The purpose of this paper is to prove that this
conjecture is true.

The main results read as follows. The first theorem gives blow-up in (1.1).

Theorem 1.1. Let d1, d2, d3, χ1, χ2, µ1, µ2, a1, a2, α, γ > 0 and κ1, κ2, λ1,
λ2 > 1. Assume that κ1 and λ1 satisfy that

max{κ1, λ1} <

{
7
6 if n ∈ {3, 4} ,
1 + 1

2(n−1) if n ≥ 5 .
(1.2)

Then, for all L > 0, M0 > 0 and M̃0 ∈ (0,M0) there exists r? ∈ (0, R) with the
following property: If

u0, v0 ∈ C0(Ω) are nonnegative and radially symmetric(1.3)
and ∫

Ω
(u0(x) + v0(x)) dx = M0 and

∫
Br? (0)

u0(x) dx ≥ M̃0(1.4)

as well as
u0(x) + v0(x) ≤ L|x|−n(n−1) for all x ∈ Ω,(1.5)

then there exist T ∗ <∞ and exactly one triplet (u, v, w) of (1.1) which blows up
in finite time in the sense that

lim
t↗T∗

(‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω)) =∞.(1.6)

Remark 1.2. This result means that whether blow-up in (1.1) occurs or not can
be determined by the parameters which come only from the first equation.

Theorem 1.1 gives existence of a constant T ∗ > 0 and a classical solution (u, v, w)
of (1.1) on [0, T ∗) such that limt↗T∗(‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω)) =∞. Then
we consider the next question

whether limt↗T∗ ‖u(·, t)‖L∞(Ω) =∞ and limt↗T∗ ‖v(·, t)‖L∞(Ω) =∞ hold.
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The second theorem is concerned with simultaneous blow-up in (1.1).

Theorem 1.3. Let d1, d2, d3, χ1, χ2, µ1, µ2, a1, a2, α, γ > 0 and κ1, κ2, λ1,
λ2 > 1. Then the following holds:
(i) Assume that u0, v0 ∈ C0(Ω) are nonnegative. Let T ∈ (0,∞] and let (u, v, w)
be a classical solution of (1.1) on [0, T ). Then (u, v, w) satisfies that

if limt↗T ‖v(·, t)‖L∞(Ω) =∞, then limt↗T ‖u(·, t)‖L∞(Ω) =∞.
(ii) Assume that κ1 and λ1 satisfy (1.2). Moreover, suppose that λ2 ≥ 2 and

0 < χ2 <

{
a2d3µ2
α if λ2 = 2 ,

∞ if λ2 > 2 .
(1.7)

Then there are initial data u0, v0 ∈ C0(Ω) and T ∗ <∞ such that the corresponding
solution (u, v, w) of (1.1) on [0, T ∗) satisfies

lim
t↗T∗

‖u(·, t)‖L∞(Ω) =∞ and sup
t∈(0,T∗)

‖v(·, t)‖L∞(Ω) <∞ .

Remark 1.4. This theorem means that if v blows up at time T then u also blows
up at T , and moreover there is a solution such that u blows up at T but v is
bounded in Ω× (0, T ); thus this result gives a positive answer to the conjecture.

This paper is organized as follows. In order to show Theorem 1.1, we will derive
a differential inequality for some moment-type function in Section 2. Section 3 is
devoted to the proof of Theorem 1.3.

2. Proof of Theorem 1.1

We first state a result on local existence of solutions to (1.1).

Lemma 2.1. Let Ω = BR(0) ⊂ Rn (n ≥ 3) be a ball with some R > 0, and let
d1, d2, d3, χ1, χ2, µ1, µ2, a1, a2, α, γ > 0 and κ1, κ2, λ1, λ2 > 1. Assume that
u0, v0 ∈ C0(Ω) are nonnegative. Then there exist Tmax ∈ (0,∞] and a unique triplet
(u, v, w) of functions

u, v, w ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)) ,
which solves (1.1) classically. Moreover, u, v ≥ 0 in Ω× (0, Tmax) and

if Tmax <∞ , then lim
t↗Tmax

(‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω)) =∞.(2.1)

Also, if u0, v0 are radially symmetric, then so are u, v, w for any t ∈ (0, Tmax).

Proof. This lemma is shown by a standard fixed point argument as in [3, 7]. �
In this section we assume that u0, v0 ∈ C0(Ω) are nonnegative and radially

symmetric and that (u, v, w) is a classical solution of (1.1) on [0, Tmax) given by
Lemma 2.1. Moreover, we regard u(x, t), v(x, t) and w(x, t) as functions of r := |x|
and t. Also, we introduce the functions U , V and W as

U(s, t) :=
∫ s

1
n

0
ρn−1u(ρ, t) dρ and V (s, t) :=

∫ s
1
n

0
ρn−1v(ρ, t) dρ
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as well as

W (s, t) :=
∫ s

1
n

0
ρn−1w(ρ, t) dρ

for s ∈ [0, Rn] and t ∈ [0, Tmax), and define φU and ψU as

φU (t) :=
∫ s0

0
s−b(s0 − s)U(s, t) ds

and

ψU (t) :=
∫ s0

0
s−b(s0 − s)U(s, t)Us(s, t) ds

for t ∈ [0, Tmax) with some s0 ∈ (0, Rn) and b ∈ (0, 1). We note that φU belongs to
C0([0, Tmax)) ∩ C1((0, Tmax)). To obtain the differential inequality for φU , we first
give the following lemma.

Lemma 2.2. Let s0 ∈ (0, Rn) and b ∈ (0, 1). Then

φ′U (t) ≥ d1n
2
∫ s0

0
s2− 2

n−b(s0 − s)Uss ds

+ αχ1n

d3
ψU (t)− γχ1n

d3

∫ s0

0
s−b(s0 − s)UsW ds

− µ1n
κ1−1

∫ s0

0
s−b(s0 − s)

(∫ s

0
Uκ1
s (σ, t) dσ

)
ds

− a1µ1n
λ1−1

∫ s0

0
s−b(s0 − s)

(∫ s

0
Us(σ, t)V λ1−1

s (σ, t) dσ
)
ds

=: I1 + I2 + I3 + I4 + I5(2.2)

for all t ∈ (0, Tmax).

Proof. By straightforward computations we can derive (2.2) (see [6, (4.17)]). �
We next estimate the third term on the right-hand side of (2.2).

Lemma 2.3. Let b ∈ (0,min{1, 2− 4
n}). For all L > 0 and all M0 > 0 there exists

C > 0 such that if u0, v0 satisfy (1.3) and
∫

Ω(u0(x) + v0(x)) dx = M0 as well as
(1.5), then

I3 ≥ −Cs
2
n
0 ψU (t)− Cs1−b+ 2

n
0(2.3)

for all s0 ∈ (0, Rn) and t ∈ (0,min{1, Tmax}) .

Proof. As in [10, estimate (4.5)], by integration by parts we have

I3 ≥ −(b+ 1)γχ1n

d3
s0

∫ s0

0
s−b−1UW ds

for all t ∈ (0, Tmax). Furthermore, by the structure of the third equation in (1.1), a
result similar to [10, Lemma 4.8] is established, so that we attain (2.3). �
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With regard to Lemma 2.3, by virtue of the structure of the third equation
in (1.1), a term including ψV (t) does not appear unlike [6, Lemma 4.4], where
ψV (t) :=

∫ s0
0 s−b(s0 − s)V (s, t)Vs(s, t) ds. Thus we derive a differential inequality

for only φU to show blow-up.

Lemma 2.4. Assume that κ1 > 1 and λ1 > 1 satisfy (1.2). Then there exists
b ∈

(
1 − 2

n ,min{1, 2 − 4
n}
)

with the property that for all L > 0 and M0 > 0 one
can find C1 > 0, C2 > 0 and s1 ∈ (0, Rn) such that if u0, v0 satisfy (1.3) and∫

Ω(u0(x) + v0(x)) dx = M0 as well as (1.5), then

φ′U (t) ≥ C1s
−(3−b)
0 φ2

U (t)− C2s
1−b+ 2

n
0(2.4)

for all s0 ∈ (0, s1) and t ∈ (0,min{1, Tmax}).

