A PRIORI BOUNDS FOR POSITIVE RADIAL SOLUTIONS OF QUASILINEAR EQUATIONS OF LANE-EMDEN TYPE

Soohyun Bae

Abstract

We consider the quasilinear equation $\Delta_{p} u+K(|x|) u^{q}=0$, and present the proof of the local existence of positive radial solutions near 0 under suitable conditions on K. Moreover, we provide a priori estimates of positive radial solutions near ∞ when $r^{-\ell} K(r)$ for $\ell \geq-p$ is bounded near ∞.

1. Introduction

We consider the equation

$$
\begin{equation*}
\Delta_{p} u+K(|x|) u^{q}=0 \tag{1.1}
\end{equation*}
$$

where $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), n>p>1$ and $q>p-1$. Let $r=|x|$ and $\frac{d}{d r} u(r)=u_{r}(r)$. Then, the radial version of (1.1) is

$$
\begin{equation*}
r^{1-n}\left(r^{n-1}\left|u_{r}\right|^{p-2} u_{r}\right)_{r}+K(r) u^{q}=0 \tag{1.2}
\end{equation*}
$$

For $p=2$, the basic assumption of K for local solutions is (K):
(i) $K(r) \geq 0, \not \equiv 0 ; K(r)$ is continuous on $(0, \infty)$;
(ii) $\int_{0} r K(r) d r<\infty$, i.e., $r K(r)$ is integrable near 0 .

Under condition (K), 1.2 with $p=2$ and $u(0)=\alpha>0$, has a unique positive solution $u_{\alpha} \in C^{2}(0, \varepsilon) \cap C[0, \varepsilon)$ for small $\varepsilon>0$. In order to obtain local solutions (1.2) near 0 , we assume (KP): (i) of (K), and for $r>0$ small,

$$
\int_{0}^{r} t^{\frac{1-n}{p-1}}\left(\int_{0}^{t} s^{n-1} K(s) d s\right)^{\frac{1}{p-1}} d t<\infty
$$

For $p=2$, this integrability is (ii) of (K). If $K(r)=r^{l}$, then it is easy to see that (KP) holds for $l>-p$. As a typical example, the equation

$$
\begin{equation*}
\Delta_{p} u+|x|^{l} u^{q}=0 \tag{1.3}
\end{equation*}
$$

possesses a local radial solution \bar{u}_{α} with $\bar{u}_{\alpha}(0)=\alpha$ for each $\alpha>0$, and has the scaling invariance:

$$
\begin{equation*}
\bar{u}_{\alpha}(r)=\alpha \bar{u}_{1}\left(\alpha^{\frac{1}{m}} r\right) \tag{1.4}
\end{equation*}
$$

[^0]with $m=\frac{p+l}{q-(p-1)}$. Moreover, 1.3) has a singular solution which is invariant under the scaling in (1.4), the so-called self-similar solution. That is,
$$
U(x)=L|x|^{-m},
$$
where L is defined by
\[

$$
\begin{equation*}
L=L(n, p, q, l)=\left[m^{p-1}(n-1-(m+1)(p-1))\right]^{\frac{1}{q-(p-1)}} . \tag{1.5}
\end{equation*}
$$

\]

This singular solution can be defined for $l>-p$ and $q>\frac{(p-1)(n+l)}{n-p}$ because $n-1-(m+1)(p-1)>0$. Then, we observe the asymptotic self-similar behavior.
Theorem 1.1. Let $n>p>1$ and $q>\frac{(p-1)(n+l)}{n-p}$ with $l>-p$. If $r^{-l} K(r) \rightarrow 1$ as $r \rightarrow \infty$, then any positive solution u of (1.2) near ∞ satisfies one of the two asymptotic behavior: either