Proof. Let us fix ε > 0 such that

2ε ≤ 1− 2
n
.(2.5)

Moreover, we can take b ∈
(
1− 2

n ,min{1, 2− 4
n}
)

such that

(n− 1)(max{κ1, λ1} − 1) < b

2 ,(2.6)

because (1.2) ensures that (n − 1)(min{κ1, λ1} − 1) < 1
3 = 1

2
(
2 − 4

n

)
if n = 3,

and that (n− 1)(min{κ1, λ1} − 1) < 1
2 if n ≥ 4. Noting that (1.3), (1.5) and the

condition
∫

Ω(u0(x) + v0(x)) dx = M0, from [6, Lemma 4.2] we can find c1, c2 > 0
such that

I1 ≥ −c1s
3−b

2 −
2
n

0
√
ψU (t)

and

I4 ≥ −c2s
−(n−1)(κ1−1)+ 3−b

2 −ε
0

√
ψU (t)

for all t ∈ (0,min{1, Tmax}). Moreover, thanks to [6, Lemma 4.5], there exists
c3 > 0 satisfying

I5 ≥ −c3s
−(n−1)(λ1−1)+ 3−b

2 −ε
0

√
ψU (t)

for all t ∈ (0,min{1, Tmax}). Hence, plugging these inequalities and Lemma 2.3
into (2.2) entails that

φ′U (t) ≥ αχ1n

d3
ψU (t)− c4s

2
n
0 ψU (t)− c4s

1−b+ 2
n

0

− c1s
3−b

2 −
2
n

0
√
ψU (t)

− c2s
−(n−1)(κ1−1)+ 3−b

2 −ε
0

√
ψU (t)

− c3s
−(n−1)(λ1−1)+ 3−b

2 −ε
0

√
ψU (t)
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for all t ∈ (0,min{1, Tmax}) with some c4 > 0. By Young’s inequality we infer that

φ′U (t) ≥ c5ψU (t)− c4s
2
n
0 ψU (t)

− c6s
1−b+ 2

n
0

(
s

2− 6
n

0 + 1 + s
2− 2

n−2(n−1)(κ1−1)−2ε
0 + s

2− 2
n−2(n−1)(λ1−1)−2ε

0

)
for all t ∈ (0,min{1, Tmax}) with some c5 > 0 and c6 > 0. Now let us choose
s1 ∈ (0, Rn) such that c4s

2
n
1 ≤ c5

2 . Noting from (2.5) and (2.6) that

2− 2
n
− 2(n− 1)(min{κ1, λ1} − 1)− 2ε > 1− b > 0 ,

we have from the relation 2− 6
n ≥ 0 that

φ′U (t) ≥ c5
2 ψU (t)− c7s

1−b+ 2
n

0(2.7)

for all s0 ∈ (0, s1) and t ∈ (0,min{1, Tmax}) with some c7 > 0, where we have used
the relations c4s

2
n
0 < c4s

2
n
1 ≤ c5

2 and s0 < Rn. Now from [10, Lemma 4.4] there
exists c8 > 0 satisfying that ψU (t) ≥ c8s

−(3−b)
0 φ2

U (t) for all t ∈ (0, Tmax), which
together with (2.7) yields (2.4). �

We are now in the position to prove Theorem 1.1.
Proof of Theorem 1.1. Thanks to Lemma 2.4, there exist c1 > 0, c2 > 0 and
s1 ∈ (0, Rn) such that

φ′U (t) ≥ c1s−(3−b)
0 φ2

U (t)− c2s
1−b+ 2

n
0

for all s0 ∈ (0, s1) and t ∈ (0,min{1, Tmax}). Let us pick s0 ∈ (0, s1) fulfilling√
c2
c1
s

1
n
0 + 2

c1
s0 ≤

M̃0
23−bωn

.

Then it follows that

M̃0
23−bωn

s2−b
0 ≥

√
c2
c1
s

2−b+ 1
n

0 + 2
c1
s3−b

0 .

Moreover, put

r? :=
(s0

4

) 1
n ∈ (0, R) ,

and select initial data u0, v0 satisfy (1.3), (1.4) and (1.5). By [10, estimate (5.5)],
we can verify that

φU (0) ≥ M̃0
23−bωn

s2−b
0 .

As in the proof of [4, Lemma 4.6] (with d1(s0) = c1s
−(3−b)
0 , d2(s0) = c2s

1−b− 2
n

0 and
φ(s0) = M̃0

23−bωn
s2−b

0 ), we can derive that Tmax ≤ 1
2 . Therefore, from (2.1) we arrive

at (1.6), which completes the proof. �
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3. Proof of Theorem 1.3

In the following, we let T ∈ (0,∞] and let (u, v, w) be a classical solution of
(1.1) on [0, T ) with u0, v0 ∈ C0(Ω) being nonnegative. Now we put

Lṽ := d2∆ṽ − χ2∇ṽ · ∇w

for ṽ ∈ C2(Ω). Then we note from the second and third equations in (1.1) that
∂v

∂t
= Lv − χ2v∆w + µ2v(1− a2u

λ2−1 − vκ2−1)

= Lv + αχ2
d3

uv − γχ2
d3

vw + µ2v(1− a2u
λ2−1 − vκ2−1)

≤ Lv + αχ2
d3

uv + µ2v − a2µ2u
λ2−1v − µ2v

κ2(3.1)

for all x ∈ Ω and t ∈ (0, T ). By using this inequality we will show the following
two lemmas which play an important role in the proof of Theorem 1.3.

Lemma 3.1. The solution (u, v, w) satisfies that if limt↗T ‖u(·, t)‖L∞(Ω) < ∞,
then limt↗T ‖v(·, t)‖L∞(Ω) <∞.

Proof. Assume that ‖u(·, t)‖L∞(Ω) ≤ c1 for all t ∈ (0, T ) with some c1 > 0. Then,
from (3.1) we see that

∂v

∂t
≤ Lv +

(αχ2
d3

c1 + µ2

)
v − µ2v

κ2

for all x ∈ Ω and t ∈ (0, T ). Let us next choose v ∈ (0,∞) such that ‖v0‖L∞(Ω) ≤ v,
and denote by y : [0,∞)→ R the function solvingy′(t) =

(
αχ2
d3

c1 + µ2

)
y(t)− µ2y

κ2(t) , t > 0 ,

y(0) = v .

Then, by a comparison principle, we can observe that for all x ∈ Ω and t ∈ (0, T ),

v(x, t) ≤ y(t) ≤ max


(
αχ2
d3
c1 + µ2

µ2

) 1
κ2−1

, v

 =: c2

holds, which implies that ‖v(·, t)‖L∞(Ω) ≤ c2 for all t ∈ (0, T ). �

Lemma 3.2. Assume that λ2 ≥ 2 and χ2 satisfies (1.7). Then
‖v(·, t)‖L∞(Ω) ≤ C(3.2)

holds for all t ∈ (0, T ) with some C > 0.

Proof. When λ2 = 2, by (3.1) and the fact a2µ2 − αχ2
d3

> 0 (from (1.7)) we have

∂v

∂t
≤ Lv + µ2v − µ2v

κ2 −
(
a2µ2 −

αχ2
d3

)
uv

≤ Lv + µ2v − µ2v
κ2
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for all x ∈ Ω and t ∈ (0, T ). Thus a comparison principle yields (3.2). On the
other hand, in the case that λ2 > 2, Young’s inequality enables us to find some
constant c1 > 0 satisfying ∂v

∂t ≤ Lv+ (c1 +µ2)v−µ2v
κ2 for all x ∈ Ω and t ∈ (0, T ).

Similarly, a comparison principle yields (3.2), which concludes the proof. �
Proof of Theorem 1.3. Lemma 3.1 directly entails Theorem 1.3 (i). We next
show Theorem 1.3 (ii). Theorem 1.1 asserts that there are initial data u0, v0 ∈ C0(Ω)
and T ∗ < ∞ such that the corresponding solution (u, v, w) of (1.1) on [0, T ∗)
satisfies that limt↗T∗(‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω)) = ∞. Then, noticing from
Lemma 3.2 with T = T ∗ that supt∈(0,T∗) ‖v(·, t)‖L∞(Ω) < ∞ holds, we see that
limt↗T∗ ‖u(·, t)‖L∞(Ω) =∞ holds, which means that Theorem 1.3 (ii) holds. �
Acknowledgement. The authors would like to express thanks to the referees for
their careful reading and helpful comments.
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EXISTENCE OF BLOW-UP SOLUTIONS FOR A DEGENERATE
PARABOLIC-ELLIPTIC KELLER–SEGEL SYSTEM

WITH LOGISTIC SOURCE

Yuya Tanaka

Abstract. This paper deals with existence of finite-time blow-up solutions
to a degenerate parabolic–elliptic Keller–Segel system with logistic source.
Recently, finite-time blow-up was established for a degenerate Jäger–Luckhaus
system with logistic source. However, blow-up solutions of the aforementioned
system have not been obtained. The purpose of this paper is to construct
blow-up solutions of a degenerate Keller–Segel system with logistic source.

1. Introduction and main result

In this paper we consider the quasilinear degenerate Keller–Segel system with
logistic source,

(1.1)



∂u

∂t
= ∆um − χ∇ · (u∇v) + λu− µuκ , x ∈ Ω, t > 0 ,

0 = ∆v − v + u , x ∈ Ω, t > 0 ,
∂um

∂ν
= ∂v

∂ν
= 0 , x ∈ ∂Ω, t > 0 ,

u(x, 0) = u0(x) , x ∈ Ω ,

where Ω := BR(0) ⊂ Rn (n ≥ 3) be a ball with some R > 0; m ≥ 1, χ > 0, λ > 0,
µ > 0 and κ > 1; ν is the outward normal vector to ∂Ω; u0 ∈ L∞(Ω) is nonnegative
and radially symmetric. This system describes a situation such that a cellular slime
moves towards higher concentrations of the chemical substance.

In the case m = 1, Winkler [10] obtained initial data leading to finite-time
blow-up under a smallness condition for κ > 1 in three- or higher-dimensional cases.
In the case m ∈

[
1, 2− 2

n

)
, for the system such that the diffusion term is replaced

with ∇ · ((u + 1)m−1∇u), Black, Fuest and Lankeit showed that solutions blow
up in finite time under the condition that κ < 1 + min

{ (m−1)n+1
2(n−1) , n−2−(m−1)n

n(n−1)
}

in [1, Theorem 1.2 (ii)]. On the other hand, a difficulty is caused in (1.1) by the
degenerate diffusion term ∆um because in the case of nondegenerate diffusion
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classical solutions can be considered, whereas in the case of degenerate diffusion
classical solutions are not always obtained. In such circumstances, it had not been
clear whether blow-up of solutions to (1.1) occurs.

Regarding this difficulty, existence of blow-up solutions was recently established
in [8] for the following Jäger–Luckhaus system with ε = 0,

∂u

∂t
= ∆(u+ ε)m − χ∇ · (u∇v) + λu− µuκ , x ∈ Ω, t > 0 ,

0 = ∆v −M(t) + u , x ∈ Ω, t > 0 ,

where M(t) := 1
|Ω|
∫

Ω u(x, t) dx. This system was studied in [1, 3, 7, 9]; in the case
m = 1 and ε = 0, finite-time blow-up was shown under smallness conditions for
κ in the three- and higher-dimensional cases in [1, 9] (in the case M(t) = v, see
[10]); these conditions were improved in [3]; in the case m 6= 1, the condition
κ < min

{
2, n2

}
in [3] was generalized to the condition that κ < min

{
2, (2−m)n2

}
if m ≥ 0 or κ < min{2, n} if m < 0 in [7]. After that, in the case of degenerate
diffusion (ε = 0), finite-time blow-up solutions was constructed in a framework of
weak solutions in [8].

In contrast, for the degenerate Keller–Segel system with logistic source there is
no result on blow-up. The purpose is to prove existence of blow-up solutions to
(1.1) in a framework of weak solutions under the same condition as in [1, Theorem
1.2 (ii)]. Referring to the method in [8], we introduce moment solutions as follows.

Definition 1.1. Let T ∈ (0,∞]. A pair (u, v) of nonnegative and radially symme-
tric functions defined on Ω× (0, T ) is called a moment solution of (1.1) on [0, T )
if

(i) u ∈ C0
w−?([0, T );L∞(Ω)) ∩ L∞loc([0, T );L∞(Ω)),

um ∈ L2(0, T ;H1(Ω)) if T <∞; um ∈ L2
loc([0, T );H1(Ω)) if T =∞,

v ∈ L∞loc([0, T );H1(Ω)),
(ii) for all ϕ ∈ L2(0, T ;H1(Ω)) ∩W 1,1(0, T ;L2(Ω)) with suppϕ(x, ·) ⊂ [0, T )

(a.a. x ∈ Ω),

∫ T

0

∫
Ω

(∇um · ∇ϕ− χu∇v · ∇ϕ− (λu− µuκ)ϕ− uϕt) dxdt

=
∫

Ω
u0(x)ϕ(x, 0) dx,∫ T

0

∫
Ω

(∇v · ∇ϕ+ vϕ− uϕ) dxdt = 0,

(iii) (u, v) satisfies the following moment inequality:

φ(t)− φ(0) ≥ K
∫ t

0
φ2(τ) dτ for all t ∈ (0, T ),
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where

φ(t) :=
∫ s0

0
s−γ(s0 − s)w(s, t) ds for t ∈ (0, T ),

w(s, t) :=
∫ s

1
n

0
ρn−1u(ρ, t) dρ for s ∈ [0, Rn] and t ∈ (0, T )

with some s0 ∈ (0, Rn), γ ∈ (0, 1) and K = K(R,m,χ, µ, κ, γ, s0) > 0.

We next define maximal moment solutions, which are ensured by Zorn’s lemma
as in the proof of [6, Lemma 2.4].

Definition 1.2. Define the set S as
S := {(T, u, v) | T ∈ (0,∞], (u, v) is a moment solution of (1.1) on [0, T )} ,

which is not empty as shown in the proof of Theorem 1.3, with the order relation
� given by

(T1, u1, v1) � (T2, u2, v2) :⇐⇒ T1 ≤ T2, u2|(0,T1) = u1, v2|(0,T1) = v1 .

Then Zorn’s lemma assures some maximal element (Tmax, u, v) ∈ S, and (u, v) is
called a maximal moment solution of (1.1) on [0, Tmax).

Now we state the main theorem, in which (1.2) is the same condition in [1,
Theorem 1.2 (ii)].

Theorem 1.3. Let m ∈
[
1, 2− 2

n

)
, χ > 0, λ > 0, µ > 0 and κ > 1. Assume that

κ < 1 + min
{

(m− 1)n+ 1
2(n− 1) ,

n− 2− (m− 1)n
n(n− 1)

}
.(1.2)

Then for all M0 > 0 and L > 0 there exist σ0 > 0, η0 ∈ (0,M0) and r? ∈ (0, R)
with the following property: If

u0 ∈ L∞(Ω) is nonnegative and radially symmetric(1.3)
and ∫

Ω
u0(x) dx = M0 and

∫
Br? (0)

u0(x) dx ≥M0 − η0(1.4)

as well as
u0(x) ≤ L|x|−p for a.a. x ∈ Ω ,(1.5)

where p := n(n−1)
(m−1)n+1 +σ0, then there exists a moment solution of (1.1) on [0, Tmax)

which blows up at Tmax <∞ in the sense that
lim sup
t↗Tmax

‖u(·, t)‖L∞(Ω) =∞ .

In order to prove Theorem 1.3, we will construct a moment solution. To this
end, we derive a moment inequality for a solution of a problem approximate to
(1.1). The key to obtaining the inequality is to establish a pointwise estimate for
an approximate solution (Lemma 2.1).
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2. Proof of Theorem 1.3

To show finite-time blow-up of solutions to (1.1), for the present we focus on
the following approximate problem:

∂uε
∂t

= ∆(uε + ε)m − χ∇ · (uε∇vε) + λuε − µuκε , x ∈ Ω, t > 0 ,
0 = ∆vε − vε + uε , x ∈ Ω, t > 0 ,
∂uε
∂ν

= ∂vε
∂ν

= 0 , x ∈ ∂Ω, t > 0 ,
uε(x, 0) = u0ε(x) , x ∈ Ω ,

(2.1)

where ε ∈ (0, 1), and u0ε := (ρε ∗ u0)|Ω with

u0(x) :=
{
u0(x) if x ∈ Ω ,

0 otherwise,

ρε(x) := 1
εn

(∫
Rn
ρ(y) dy

)−1
ρ
(x
ε

)
, ρ(x) :=

{
e
− 1

1−|x|2 if |x| < 1 ,
0 if |x| ≥ 1 .

We note that the solution (uε, vε) of (2.1) on [0, Tε) is obtained by a standard
fixed point argument (see e.g. [11]), where Tε is the maximal existence time for the
solution (uε, vε). We know that ρε is nonnegative and radially symmetric. Thus,
for the initial data u0 satisfying (1.3), u0ε is nonnegative and radially symmetric.
Moreover, we see that u0,ε → u0 in L1(Ω) as ε ↘ 0 and that on passing to a
subsequence if necessary, u0,ε → u0 a.a. x ∈ Ω as ε ↘ 0. Furthermore, as in
[5, Section 2.2] and [8, Lemmas 2.2 and 2.3], we can find T0 > 0 and K0 > 0 such
that for all ε ∈ (0, 1),

T0 ≤ Tε and sup
t∈(0,T0)

‖uε(·, t)‖L∞(Ω) ≤ K0 .(2.2)

In order to establish a moment inequality, an estimate for uε is a cornerstone.
In a degenerate Jäger–Luckhaus system with logistic source the key is radial
monotonicity of an approximate solution (see [8, Lemma 2.7]). However, in our case
it is difficult to obtain this property due to the structure of the second equation
in (2.1). For this reason, instead of monotonicity, based on [10, Lemma 3.3] and
[1, lemma 5.2], we show a pointwise estimate for uε.

Lemma 2.1. Let m ∈
[
1, 2− 2

n

)
, χ > 0, λ > 0, µ > 0, κ > 1, M0 > 0 and L > 0.