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} r^{m} u(r) \leq L \leq \limsup _{r \rightarrow \infty} r^{m} u(r)<\infty \tag{1.6}
\end{equation*}
$$

with $L=L(n, p, q, l)$ given by 1.5 or $r^{(n-p) /(p-1)} u(r) \rightarrow C>0$ as $r \rightarrow \infty$.
Moreover, 1.6 can be the asymptotic self-similarity

$$
\lim _{r \rightarrow \infty} r^{m} u(r)=L
$$

In a forthcoming paper, we study entire solutions of 1.2 with this asymptotic behavior in a supercritical range.
1.1. Lower bound. The p-Laplace equation has the radial form

$$
\begin{equation*}
\left(\left|u_{r}\right|^{p-2} u_{r}\right)_{r}+\frac{n-1}{r}\left|u_{r}\right|^{p-2} u_{r}=0, \tag{1.7}
\end{equation*}
$$

where $n>p>1$. Then, 1.7) possesses a solution $|x|^{-\theta}$ with $\theta=\frac{n-p}{p-1}$. Let u be a positive radial solution satisfying the quasilinear inequality

$$
\begin{equation*}
r^{1-n}\left(r^{n-1}\left|u_{r}\right|^{p-2} u_{r}\right)_{r}=\left(\left|u_{r}\right|^{p-2} u_{r}\right)_{r}+\frac{n-1}{r}\left|u_{r}\right|^{p-2} u_{r} \leq 0 . \tag{1.8}
\end{equation*}
$$

If $u_{r}\left(r_{0}\right) \leq 0$ for some $r_{0}>0$, then $u_{r}(r) \leq 0$ for $r>r_{0}$. Hence, u is monotone near ∞. Assume $u_{r} \leq 0$ for $r \geq r_{0}$ with some $r_{0}>1$. Setting $V(t)=r^{\theta} u(r)$ for $t=\log r \geq t_{0}=\log r_{0}$, we see that $g(t)=\theta V(t)-V^{\prime}(t)=r^{\theta+1}\left(-u_{r}(r)\right)=$ $r^{\frac{n-1}{p-1}}\left(-u_{r}(r)\right)$ satisfies

$$
\frac{d}{d t}\left(g^{p-1}(t)\right)=(n-1) g^{p-1}(t)+r^{n}\left[\left(-u_{r}\right)^{p-1}\right]_{r} \geq 0
$$

for $t \geq t_{0}$. Hence, g is increasing for $t \geq t_{0}$. Then, V satisfies that for $t>T \geq t_{0}$,

$$
V^{\prime}(t)-\theta V(t) \leq V^{\prime}(T)-\theta V(T)
$$

Suppose $V^{\prime}(T)<0$. Setting $c=\theta V(T)-V^{\prime}(T)$, we have $\left(e^{-\theta t} V(t)\right)^{\prime} \leq-c e^{-\theta t}$ and

$$
V(t) \leq e^{\theta(t-T)}\left(V(T)-\frac{c}{\theta}\right)+\frac{c}{\theta}=e^{\theta(t-T)} \frac{V^{\prime}(T)}{\theta}+\frac{c}{\theta}
$$

Hence, V has a finite zero. Therefore, in order for u to be positive near ∞, V must be increasing and $\left(r^{\theta} u(r)\right)_{r} \geq 0$ near ∞. This is true obviously in the other case that $u_{r}>0$ near ∞.

Lemma 1.2. Let $n>p>1$. If u is a positive radial solution satisfying (1.8) near ∞, then $r^{\frac{n-p}{p-1}} u(r)$ is increasing.

Now, we classify positive solutions of 1.8 near ∞ into two groups according to their behaviors. If $r^{\frac{n-p}{p-1}} u$ converges to a positive constant at ∞, then we call u a fast decaying solution. Otherwise, u is a slowly decaying solution if $r^{\frac{n-p}{p-1}} u(r) \rightarrow \infty$ as $r \rightarrow \infty$.
1.2. Known results. One of Liouville's theorems related to p-Laplace equation is the nonexistence of nontrivial nonnegative solutions in $W_{\mathrm{loc}}^{1, p}\left(\mathbf{R}^{n}\right) \cap C\left(\mathbf{R}^{n}\right)$ to the following quasilinear inequality