Moreover, for any σ0 > 0, set p := n(n−1)
(m−1)n+1 + σ0 and assume that u0 satisfies

(1.3), (1.5) and
∫

Ω u0(x) dx = M0 and that there exist T0 > 0 and K0 > 0 fulfilling
(2.2). Then there exist ε0 ∈ (0, 1) and L1 > 0 such that for any ε ∈ (0, ε0),

uε(x, t) ≤ L1|x|−p(2.3)

for all x ∈ Ω and t ∈ (0, T0).
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Proof. Putting ũε(x, t) := e−λtuε(x, t), we can derive from (2.1) that
∂ũε
∂t
≤ ∇ · (m(eλtũε + ε)m−1∇ũε − χũε∇vε) , x ∈ Ω, t > 0,

(m(eλtũε + ε)m−1∇ũε − χũε∇vε) · ν = 0 , x ∈ ∂Ω, t > 0 ,
ũε(x, 0) = u0ε(x) , x ∈ Ω .

(2.4)

Next, let σ0 > 0. We can take ξ > 0 small enough and ε0 ∈ (0, 1) such that
u0,ε ≤ u0 + ξ for a.a. x ∈ Ω and all ε ∈ (0, ε0). By virtue of this inequality, (1.5)
and the fact that |x| ≤ R, it follows that

u0,ε ≤ L|x|−p + ξRp|x|−p = (L+ ξRp)|x|−p(2.5)

for all x ∈ Ω and ε ∈ (0, ε0). Also, from the condition
∫

Ω u0 dx = M0, we obtain
that ∫

Ω
u0,ε dx ≤M0 + ξ|Ω| =: M̃0(2.6)

for all ε ∈ (0, ε0). On the other hand, integrating the first equation in (2.1) over Ω,
we infer that

d

dt

∫
Ω
uε dx = λ

∫
Ω
uε dx− µ

∫
Ω
uκε dx ≤ λ

∫
Ω
uε dx ,

which ensures that ∫
Ω
uε dx ≤ eλt

∫
Ω
u0,ε dx ≤ eλT0M̃0(2.7)

for all t ∈ (0, T0). Moreover, we see from the second equation in (2.1) that

rn−1(vε)r =
∫ r

0
ρn−1vε dρ−

∫ r

0
ρn−1uε dρ ≤

1
ωn

(∫
Ω
vε dx+

∫
Ω
uε dx

)
for all r ∈ (0, R) and t ∈ (0, Tε), where ωn := n|B1(0)|. Here, since we integrate
the second equation in (2.1) over Ω to guarantee that∫

Ω
uε dx =

∫
Ω
vε dx ,

the above inequality and (2.7) yields

rn−1(vε)r ≤
2
ωn
eλT0M̃0 =: c1

for all r ∈ (0, R) and t ∈ (0, T0). Picking θ0 > n so large satisfying m− 1 > 1
θ0
− 1

n

and p = n(n−1)
(m−1)n+1 + σ0 >

(n−1)
(m−1)+ 1

n−
1
θ0

, we have∫
Ω
|x|θ0(n−1)|∇vε(x, t)|θ0 dx = ωn

∫ R

0
r(θ0+1)(n−1)|(vε)r(ρ, t)|θ0 dρ

≤ 1
n
ωnc

θ0
1 R

n

for all t ∈ (0, T0). From this inequality and (2.4)–(2.6) we therefore can apply
[2, Theorem 1.1] to obtain (2.3). �
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We next derive a moment inequality for an approximate solution of (2.1).

Lemma 2.2. Let m ∈
[
1, 2 − 2

n

)
, χ > 0, λ > 0, µ > 0 and κ > 1. Assume that

(1.2) is satisfied and that there exist T0 > 0 and K0 > 0 fulfilling (2.2). Then for
all M0 > 0 and L > 0 there exist η0 ∈ (0,M0) and r? ∈ (0, R) which satisfy the
following property: If u0 satisfies (1.3)–(1.5) with some σ0 > 0, then there exist
ε0 ∈ (0, 1) and K > 0 such that for any ε ∈ (0, ε0),

φε(t)− φε(0) ≥ K
∫ t

0
φ2
ε(τ) dτ(2.8)

for all t ∈ (0, T0), where

φε(t) :=
∫ s0

0
s−γ(s0 − s)wε(s, t) ds for t ∈ (0, Tε),

wε(s, t) :=
∫ s

1
n

0
ρn−1uε(ρ, t) dρ for s ∈ [0, Rn] and t ∈ (0, Tε)

with some s0 ∈ (0, Rn) and γ ∈ (0, 1).

Proof. Let us first put p := n(n−1)
(m−1)n+1 + σ0, where we choose σ0 > 0 sufficiently

small fulfilling that κ < 1 + min
{
n
2p ,

n−2
p − (m − 1)

}
. Furthermore, we select

γ ∈
(

max
{ 2pκ

n , 1− 2
n −

p
n (m− 1)

}
,min

{
2− 4

n −
2p
n (m− 1), 1

})
. Also, noting that

u0,ε → u0 in L1(Ω) as ε↘ 0, we fix ξ0 > 0 small enough and pick ε0 ∈ (0, 1) given
by Lemma 2.1 satisfying ∫

Ω
u0,ε ≥M0 − ξ0

for all ε ∈ (0, ε0). In order to obtain (2.8), we shall show that there exist c1 > 0,
c2 > 0, θ ∈ (0, 2) and s1 ∈ (0, Rn) such that for any ε ∈ (0, ε0) and s0 ∈ (0, s1),

φ′ε(t) ≥ c1s
γ−3
0 φ2

ε(t)− c2s
3−γ−θ
0(2.9)

for all t ∈ (0, T0). By straightforward computations we have from (2.1) and the
definitions of wε and φε that

φ′ε(t) ≥ mn2
∫ s0

0
s2− 2

n−γ(s0 − s) (n(wε)s + ε)m−1 (wε)ss ds

+ n

∫ s0

0
s−γ(s0 − s)(wε)swε ds− n

∫ s0

0
s−γ(s0 − s)(wε)szε ds

− nκ−1µ

∫ s0

0
s−γ(s0 − s)

{∫ s

0
(wε)κs dσ

}
ds

for all t ∈ (0, Tε), where zε(s, t) :=
∫ s 1

n

0 ρn−1vε(ρ, t) dρ for s ∈ [0, Rn] and t ∈ (0, Tε).
Here, we note that we can apply [1, Lemmas 3.5, 3.8 and 3.9] to the second, third
and fourth terms on the right-hand side of the above inequality. Thus, in order
to derive (2.9), it is sufficient to estimate the first term. To this end, we will find
c3 > 0 independent of ε such that

(n(wε)s + ε)m ≤ c3s−
p
n (m−1)(wε)s + c3(2.10)
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for all s ∈ (0, Rn) and t ∈ (0, T0), which is used after integration by parts in
estimating the first term. By means of (2.3), it follows that for any ε ∈ (0, ε0),
wε(s, t) = 1

nuε(s
1
n , t) ≤ c4s

− pn for all s ∈ (0, Rn) and t ∈ (0, T0), where c4 := L1
n .

From this inequality and the fact that s ≤ Rn as well as ε < 1, we have
(n(wε)s + ε)m ≤ 2m−1(nm(wε)ms + εm)

≤ 2m−1nmcm−1
4 s−

p
n (m−1)(wε)s + 2m−1

for all s ∈ (0, Rn) and t ∈ (0, T0), which means that (2.10) holds. Therefore, by
[1, Lemmas 3.5, 3.6 (i), 3.8, 3.9 and 3.11] we can take c5 > 0, c6 > 0, θ ∈ (0, 2) and
s1 ∈ (0, Rn) such that for any ε ∈ (0, ε0) and s0 ∈ (0, s1),

φ′ε(t) ≥ c5s
γ−3
0 φ2

ε(t)− c6s
3−γ−θ
0

for all t ∈ (0, T0). Furthermore, arguing as in [8, Proof of Proposition 2], we
pick η0 ∈ (0,M0) and r? ∈ (0, R) such that for any u0 satisfying (1.3)–(1.5), the
inequality φ′ε(t) ≥ c5

2 s
γ−3
0 φ2

ε(t) holds for all ε ∈ (0, ε0), s0 ∈ (0, s1) and t ∈ (0, T0),
which implies (2.8). �

We are now in the position to show Theorem 1.3.
Proof of Theorem 1.3. We can derive results similar to [8, Lemmas 2.4 and 2.5]
since the second equation in (2.1) entails that ∆vε = vε − uε ≥ −uε. Thus, as
in the proof of [4, Lemma 5.3] we can choose subsequence {uεk}, {vεk} (εk → 0
as k → ∞) and nonnegative functions u, v such that u ∈ L∞(0, T0;L∞(Ω)),
um ∈ L2(0, T0;H1(Ω)), v ∈ L∞(0, T0;W 1,∞(Ω)) and

uεk → u weakly? in L∞(0, T0;L∞(Ω)),(2.11)
uεk → u in C0([δ, T0];Lq(Ω)) for all δ ∈ (0, T0) and q ∈ [1,∞) ,(2.12)
∇(uεk + ε)m → ∇um weakly in L2(0, T0;L2(Ω)) ,(2.13)
∇vεk → ∇v weakly? in L∞(0, T0;L∞(Ω))(2.14)

as k →∞. Moreover, thanks to Lemma 2.2, we can take the initial data u0 leading
to (2.8). Thus, by (2.11)–(2.14), we can show that (u, v) fulfills (i)–(iii) with T = T0
in Definition 1.1 as in [8, Proof of Proposition 1]. Hence, from Definition 1.2 there
exists a maximal moment solution (u, v) on (0, Tmax). In particular, we have