$$
-\Delta_{p} u \geq c|x|^{l} u^{q}
$$

with $c>0$ and $l>-p$, when $n>p>1$ and

$$
q \leq \frac{(p-1)(n+l)}{n-p}
$$

See [1. Theorem 3.3 (iii)]. For the existence of nontrivial solutions to

$$
\Delta_{p} u+u^{q}=0
$$

on \mathbf{R}^{n} with $n>p>1$ and $q>p-1$, it is necessary and sufficient that $q \geq \frac{n(p-1)+p}{n-p}$ 6. On the other hand, (1.3) with $q=q_{s}:=\frac{n(p-1)+p+p l}{n-p}$ admits the one-parameter family of positive solutions given by

$$
\bar{u}_{\alpha}(x)=\frac{\alpha}{\left(1+\xi\left(\alpha^{\frac{p}{n-p}}|x|\right)^{\frac{p+l}{p-1}}\right)^{\frac{n-p}{p+l}}}
$$

with $\xi=\xi_{p, n}=\frac{p-1}{(n-p)(n+l)^{1 /(p-1)}}$ and $\bar{u}_{\alpha}(0)=\alpha>0$. A radial solution $u(x)=u(|x|)$ of (1.3) satisfies the equation

$$
\begin{equation*}
\left(\left|u_{r}\right|^{p-2} u_{r}\right)_{r}+\frac{n-1}{r}\left|u_{r}\right|^{p-2} u_{r}+r^{l} u^{q}=0 . \tag{1.9}
\end{equation*}
$$

For $l>-p, 1.9$ with $u(0)=\alpha>0$, has a unique positive solution $u \in C^{1}(0, \epsilon) \cap$ $C[0, \epsilon)$ for small $\epsilon>0$ such that $\left|u_{r}\right|^{p-2} u_{r} \in C^{1}[0, \epsilon)$. If $q<q_{s}$, then every local solution of 1.9 has a finite zero [2, 5]. In the opposite case $q>q_{s}$, every local solution of 1.9$)$ is to be a slowly decaying solution [2,3,5].

2. Local existence

Let $n \geq p>1, l>-p$ and $q \geq p-1$. First, in order to prove the local existence of positive radial solutions of $(1.3$, we consider the integral equation

$$
u(r)=\alpha-\int_{0}^{r} t^{\frac{1-n}{p-1}}\left(\int_{0}^{t} s^{n-1+l} u^{q}(s) d s\right)^{\frac{1}{p-1}} d t
$$

with $\alpha>0$.

2.1. Integral representation. On a space

$$
S=\{u \in C[0, \varepsilon] \mid 0 \leq u \leq \alpha\}
$$

we study a nonlinear operator T from S to $C[0, \varepsilon]$ by

$$
T(u)(r)=\alpha-T_{1}(u)(r),
$$

where

$$
T_{1}(u)(r)=\int_{0}^{r} t^{\frac{1-n}{p-1}}\left(\int_{0}^{t} s^{n-1+l} u^{q}(s) d s\right)^{\frac{1}{p-1}} d t
$$

For $\varepsilon>0$ small enough, T_{1} satisfies that

$$
0 \leq T_{1} \leq \alpha^{\frac{q}{p-1}} \int_{0}^{r} t^{\frac{1-n}{p-1}}\left(\int_{0}^{t} s^{n-1+l} d s\right)^{\frac{1}{p-1}} d t \leq\left(\frac{\alpha^{q}}{n+l}\right)^{\frac{1}{p-1}} \frac{p-1}{p+l} \varepsilon^{\frac{p+l}{p-1}} \leq \alpha
$$