φ(t)− φ(0) ≥ K
∫ t

0
φ2(τ) dτ

for all t ∈ (0, Tmax) with some K > 0. Putting Φ(t) :=
∫ t

0 φ
2(τ) dτ + φ(0)

K for
t ∈ (0, Tmax), we see that Φ ∈ C0([0, Tmax) ∩ C1((0, Tmax)) and from the above
inequality that Φ′(t) ≥ K2Φ2(t) for all t ∈ (0, Tmax), which yields

t ≤ 1
K2

(
− 1

Φ(t) + 1
Φ(0)

)
≤ 1
K2Φ(0)

for all t ∈ (0, Tmax). This proves Tmax ≤ 1
K2Φ(0) <∞. By an extension argument

as in [8, Proof of Theorem 1.1] we can obtain lim supt↗Tmax ‖u(·, t)‖L∞(Ω) = ∞,
which concludes the proof. �
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STABILITY WITH RESPECT TO DOMAIN OF THE LOW
MACH NUMBER LIMIT OF COMPRESSIBLE

HEAT-CONDUCTING VISCOUS FLUID

Aneta Wróblewska-Kamińska

Abstract. We investigate the asymptotic limit of solutions to the Navier-Sto-
kes-Fourier system with the Mach number proportional to a small parameter
ε→ 0, the Froude number proportional to

√
ε and when the fluid occupies large

domain with spatial obstacle of rough surface varying when ε→ 0. The limit ve-
locity field is solenoidal and satisfies the incompressible Oberbeck–Boussinesq
approximation. Our studies are based on weak solutions approach and in order
to pass to the limit in a convective term we apply the spectral analysis of the
associated wave propagator (Neumann Laplacian) governing the motion of
acoustic waves.

1. Introduction and formulation of the problem

The Oberbeck-Boussinesq approximation is a mathematical model of a strati-
fied flow, where the fluid is assumed to be incompressible and yet convecting a
diffusive quantity creating positive and negative buoyancy force. Then the system
of equations reads:
(OB1) divxU = 0 ,

(OB2) % (∂tU + divx (U ⊗U)) +∇xP = µ∆U + r∇xF ,

(OB3) %cp (∂tΘ + divx (UΘ))− κ(ϑ)∆Θ− %ϑαdivx (FU) = 0 ,

(OB4) r + %αΘ = 0 ,
where U denotes the velocity of the fluid, Θ stands for the deviation of the
temperature, P is the pressure, constants µ, κ, %, cp, α are positive (will be
defined later). Here F stands for potential of a driving force (e.g. gravitational
potential) acting on the fluid. Let us note that the density is constant in the
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Oberbeck-Boussinesq approximation except in the buoyancy force, where it is
interrelated in the temperature deviation through Boussinesq relation (OB4), (see
Zeytounian [12]). Let us notice that in the OB approximation Θ is a deviation
of temperature from the equilibrium rather then the temperature itself and the
temperature deferences are not caused by the flow, but exists independent of the
flow. Our aim is to derive the above system on an exterior domain R3 \ O with
no-slip boundary condition on the bounded obstacle O. Therefore we study stability
of the rescaled compressible Navier-Stokes-Fourier system when a Mach number is
proportional to a small parameter, i.e. Ma = ε and ε→ 0, and a Froude number
Fr =

√
ε. About other characteristic numbers like Strouhal, Reynolds, Péclet

number we assume they are equal one.
We are motivated by a similar asymptotic analysis of barotropic compressible

fluid flow, described by the Navier–Stokes system with a low Mach number on
varying domains provided in [5]. Our aim is to extend this result to the case of
heat-conducting fluids by methods developed in [3, 7]. The asymptotic analysis of
complete fluid system on varying domains (but in different way then here) and with
a small Mach number is considered in [11], where the author justify OB system on
whole R3 space with concentric gravitation force.

Following [2,5] we introduce a class of admissible domains with rough (oscillating)
boundaries of some obstacle. It was observed that such a choice may give rise
to the no-slip boundary condition for the asymptotic limit of velocity field. In
particular we assume that the given family of domains {Ωε}ε satisfies the following
hypothesis:

D1) Ωε ⊂ R3 is bounded domain with C2 boundary for each ε ∈ (0, 1) and
∂Ωε = ∂Oε ∪ Sε;

D2) for simplicity we assume that the outer part of boundary Sε consists of a
sphere centred in the origin and of a radius 1

εδ
with δ > 0 (i.e. the domain

is sufficiently ”large”);
D3) the boundary of the obstacle ∂Oε is such that for all ε ∈ (0, 1) Oε ⊂

Br(0) ⊂ B1/εδ(0) with some fixed r > 0;
D4) R3 \ Oε satisfies the uniform α-cone condition with α > 0 independent

of ε. Namely for any x0 ∈ ∂Oε there exists a unit vector ξx0 ∈ R3 s.t.
C(x, γ, α, ξx0) ⊂ (R3 \ Oε) whenever x ∈ R3 \ Oε, |x − x0| < α, where
C(x, γ, α, ξ) = {y ∈ R3 | 0 < |y − x| ≤ α, (y − x) · ξ > cos(γ)|y − x|} with
vertex at x, aperture 2γ < π, height α, and orientation given by a unit
vector ξ;

D5) for each x0 ∈ ∂Oε, there are two open balls Br(xi) ⊂ Ωε, Br(xj) ⊂ Oε of
radius r > cbε

β (the radius r may change but sufficiently ”slow”) such that
Br(xi) ∩Br(xj) = x0 with cb > 0, β > 0 independent of ε;

D6) after translation and rotation of the coordinate system, a part Γ ⊂ ∂O
can be described by a graph of function γ ∈ W 1,∞(U), U ⊂ R3 and
Γ = {x ∈ R3 : (x1, x2) ∈ U, x3 = γ(x1, x2)} while Γε = ∂Oε ∩ U × R
are represented by Γε = {x ∈ R3 : (x1, x2) ∈ U, x3 = γε(x1, x2)}, where
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{γε}ε is a bounded sequence in W 1,∞(U), γε → γ in C(U). Moreover Γε
are oscillating for ε→ 0. Namely, when we introduce a Young measure ν[y],
y ∈ U , associated to the sequence {∇yγε}ε, we suppose that supp [ν[y]]
contains two independent vectors in R2 for a.a. y ∈ U .

In certain sense Ωε → R3 \ O. We give here a mathematical justification of the
Oberbeck-Boussinesq approximation of a incompressible flow on exterior domain
Ω = R3 \O with no-slip boundary condition on the obstacle by asymptotic analysis
of weak solutions to the compressible Navier-Stokes-Fourier system in a low Mach
number regime: Ma = ε→ 0, on a family of domain Ωε varying with ε > 0.

2. Primitive system

In the beginning of this section let us introduce some standard notation. We
denote by 〈·, ·〉 duality pairing. By Lp(B) we mean the space of Lebesgue measurable
functions g, where |g|p is integrable over set B. The Sobolev space of functions which
derivatives are integrable up to order k in Lp we denote by W k,p. By Dk,p(B) we set
homogenous Sobolev spaces i.e. Dk,p(B) = {g ∈ L1

loc(B) : Dαg ∈ Lp(B), |α| = k},
where k ≥ 0 and p ≥ 1. In the whole paper c will denote generic constant which
may change from line to line.

We start our considerations with a “primitive system” – the rescaled Navier-Sto-
kes-Fourier system with a small Mach and Froude number which consists of: the
continuity equation (conservation of mass), the momentum equation, the entropy
balance and the total energy balance respectively
(NSF1

ε) ∂t%ε + divx (%εuε) = 0 ,

∂t(%εuε) + divx (%εuε ⊗ uε) + 1
ε2∇xp(%ε, ϑε)

= divx SSS(ϑε,∇xuε) + 1
ε
%ε∇xFε ,(NSF2

ε)

(NSF3
ε) ∂t(%εs(%ε, ϑε)) + divx (%εs(%ε, ϑε)uε) + divx

(
q(ϑε,∇xϑε)

ϑε

)
= σε ,

(NSF4
ε)

d

dt

∫
Ωε

(
1
2%ε|uε|

2 + 1
ε2 %εe(%ε, ϑε)−

1
ε
%εFε

)
dx = 0 .