Hence, $T(S) \subset S$. Minkowski's inequality for $p \geq 2$ shows that for $u_{1}, u_{2} \in S$,

$$
\begin{aligned}
\left\|T\left(u_{2}\right)-T\left(u_{1}\right)\right\| & \leq \int_{0}^{r} t^{\frac{1-n}{p-1}}\left(\int_{0}^{t} s^{n-1+l}\left|u_{2}^{\frac{q}{p-1}}-u_{1}^{\frac{q}{p-1}}\right|^{p-1} d s\right)^{\frac{1}{p-1}} d t \\
& \leq \frac{q}{p-1} \alpha^{\frac{q-(p-1)}{p-1}} \int_{0}^{r} t^{\frac{1-n}{p-1}}\left(\int_{0}^{t} s^{n-1+l} d s\right)^{\frac{1}{p-1}} d t\left\|u_{2}-u_{1}\right\| \\
& =\frac{q}{p-1} \alpha^{\frac{q-(p-1)}{p-1}}\left(\frac{1}{n+l}\right)^{\frac{1}{p-1}} \frac{p-1}{p+l} \varepsilon^{\frac{p+l}{p-1}}\left\|u_{2}-u_{1}\right\|
\end{aligned}
$$

For $1<p<2$, we observe that for $u_{1}, u_{2} \in S$,

$$
\begin{aligned}
\left\|T\left(u_{2}\right)-T\left(u_{1}\right)\right\| & \leq \int_{0}^{r} t^{\frac{1-n}{p-1}} \frac{\alpha^{\frac{q(2-p)}{p-1}}}{p-1}\left(\int_{0}^{t} s^{n-1+l} d s\right)^{\frac{2-p}{p-1}}\left(\int_{0}^{t} s^{n-1+l}\left|u_{2}^{q}-u_{1}^{q}\right| d s\right) d t \\
& \leq \frac{q}{p-1} \alpha^{\frac{q-(p-1)}{p-1}} \int_{0}^{r} t^{\frac{1-n}{p-1}}\left(\int_{0}^{t} s^{n-1+l} d s\right)^{\frac{1}{p-1}} d t\left\|u_{2}-u_{1}\right\| \\
& =\frac{q}{p-1} \alpha^{\frac{q-(p-1)}{p-1}}\left(\frac{1}{n+l}\right)^{\frac{1}{p-1}} \frac{p-1}{p+l} \varepsilon^{\frac{p+l}{p-1}}\left\|u_{2}-u_{1}\right\| .
\end{aligned}
$$

Now, we assume that

$$
\frac{p-1}{p+l} \max \left\{\left(\frac{\alpha^{q}}{n+l}\right)^{\frac{1}{p-1}}, \frac{q}{p-1} \alpha^{\frac{q-(p-1)}{p-1}}\left(\frac{1}{n+l}\right)^{\frac{1}{p-1}}\right\} \varepsilon^{\frac{p+l}{p-1}}<\min \{\alpha, 1\} .
$$

Then, T is a contraction mapping in S and thus T has a unique fixed point \bar{u}_{α}.
Generally, we consider the integral equation under condition (KP),

$$
u(r)=\alpha-\int_{0}^{r} t^{\frac{1-n}{p-1}}\left(\int_{0}^{t} s^{n-1} K(s) u^{q}(s) d s\right)^{\frac{1}{p-1}} d t
$$

Then, the integrability of (KP) shows in the same way the local existence of a positive solution u_{α} with $u_{\alpha}(0)=\alpha>0$ to (1.2). Then, it is easy to see that there exists a sequence $\left\{r_{j}\right\}$ going to 0 such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} r_{j}^{n-1}\left|u_{r}\left(r_{j}\right)\right|^{p-2} u_{r}\left(r_{j}\right)=0 \tag{2.1}
\end{equation*}
$$

and $u_{\alpha}(r)$ is decreasing as long as u remains positive. Moreover, u_{α} is strictly decreasing after K becomes positive.
2.2. Fowler transform. Let $n>p>1$ and $q>\frac{(n+l)(p-1)}{n-p}$ with $l>-p$. Set $m=\frac{p+l}{q-(p-1)}$. Fowler transform $V(t)=r^{m} u(r), t=\log r$, of a positive solution to (1.2) satisfies

$$
\begin{equation*}
(p-1)\left(m V-V^{\prime}\right)^{p-2}\left(V^{\prime \prime}-m V^{\prime}\right)-\xi\left(m V-V^{\prime}\right)^{p-1}+k(t) V^{q}=0 \tag{2.2}
\end{equation*}
$$