Where the viscous stress tensor satisfies the Newton rheological law and the heat
flux is determined by the Fourier law:

SSS(ϑε,∇xuε) = µ(ϑε)
(
∇xuε +∇Txuε −

2
3divx uεIdIdId

)
+ η(ϑε)divx uεIdIdId ,

q(ϑε,∇xϑε) = −κ(ϑε)∇xϑε
with a positive heat coefficient κ and for the entropy production rate holds:

(2.1) σε ≥
1
ϑε

(
ε2SSSε(ϑε,∇xuε) : ∇xuε −

qε(ϑε,∇xϑε) · ∇xϑε
ϑε

)
.



234 A. WRÓBLEWSKA-KAMIŃSKA

The unknowns are the fluid mass density %ε = %ε(t, x), the velocity field uε =
uε(t, x) : (0, T )×Ωε → R3 and absolute temperature ϑε = ϑε(t, x) : (0, T )×Ωε → R.
The pressure p, the specific internal energy e and the specific entropy s are given
scalar valued functions of % and ϑ which are related through Gibbs’ equation
ϑDs = De+ pD(1/%) . The system is supplemented with complete slip boundary
conditions for velocity field and the boundary of physical space is thermally isolated,
i.e.

(2.2) uε · n|∂Ωε = 0 , [SSS(ϑε,∇xuε)n]× n = 0 , q · n|∂Ωε = 0 .

Small parameter ε in the system (NSF1
ε)–(NSF4

ε) results from dimensionless form
of a Navier-Stokes-Fourier system and corresponds to small Mach and Froude
number (Ma= ε, Fr=

√
ε), see [6], Klein at al. [9], Zeytounian [13]. Smallness of

Mach number physically means that characteristic speed of the flow is dominated
by the speed of the sound in the medium under consideration. Assumption that
Fr >> Ma means that external sources of mechanical energy are small and Ma

Fr → 0,
what corresponds to low stratification).

2.1. Structural restrictions. In order to be able to use the existence result of
[6] and later to build uniform estimates, we need to impose structural restrictions
on the thermodynamical functions p, e, s as well as on the transport coefficients
µ, η, κ. Following [6] (where the reader can find more detailed description and
physical motivations) we set

p(%ε, ϑε) = ϑ5/2
ε P

(
%ε

ϑ
3/2
ε

)
+ a

3ϑ
4
ε , a > 0 , where P ∈ C1[0,∞) ∩ C2(0,∞) ,

P (0) = 0 , P ′(Z) > 0 for all Z ≥ 0 ,

(2.3)

0 <
5
3P (Z)− P ′(Z)Z

Z
< c for all Z > 0, lim

Z→∞

P (Z)
Z5/3 = P∞ > 0,

and ∂%p(%, ϑ) > 0 .
(2.4)

Accordingly to Gibbs’ relation, the specific internal energy and the entropy can be
written in the following forms

(2.5) e(%, ϑ) = 3
2
ϑ5/2

%
P
( %

ϑ3/2

)
+ a

ϑ4

%
, ∂ϑe(%, ϑ) > 0

is positive and bounded,

(2.6) s(%, ϑ) = S
( %

ϑ3/2

)
+ 4

3a
ϑ3

%
, S′(Z) = −3

2

5
3P (Z)− ZP ′(Z)

Z2

for all Z > 0 .

The transport coefficients: µ - shear viscosity, η - bulk viscosity and κ - heat conduc-
tivity are assumed to be continuously differentiable functions of the temperature
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ϑ ∈ [0,∞) satisfying the following growth conditions for all ϑ ≥ 0 and some positive
constants µ, µ, η, κ, κ:

0 < µ(1 + ϑ) ≤ µ(ϑ) ≤ µ(1 + ϑ) , 0 ≤ η(ϑ) ≤ η(1 + ϑ) ,
0 < κ(1 + ϑ3) ≤ κ(ϑ) ≤ κ(1 + ϑ3) .

(2.7)

2.2. Equilibrium state and ill-prepared initial data. Let us assume that
outer force F is defined on whole space R3 and is independent of ε. The so-called
equilibrium state (static state) for each scaled NSFε system consist of static density
%̃ε and constant temperature distribution ϑ satisfying (for a convenience we consider
a static density %̃ε defined on the whole space R3)

∇xp(%̃ε, ϑ) = ε%̃ε∇xFε in R3 where lim
|x|→∞

%̃ε(x) = % .

Hence we have

%̃ε − % = ε

P ′(%)F + ε2hεFε, with P ′(%) = 1
%
∂%p(%, ϑ), ‖hε‖L∞(R3) < c

and |∇x%̃ε(x)| ≤ εc|∇xFε(x)| for x ∈ R3
(2.8)

(notice that the above properties gives closeness of static density %̃ε and constant
state %). Since we work with weak solutions based on energy estimates and control
of entropy production rate we need to assume that initial data are close to the
equilibrium state. Namely initial density and initial temperature are of the following
form

(2.9) %0,ε = %̃ε + ε%
(1)
0,ε , ϑ0,ε = ϑ+ εϑ

(1)
0,ε

where ϑ > 0 is positive constants characterising the static distribution of the
absolute temperature and

(2.10)
‖%(1)

0,ε‖L∞∩L2(Ωε) ≤ c ,
∫
%

(1)
0,ε dx = 0 , ‖ϑ(1)

0,ε‖L∞∩L2(Ωε) ≤ c ,∫
ϑ

(1)
0,ε dx = 0 , ‖u0,ε‖L∞∩L2(Ωε) ≤ c for all ε ∈ (0, 1] .

The above uniform bounds will allow to control right hand side of total dissipation
balance which is a source of uniform estimates needed to perform the limit system.
Nevertheless, such a choice allow to consider nontrivial dynamics but on the
other hand it causes oscillations in acoustic equation. Those will be eliminated by
dispersive estimates.

2.3. Main result. We say that functions U , Θ and r are a weak solution to the
Oberbeck-Boussinesq approximation (OB) if holds: U ∈ L∞(0, T ;L2(Ω; R3)) ∩
L2(0, T ;W 1,2(Ω; R3)), Θ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)),
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r ∈ L∞(0, T ;L5/3
loc (Ω)) and

divxU = 0 a.e. on (0, T )× Ω ,∫ T

0

∫
Ω

(%(U · ∂tϕ+ (U ⊗U) : ∇xϕ)) dx dt

= −
∫

Ω
%U0 · ϕ(0, ·) dx+

∫ T

0

∫
Ω

(SSS : ∇xϕ− r∇xF · ϕ) dxdt

(2.11)

for any ϕ ∈ C∞c ([0, T );C∞c (Ω; R3)), where divx ϕ = 0 and SSS = µ(ϑ)(∇xU+∇xUT ).
Moreover

%cp(%, ϑ) [∂tΘ + divx (ΘU)]− divx (κ(ϑ)∇xΘ)− %ϑα(%, ϑ)divx (FU) = 0
a.e. in (0, T )× Ω ,

Θ(0, ·) = Θ0

r + %α(%, ϑ)Θ = 0 a.e. in (0, T )× Ω .

(2.12)

By cp we mean specific heat at constant pressure and cp(%, ϑ) = ∂ϑe(%, ϑ) +
α(%, ϑ)ϑ%∂ϑp(%, ϑ) by α > 0 we mean the coefficient of thermal expansion of the
fluid, α(%, ϑ) = 1

%
∂ϑp(%,ϑ)
∂%p(%,ϑ)

, both are evaluated at the reference density % and
temperature ϑ. Then the main result reads as follows:

Theorem 2.1. Let Ωε ⊂ R3 be a family of domains defined by (D1)–(D5) with
β < 1

4 and δ > 1. Assume that p, e, and s satisfy (2.3)–(2.6), the transport
coefficients µ, η and κ satisfy growth conditions (2.7) and driving force is determined
by a scalar potential F ∈ W 1,∞(R3). Let {%ε,uε, ϑε}ε>0 be a family of weak
solutions to the scaled Navier-Stokes-Fourier system (NSF1

ε)–(NSF4
ε), on the sets

(0, T ) × Ωε, supplemented with boundary conditions (2.2) and initial data (2.9)
with %̃ε > 0, % > 0 and ϑ > 0, and satisfying (2.10) for all ε ∈ (0, 1). Moreover we
assume that

%
(1)
0,ε ⇀ %

(1)
0 weakly in L2(R3) , u0,ε ⇀ U0 weakly in L2(R3; R3) ,

ϑ
(1)
0,ε ⇀ ϑ

(1)
0 weakly in L2(R3) .

Then for suitable subsequence as ε→ 0 we obtain that

%ε → % strongly in L∞(0, T ;L5/3(K)) , %ε − %
ε

⇀ r weakly in L2(0, T ;L2(K)) ,

ϑε − ϑ
ε

⇀ Θ weakly in L2(0, T ;W 1,2(R3)),

uε ⇀ U weakly in L2(0, T ;W 1,2(R3; R3)) , uε → U strongly in L2((0, T )×K; R3)

for any compact set K ⊂ Ω, where functions U , Θ is a weak solution of the
Oberbeck-Boussinesq approximation (OB1)–(OB4) in (0, T )× R3 in the sense spe-
cified in (2.11)–(2.12) with U(0, ·) = H[U0] and Θ0 = ϑ

(1)
0 . Moreover if (D6) is

satisfied, U |∂O = 0.
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Here H [·] denotes the projection on the space of divergence free functions on Ω
of Helmholtz decomposition. The rest of the paper is devoted to the proof of the
Theorem 2.1 or rather to the sketch of the proof with references where reader can
find all details.

3. Proof of the Theorem 2.1

Since for each ε ∈ (0, 1) the set Ωε is sufficiently regular and bounded, in
order to provide the existence of the family of weak solutions {%ε,uε, ϑε}ε>0 to the
primitive system - compressible Navier-Stokes-Fourier (NSF1

ε)–(NSF4
ε) stated on Ωε

we use the result of E. Feireisl and A. Novotný [6, Theorem 3.2]. Then the following
regularity of solutions can be obtained: %ε ∈ Cweak(0, T ;L5/3(Ωε)), %ε ∈ Lq((0, T )×
Ωε) for a certain q > 5

3 and uε ∈ L2(0, T ;W 1,2(Ωε; R3)). Moreover the absolute
temperature ϑε is a measurable function ϑε(t, x) > 0 for a.a. (t, x) ∈ (0, T )× Ωε

and ϑε ∈ L2(0, T ;W 1,2(Ωε)) ∩ L∞(0, T ;L4(Ωε)), log ϑε ∈ L2(0, T ;W 1,2(Ωε)).

3.1. Uniform bounds. All uniform bounds stated below may be seen as a direct
consequence of total dissipation balance and more detailed reasoning may be found
in [6, 7, 11].

To begin with, according to these references, we introduce essential and residual
part of a measurable function h as

h = [h]ess + [h]res, [h]ess = χ(%ε, ϑε)h , [h]res = (1− χ(%ε, ϑε))h ,
where χ ∈ C∞c ((0,∞) × (0,∞)), 0 ≤ χ ≤ 1, χ = 1 on the set Oess and Oess =
[%/2, 2%]× [ϑ/2, 2ϑ], Ores = (0,∞)2 \ Oess.

The total dissipation balance reads then∫
Ωε

(
1
2%ε|uε|

2
)

(t) dx

+ 1
ε2

(
Hϑ(%ε, ϑε)− (%ε − %̃ε)

∂Hϑ(%̃ε, ϑ)
∂%

−Hϑ(%̃ε, ϑ)
)

(t) dx

+ ϑ

ε2σε
[
[0, t]× Ωε

]
=
∫

Ωε

(
1
2%0,ε|u0,ε|2

)
dx

+ 1
ε2

(
Hϑ(%0,ε, ϑ0,ε)− (%0,ε − %̃ε)

∂Hϑ(%̃ε, ϑ)
∂%

−Hϑ(%̃ε, ϑ)
)

dx ,

(3.1)

where Hϑ is ballistic free energy and Hϑ(%, ϑ) = %
(
e(%, ϑ)− ϑs(%, ϑ)

)
.

It is provided (see Lemma 5.1 in [6]) that Hϑ(%ε, ϑε) − (%ε − %̃ε)
∂H

ϑ
(%̃ε,ϑ)
∂% −

Hϑ(%̃ε, ϑ) is non-negative, strictly coercive, attain global minimum zero at point
(%̃ε, ϑ), dominates internal energy %e and entropy s far from (%̃ε, ϑ). Therefore
according to our assumptions we are able to deduce from (3.1) that (for details see
[5, 6, 7, 11])

ess sup
t∈(0,T )

∫
Ωε
%ε|uε|2(t, ·) dx ≤ c, ess sup

t∈(0,T )
‖√%εuε‖L2(Ωε;R3) ≤ c
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ess sup
t∈(0,T )

∥∥∥∥[%ε − %̃εε

]
ess

(t, ·)
∥∥∥∥
L2(Ωε)

≤ c , ess sup
t∈(0,T )

∥∥∥∥[ϑε − ϑε

]
ess

(t, ·)
∥∥∥∥
L2(Ωε)

≤ c ,

‖σε‖M+([0,T ]×Ωε) ≤ ε
2c ,

ess sup
t∈(0,T )

∫
Ωε

(|[%εe(%ε, ϑε)]res|+ |[p(%ε, ϑε)]res|+ |[%εs(%ε, ϑε)]res|dx) ≤ ε2c ,

ess sup
t∈(0,T )

∫
Ωε

[%ε]5/3res (t, ·) + [ϑε]4res(t, ·) dx ≤ ε2c , ess sup
t∈(0,T )

∫
Ωε

1lres(t, ·)dx ≤ ε2c ,

ess sup
t∈(0,T )

∥∥∥∥[%ε − %̃εε

]
res

∥∥∥∥
L1(Ωε)

≤ cε ,

∫ T

0

∥∥∥∥ϑε − ϑε

∥∥∥∥2

W 1,2(Ωε;R3)
dt+

∫ T

0

∥∥∥∥ log(ϑε)− log(ϑ)
ε

∥∥∥∥2

W 1,2(Ωε;R3)
dt < c ,

∫ T

0
‖uε‖2W 1,2(Ωε;R3) dt < c .

3.2. Convergence. The hypotheses stated on the family of {Ωε}ε provides us:
• the uniform extension property [8]. Namely there exists an extension opera-

tor Eε s.t. Eε : W 1,p(Ωε) 7→ W 1,p(R3), Eε[v]|Ωε = v and ‖Eε[v]‖W 1,p(R3) ≤
c‖v‖W 1,p(Ωε), where the constant c is independent of ε→ 0.

• there exists bounded domain O s.t. R3\O satisfy the uniform α-cone condition
and a suitable subsequence of ε’s such that |(R3 \Oε)\ (R3 \O)| → 0 as ε→ 0.
This property is crucial when studying stability if the spectral properties of
the Neumann Laplacian, see [1, 5], to provide decay of acoustic waves. For
each x0 ∈ ∂O there is xε,0 ∈ ∂Oε such that xε,0 → x0 and O ⊂ Bs(0) and for
any compact K ⊂ Ω, there exists ε(K) such that K ⊂ Ωε for all ε < ε(K).

Since the family of {Ωε}ε possesses a uniform extension property we may deduce
from uniform estimates that

(3.2) uε ⇀ U weakly in L2(0, T ;W 1,2(R3; R3)) ,

ess sup
t∈(0,T )

‖ϑε(t, ·)− ϑ‖L2(Ωε) → 0 as ε→ 0 ,

Θε = ϑε − ϑ
ε

⇀ Θ weakly in L2(0, T ;W 1,2(R3)) .

Following the same procedure as in [7, 11] by uniform estimates and closeness of %
and %̃ε (2.8) we get

ess sup
t∈(0,T )

‖%̃ε(t, ·)− %‖L5/3+Lq(Ωε) → 0 ,

ess sup
t∈(0,T )

‖%ε(t, ·)− %̄‖L2+L5/3+Lq(Ωε) → 0 as ε→ 0 for q > 3 ,

%ε − %
ε

∗
⇀ r weakly* in L∞(0, T ;L5/3(K)) for any compact K ⊂ Ω for ε→ 0 .
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Therefore fluid density becomes constant since ε → 0, i.e. as the Mach number
tends to zero. Then continuity equations provides, that

divxU = 0 a.a. in (0, T )× Ω .

By boundary conditions and properties of Ωε the limit velocity field satisfies the
impermeability condition U · n|∂O = 0 in a weak sense. Moreover the analysis
provided by [2], see also [5, Sec. 6.2], gives that U |∂O = 0 if (D6) is satisfied.

To pass to the limit in rescaled NSFε system one of the most difficult steps is
to provide strong convergence of the velocity field in order to control the limit of
convective term. Namely we need to show that

uε → U strongly in L2((0, T )×K) for any compact K ⊂ R3 \O .

The main obstacle here are possible oscillations in time of the momentum, since
from momentum equations we do not control its time derivative. Then one can
observe that it is sufficient to provide that (see [3, 7, 11])

(3.3) %εuε → %U in L2(0, T ;W−1,2(K)).

Then due to (3.2) it is even enough to prove, instead of (3.3), that{
t→

∫
R3

(%εuε)(t, ·)ϕ dx
}

is precompact in L2(0, T )

and

(3.4)
{
t→

∫
R3
%εuε(·, t) ·ϕ dx

}
→

{
t→ %

∫
R3
U(·, t) ·ϕdx

}
in L2(0, T )

for any fixed ϕ ∈ C∞(R3) where suppϕ ⊂ K as ε→ 0.