where $\xi=n-1-(m+1)(p-1)=\frac{L^{q-(p-1)}}{m^{p-1}}$ with L given by (1.5), and $k(t)=r^{-l} K(r)$. Furthermore, if $-r^{m+1} u_{r}(r)=m V-V^{\prime}>0$, then 2.2) can be rewritten as

$$
(p-1)\left(V^{\prime \prime}-m V^{\prime}\right)-\xi\left(m V-V^{\prime}\right)=-\frac{k(t) V^{q}}{\left(m V-V^{\prime}\right)^{p-2}}
$$

and

$$
(p-1) V^{\prime \prime}+a V^{\prime}-\xi m V=-\frac{k(t) V^{q}}{\left(m V-V^{\prime}\right)^{p-2}}
$$

where $a=n-1-(2 m+1)(p-1)$. Setting $b=\xi m=\frac{L^{q-(p-1)}}{m^{p-2}}$, we have

$$
(p-1) V^{\prime \prime}+a V^{\prime}-\left(b-\frac{k(t) V^{q-1}}{\left(m V-V^{\prime}\right)^{p-2}}\right) V=0 .
$$

That is,

$$
\begin{equation*}
(p-1) V^{\prime \prime}+a V^{\prime}-\frac{1}{m^{p-2}} L^{q-(p-1)} V+\frac{k(t)}{\left(m V-V^{\prime}\right)^{p-2}} V^{q}=0 \tag{2.3}
\end{equation*}
$$

which holds as long as the local solution remains positive.

3. A priori estimates

In order to obtain upper bounds, we argue similarly as in Lemma 2.16, Lemma 2.20, Theorem 2.25 in (4].
3.1. Upper bound. Let $n>p \geq-\ell$. If u is a positive solution satisfying the inequality

$$
\begin{equation*}
\left(r^{n-1}\left|u_{r}\right|^{p-2} u_{r}\right)_{r} \leq-c r^{n-1+\ell} u^{q} \tag{3.1}
\end{equation*}
$$

near ∞ for some $c>0$, then

$$
\begin{equation*}
r^{n-1}\left|u_{r}\right|^{p-2} u_{r} \leq r_{0}^{n-1}\left|u_{r}\left(r_{0}\right)\right|^{p-2} u_{r}\left(r_{0}\right)-c \int_{r_{0}}^{r} s^{n-1+\ell} u^{q}(s) d s \tag{3.2}
\end{equation*}
$$

for $r>r_{0}$, if r_{0} is sufficiently large. Then, we may assume that $u_{r}\left(r_{0}\right) \leq 0$. Indeed, if $u_{r}\left(r_{0}\right)>0$, then

$$
r^{n-1}\left|u_{r}\right|^{p-2} u_{r} \leq r_{0}^{n-1}\left|u_{r}\left(r_{0}\right)\right|^{p-2} u_{r}\left(r_{0}\right)-c u^{q}\left(r_{0}\right) \frac{1}{n+\ell}\left(r^{n+\ell}-r_{0}^{n+\ell}\right)
$$

as long as u_{r} is positive. Hence, u_{r} is eventually negative. Therefore, (3.2) gives

$$
r^{n-1}\left|u_{r}\right|^{p-2} u_{r} \leq-c u^{q}(r) \frac{1}{n+\ell}\left(r^{n+\ell}-r_{0}^{n+\ell}\right)
$$

and thus,

$$
\frac{u_{r}}{u^{q /(p-1)}} \leq-c_{1} r^{\frac{1+\ell}{p-1}}
$$

for some $c_{1}>0$. Hence, we obtain

$$
u(r) \leq \begin{cases}C r^{-\frac{p+\ell}{q-(p-1)}} & \text { if } \quad \ell>-p \\ C(\log r)^{-\frac{p-1}{q-(p-1)}} & \text { if } \quad \ell=-p\end{cases}
$$

for some $C>0$. Combining the a priori estimates and Lemma 1.2, we have the following assertion.

Theorem 3.1. Let $n>p \geq-\ell$ and $q>\frac{(p-1)(n+\ell)}{n-p}$. Then, every positive solution to (3.1) near ∞ satisfies that

$$
C_{1} r^{-\frac{p+\ell}{q-(p-1)}} \geq u(r) \geq C_{2} r^{-\frac{n-p}{p-1}}
$$

for $\ell>-p$ and

$$
C_{1}(\log r)^{-\frac{p-1}{q-(p-1)}} \geq u(r) \geq C_{2} r^{-\frac{n-p}{p-1}}
$$

for $\ell=-p$.
In Theorem 3.1. we use the notation ℓ instead of l to consider the case of $\ell=-p$. It is interesting to study the existence of positive entire solutions of (1.1) with the logarithmic asymptotic behavior at ∞.
Lemma 3.2. Let $q>\frac{(p-1)(n+l)}{n-p}$. Assume $K(r)=O\left(r^{l}\right)$ at ∞ for some $l>-p$. If u is a positive solution to (3.1) near ∞ and $u(r)=O\left(r^{-m-\varepsilon}\right)$ with some $\varepsilon>0$ at ∞, then $u(r)=O\left(r^{\frac{p-n}{p-1}}\right)$ at ∞.

Proof. Integrating (1.2] over $[r, \infty)$, we obtain

$$
u(r)=\int_{r}^{\infty} t^{\frac{1-n}{p-1}}\left(\int_{0}^{t} K(s) u^{q}(s) s^{n-1} d s\right)^{\frac{1}{p-1}} d t
$$

On the other hand, we have

$$
\begin{aligned}
\int_{0}^{t} K(s) u^{q}(s) s^{n-1} d s & \leq C+C \int_{1}^{t} s^{n-1+l-q(m+\varepsilon)} d s \\
& =\left\{\begin{array}{lll}
C+C t^{n+l-q(m+\varepsilon)} & \text { if } & n+l \neq q(m+\varepsilon) \\
C+C \log t & \text { if } & n+l=q(m+\varepsilon)
\end{array}\right.
\end{aligned}
$$

If $n+l<q(m+\varepsilon)$, we are done. If $n+l \geq q(m+\varepsilon)$, then

$$
u(r) \leq\left\{\begin{array}{lll}
C r^{\frac{p-n}{p-1}}+C r^{\frac{p-n}{p-1}}(\log r)^{\frac{1}{p-1}} & \text { if } \quad n+l=q(m+\varepsilon) \\
C r^{\frac{p-n}{p-1}}+C r^{\frac{p+l}{p-1}-\frac{q(m+\varepsilon)}{p-1}} & \text { if } \quad p+l<q(m+\varepsilon)<n+l
\end{array}\right.
$$

In case $n+l=q(m+\varepsilon)$, we replace ε by $\frac{n-p}{p-1}-m-\delta$ in the above arguments, where $\delta>0$ is so small that $\delta<\frac{n-p}{p-1}-m$. Note that $m<\frac{n-p}{p-1}$ iff $q>\frac{(p-1)(n+l)}{n-p}$.

$$
u(r) \leq \begin{cases}C r^{\frac{p-n}{p-1}} & \text { if } \quad n+l=q(m+\varepsilon) \\ C r^{\frac{p-n}{p-1}}+C r^{\frac{p+l}{p-1}+\frac{q(p+l)}{(p-1)^{2}}-\frac{q^{2}(m+\varepsilon)}{(p-1)^{2}}} & \text { if } \quad p+l<q(m+\varepsilon)<n+l\end{cases}
$$

In case $q(m+\varepsilon)<n+l$, we iterate this process to obtain

$$
\begin{aligned}
u(r) & \leq C r^{\frac{p-n}{p-1}}+C r^{\frac{p+l}{p-1} \sum_{i=0}^{j-1}\left(\frac{q}{p-1}\right) i-\frac{q^{j}(m+\varepsilon)}{(p-1)^{j}}} \\
& =C r^{\frac{p-n}{p-1}}+C r^{-m-\varepsilon\left(\frac{q}{p-1}\right)^{j}}
\end{aligned}
$$

for any positive integer j. Since $q>p-1$, we reach the conclusion after a finite number of iterations.