3.3. Reformulation to the wave equation. Dispersive estimates – local
decay of acoustic wave. As it was already emphasised, our aim now is to show
(3.4). This will be provided by the analyse of Lighthill’s acoustic analog (see [10])
of our primitive NSFε system, namely

(3.5) ε∂tSε + ωdivx V ε = εf̃1
ε , ε∂tV ε +∇xSε = εf̃

2
ε ,

with homogenous Neuman boundary condition V ε · n|∂Ωε = 0 where

Sε = A

(
%ε − %
ε

)
+B

(
%εs(%ε, ϑε)− %s(%, ϑ)

ε

)
− %Fε + B

ε
Σε , V ε = %εuε ,

(3.6)

f̃1
ε = divx B

(
%ε
s(%, ϑ)− s(%ε, ϑε)

ε
uε

)
︸ ︷︷ ︸

H1
ε

+divx B
(
κ(ϑε)
ϑε

∇xϑε
ε

)
︸ ︷︷ ︸

H2
ε

(3.7)



240 A. WRÓBLEWSKA-KAMIŃSKA

f̃
2
ε =∇x

1
ε

[
A

(
%ε − %
ε

)
+B

(
%εs(%ε, ϑε)− %s(%, ϑ)

ε

)
−
(
p(%ε, ϑε)− p(%, ϑ)

ε

)]
︸ ︷︷ ︸

G3
ε

− divx

(%εuε ⊗ uε)︸ ︷︷ ︸
G2,2
ε

+ SSSε︸︷︷︸
G2,1
ε

+ %ε − %
ε
∇xFε︸ ︷︷ ︸

G4
ε

+B
1
ε2∇xΣε︸ ︷︷ ︸
∇xG1

ε

.

Where Σε is a time lifting of σε ([6, 7, 11]) and constants A, B, ω are chosen
s.t. B%∂ϑs(%, ϑ) = ∂ϑp(%, ϑ) and A + B∂%(%s)(%, ϑ) = ∂%p(%, ϑ), ω = ∂%p(%, ϑ) +
|∂ϑp(%,ϑ)|2

%2∂ϑs(%,ϑ)
> 0 (see e.g. [6, 7, 11]). Notice that ω is bounded due to structural

restrictions on p and s.
Let ∇xΦε denote acoustic potential, i.e.

V ε =Hε[V ε] +∇xΦε.

Accordingly we may rewrite (3.5)1 in the following form

ε

∫ T

0
〈Sε(t, ·), ∂tϕ〉dt+ ω

∫ T

0

∫
Ωε
∇xΦε · ∇xϕdxdt

= ε 〈S0,ε, ϕ(0, ·)〉+ ε

∫ T

0

∫
Ωε

(H1
ε +H2

ε ) · ∇xϕdxdt
(3.8)

for all ϕ ∈ C∞c ([0, T ]×Ωε). Next since ϕ = ∇x∆−1
ε,N[ϕ] is an admissible test function

in (3.5)2 (due to slip boundary condtion on uε) we obtain by integration by parts
that

ε

∫ T

0

∫
Ωε

Φε · ∂tϕdt−
∫ T

0
〈Sε, ϕ〉[M,C] dt = −ε

∫
Ωε
V0,ε · ∇x∆−1

ε,N[ϕ(0, ·)] dx

− ε
{∫ T

0
〈G1

ε(t, ·), ϕ〉dt+
∫ T

0

∫
Ωε
G2,1
ε : ∇2

x∆−1
ε,N[ϕ] dxdt

+
∫ T

0

∫
Ωε
G2,2
ε : ∇2

x∆−1
ε,N[ϕ] dxdt+

∫ T

0

∫
Ωε
G3
εϕdxdt

+
∫ T

0

∫
Ωε
G4
ε · ∇x∆−1

ε,N[ϕ] dxdt
}
.

(3.9)

The above equations represent a weak formulation of the acoustic equation for
the potential of the gradient part of the momentum with Neumann boundary
conditions.

Summarising computation from previous sections, due to uniform estimates
obtained in Section 3.1 equations (3.8) and (3.9) can be rewritten in the following
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more conscious form (see [5, 11])

ε

∫ T

0
〈Sε(t, ·), ∂tϕ〉dt+ ω

∫ T

0

∫
Ωε
∇xΦε · ∇xϕdxdt

= ε 〈S0,ε, ϕ(0, ·)〉+ ε

ε2β

∫ T

0

∫
Ωε
J1
εϕ+ J2

ε (−∆ε,N)3/2[ϕ]

+ J3
ε (−∆ε,N)1/2[ϕ] + J4

ε (−∆ε,N)[ϕ] dxdt

(3.10)

for all ϕ ∈ C∞c ([0, T ]× Ωε) and

ε

∫ T

0

∫
Ωε

Φε · ∂tϕdt−
∫ T

0
〈Sε, ϕ〉dt = −ε

∫
Ωε

Φ0,εϕ(0, ·) dx

− ε

ε2β

∫ T

0

∫
Ωε

{
J̃1
εϕ+ J̃2

ε (−∆ε,N)−1/2[ϕ] + J̃3
ε (−∆ε,N)1/2[ϕ]

+ J̃4
ε (−∆ε,N)−1[ϕ] + J̃5

ε (−∆ε,N)[ϕ]
}

dxdt

(3.11)

for any ϕ ∈ C∞c ([0, T )×K), K compact subset of R3 \O, ∇xϕ · n|∂Ωε = 0, where

‖J i‖L2((0,T )×Ωε) < c for i = 1, . . . , 4 and ‖J̃j‖L2((0,T )×Ωε) < c for j = 1, . . . , 5

and for sufficiently small ε and supplemented with the following initial data

S0,ε = (−∆ε,N)[S̃1
0,ε] + (−∆ε,N)1/2[S̃2

0,ε] + S̃3
0,ε ,

with ‖S̃i0,ε‖L2(Ωε) ≤ c and

Φ0,ε = (−∆ε,N)−1divx V0,ε, where ‖(−∆ε,N)−1/2[Φ0,ε]‖L2(Ωε) ≤ c .

Then the Duhamel formula gives as an explicit formulation for acoustic potential,
i.e.:

Φε(t, ·) = 1
2 exp

(
± i
√
−ω∆ε,N

t

ε

)[
Φ0,ε ±

i√
−ω∆ε,N

[S0,ε]
]

+ ε−2β 1
2

∫ T

0
exp

(
± i
√
−ω∆ε,N

t− s
ε

)[
F̃2,ε(s)±

i√
−ω∆ε,N

F̃1,ε(s)
]
ds ,

(3.12)

where
F̃1,ε = J1

ε + (−∆ε,N)3/2[J2
ε ] + (−∆ε,N)1/2[J3

ε ] + (−∆ε,N)[J4
ε ],

F̃2,ε = J̃1
ε + (−∆ε,N)−1/2[J̃2

ε ] + (−∆ε,N)1/2[J̃3
ε ] + (−∆ε,N)−1[J̃4

ε ] + (−∆ε,N)[J̃5
ε ]

(see (3.10), (3.11)). Let us remark that the “large” coefficient ε−2β appearing in
(3.10), (3.11) and (3.12) is a consequence or roughness of the obstacle Oε (see (D5)).
More precisely, an elliptic estimate employed to derive (3.10), (3.11) depends on ε,
i.e. ‖∇2

xϕ‖Lp(Ωε) ≤ c(p)
(
‖∆xϕ‖Lp(Ωε) + 1

ε2β ‖ϕ‖Lp(Ωε)
)

for any ϕ ∈ C∞c (Ωε) with
∇xϕ · n|∂Ωε = 0, with 1 < p <∞.
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With above formulation at hand and by methods developed in [4] we are able to
provide local decay of acoustic wave and consequently to show that

(3.13)
{
t→

∫
Ωε

ΦεG(−∆ε,N)[ϕ] dx
}
→ 0 in L2(0, T ) ,

any G ∈ C∞c (0,∞), what in fact is a key point to prove (3.4) and consequently
to provide convergence in convective term (see for details [5, 11]). The following
lemma gives a local decay of acoustic waves.

Lemma 3.1 ([4, 5]). We have∫ T

0

∣∣∣∣∣
〈

exp
(
i
√
−∆ε,N

t

ε
[Ψ], G(−∆ε,N)[ϕ]

)〉
Ω̃ε

∣∣∣∣∣
2

dt ≤ εc(ϕ,G)‖Ψ‖2
L2(Ω̃ε)

for any ϕ ∈ C∞c (K), Ψ ∈ L2(Ω̃ε), and any G ∈ C∞c (0,∞), where is s.t. K ⊂
R3 \Oε.

Lemma 3.1 applied to Φε given by formula (3.12) provides (3.13), if β < 1
4 ,

see [4] for details. The explicitly given rate of the decay in Lemma 3.1 allow to
compensate exploding coefficient ε−2β which reflects the influence of perturbations
of the domain. Moreover, let us remark that in order to provide good properties of
the spectrum of Neumann Laplacian −∆ε,N it is crucial to notice that the outer
boundary (the boundary of the sphere Sε) is irrelevant for the local analysis (on
supports of test functions ϕ) and in fact we may consider the operator −∆ε,N on
unbounded domain R3 \Oε. Indeed in (3.5) the speed of propagation is finite and
proportional to

√
ω/ε and the boundary Sε is sufficiently “far”, since δ > 1. For

details see again [5, 11].
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