Lemma 3.3. Let $q>\frac{(p-1)(n+l)}{n-p}$. Assume $K(r)=O\left(r^{l}\right)$ at ∞ for some $l>-p$. If $u(r)=o\left(r^{-m}\right)$ at ∞, then $\left(r^{m} u(r)\right)_{r}<0$ near ∞.

Proof. Let $V(t)=r^{m} u(r), t=\log r$. Then, V satisfies 2.3). Suppose $V^{\prime}(T)=0$ for some T near ∞ and $k(t) V^{q-(p-1)}(t)<m^{p-2} b$ for $t \in[T, \infty)$. Then, $V^{\prime \prime}(T)>0$ and $V(t)$ is strictly increasing near T but for $t>T$. Since $V \rightarrow 0$ at ∞, there exists $T_{1}>T$ such that $V^{\prime}\left(T_{1}\right)=0$ and

$$
V^{\prime \prime}\left(T_{1}\right)=\frac{1}{p-1}\left(b-\frac{1}{m^{p-2}} k\left(T_{1}\right) V^{q-(p-1)}\left(T_{1}\right)\right) V\left(T_{1}\right) \leq 0
$$

a contradiction.
Theorem 3.4. Let $q>\frac{(p-1)(n+l)}{n-p}$. Assume $K(r)=O\left(r^{l}\right)$ at ∞ for some $l>-p$. If $u(r)=o\left(r^{-m}\right)$ at ∞, then $u(r)=O\left(r^{\frac{p-n}{p-1}}\right)$ at ∞.

Proof. Let $\varphi(r)=r^{m} u(r)$. Then, φ satisfies

$$
\varphi_{r r}+\left(1+\frac{a}{p-1}\right) \frac{1}{r} \varphi_{r}-\frac{b}{(p-1) r^{2}} \varphi+\frac{k}{(p-1)\left(m \varphi-r \varphi_{r}\right)^{p-2} r^{2}} \varphi^{q}=0
$$

For $\varepsilon>0$, define the elliptic operator

$$
\mathcal{L}_{\varepsilon} \varphi=\Delta \varphi-\left[2 m+(n-1) \frac{p-2}{p-1}\right] \frac{x \cdot \nabla \varphi}{|x|^{2}}-m\left(\frac{L^{q-(p-1)}}{m^{p-1}}-\varepsilon\right) \frac{\varphi}{|x|^{2}}
$$

where $\frac{L^{q-(p-1)}}{m^{p-1}}=n-1-(m+1)(p-1)$. It follows from Lemma 3.3 that for any $\varepsilon>0$, there exists $R_{\varepsilon}>0$ such that

$$
\mathcal{L}_{\varepsilon} \varphi=m \varepsilon \frac{\varphi}{r^{2}}-\frac{k \varphi^{q}}{(p-1) r^{2}\left(m \varphi-r \varphi_{r}\right)^{p-2}} \geq\left(m \varepsilon-\frac{k \varphi^{q-(p-1)}}{(p-1) m^{p-2}}\right) \frac{\varphi}{r^{2}} \geq 0
$$

in $\mathbf{R}^{n} \backslash B_{R_{\varepsilon}}(0)$. For $0<\varepsilon<n-1-(m+1)(p-1)$, let $\eta_{\varepsilon}(x)=|x|^{\sigma_{\varepsilon}}$ with σ_{ε} being the negative root of $\sigma(\sigma-1)+\left(n-1-2 m-(n-1) \frac{p-2}{p-1}\right) \sigma-m\left(\frac{L^{q-(p-1)}}{m^{p-1}}-\varepsilon\right)=0$, i.e.,

$$
\sigma_{\varepsilon}=\frac{1}{2}\left[-\left(n-2-2 m-(n-1) \frac{p-2}{p-1}\right)-\sqrt{D}\right]
$$

where $D=\left(n-1-2 m-(n-1) \frac{p-2}{p-1}\right)^{2}+4 m\left(\frac{L^{q-(p-1)}}{m^{p-1}}-\varepsilon\right)$. Setting $C_{\varepsilon}=\varphi\left(R_{\varepsilon}\right) R_{\varepsilon}^{-\sigma_{\varepsilon}}$, we see that $\mathcal{L}_{\varepsilon}\left(\varphi-C_{\varepsilon} \eta_{\varepsilon}\right) \geq 0$ in $\mathbf{R}^{n} \backslash B_{R_{\varepsilon}}(0)$ and $\varphi\left(R_{\varepsilon}\right)=C_{\varepsilon} \eta_{\varepsilon}\left(R_{\varepsilon}\right), \varphi-C_{\varepsilon} \eta_{\varepsilon} \rightarrow 0$ as $r \rightarrow \infty$. Then, the maximum principle implies that $\varphi-C_{\varepsilon} \eta_{\varepsilon} \leq 0$ in $\mathbf{R}^{n} \backslash B_{R_{\varepsilon}}(0)$. Hence, $\varphi(r) \leq C_{\varepsilon} \eta_{\varepsilon}(r)$ at ∞. Then, Lemma 3.2 implies the conclusion.

Proof of Theorem 1.1. When $k(t)=r^{-l} K(r) \rightarrow 1$ as $t=\log r \rightarrow+\infty$, it follows from Theorem 3.1 and 2.3 that slowly decaying solutions satisfy

$$
\liminf _{r \rightarrow \infty} r^{m} u(r) \leq L \leq \limsup _{r \rightarrow \infty} r^{m} u(r)<\infty
$$

Indeed, at every local minimum (maximum) point of $V(t)=r^{m} u(r), V$ satisfies

$$
\frac{1}{m^{p-2}} L^{q-(p-1)} V \geq(\leq) \frac{k(t)}{(m V)^{p-2}} V^{q}
$$

If V is monotonically increasing near $+\infty$, then it is easy to see that $V \rightarrow L$ as $t \rightarrow+\infty$ by (2.3). If V is monotonically decreasing and $V \rightarrow 0$, then it follows from Lemma 1.2 and Theorem 3.4 that $r^{\frac{n-p}{p-1}} u(r) \rightarrow C$ for some $C>0$.

References

[1] Bidaut-Véron, M.-F., Pohozaev, S., Nonexistence results and estimates for some nonlinear elliptic problems, J. Anal. Math. 84 (2001), 1-49.
[2] Kawano, N., Ni, W.-M., Yotsutani, S., A generalized Pohozaev identity and its applications, J. Math. Soc. Japan 42 (1990), 541-564.
[3] Kawano, N., Yanagida, E., Yotsutani, S., Structure theorems for positive radial solutions to $\operatorname{div}\left(|D u|^{m-2} D u\right)+K(|x|) u^{q}=0$ in \mathbf{R}^{n}, J. Math. Soc. Japan 45 (1993), 719-742.
[4] Li, Y., Ni, W.-M., On conformal scalar curvature equation in \mathbf{R}^{n}, Duke Math. J. 57 (1988), 895-924.
[5] Ni, W.-M., Serrin, J., Existence and non-existence theorems for ground states of quasilinear partial differential equations: The anomalous case, Atti Convegni Lincei 77 (1986), 231-257.
[6] Serrin, J., Zou, H., Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math. 189 (2002), 79-142.

Department of Mathematical Sciences, Hanbat National University,
Daejeon 34158, Republic of Korea
E-mail: shbae@hanbat.ac.kr

[^0]: 2020 Mathematics Subject Classification: primary 35J92; secondary 35B45.
 Key words and phrases: quasilinear equation, positive solution, a priori bound.
 This research was supported by the research fund of Hanbat National University in 2018.
 Received August 26, 2022, accepted December 16, 2022. Editor Š. Nečasová.
 DOI: 10.5817/AM2023-2-155

