A PRIORI BOUNDS FOR POSITIVE RADIAL SOLUTIONS OF QUASILINEAR EQUATIONS OF LANE-EMDEN TYPE

SOOHYUN BAE

ABSTRACT. We consider the quasilinear equation $\Delta_p u + K(|x|)u^q = 0$, and present the proof of the local existence of positive radial solutions near 0 under suitable conditions on K. Moreover, we provide a priori estimates of positive radial solutions near ∞ when $r^{-\ell}K(r)$ for $\ell \geq -p$ is bounded near ∞ .

1. INTRODUCTION

We consider the equation

(1.1) $\Delta_p u + K(|x|)u^q = 0,$

where $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$, n > p > 1 and q > p - 1. Let r = |x| and $\frac{d}{dr}u(r) = u_r(r)$. Then, the radial version of (1.1) is

(1.2)
$$r^{1-n}(r^{n-1}|u_r|^{p-2}u_r)_r + K(r)u^q = 0.$$

For p = 2, the basic assumption of K for local solutions is (K):

(i) $K(r) \ge 0, \neq 0; K(r)$ is continuous on $(0, \infty);$

(ii) $\int_0 rK(r) dr < \infty$, i.e., rK(r) is integrable near 0.

Under condition (K), (1.2) with p = 2 and $u(0) = \alpha > 0$, has a unique positive solution $u_{\alpha} \in C^2(0, \varepsilon) \cap C[0, \varepsilon)$ for small $\varepsilon > 0$. In order to obtain local solutions (1.2) near 0, we assume (KP): (i) of (K), and for r > 0 small,

$$\int_0^r t^{\frac{1-n}{p-1}} (\int_0^t s^{n-1} K(s) ds)^{\frac{1}{p-1}} dt < \infty \,.$$

For p = 2, this integrability is (ii) of (K). If $K(r) = r^{l}$, then it is easy to see that (KP) holds for l > -p. As a typical example, the equation

(1.3)
$$\Delta_p u + |x|^l u^q = 0$$

possesses a local radial solution \overline{u}_{α} with $\overline{u}_{\alpha}(0) = \alpha$ for each $\alpha > 0$, and has the scaling invariance:

(1.4)
$$\overline{u}_{\alpha}(r) = \alpha \overline{u}_1(\alpha^{\frac{1}{m}}r)$$

²⁰²⁰ Mathematics Subject Classification: primary 35J92; secondary 35B45.

Key words and phrases: quasilinear equation, positive solution, a priori bound.

This research was supported by the research fund of Hanbat National University in 2018.

Received August 26, 2022, accepted December 16, 2022. Editor Š. Nečasová.

DOI: 10.5817/AM2023-2-155

with $m = \frac{p+l}{q-(p-1)}$. Moreover, (1.3) has a singular solution which is invariant under the scaling in (1.4), the so-called self-similar solution. That is,

$$U(x) = L|x|^{-m}$$

where L is defined by

(1.5)
$$L = L(n, p, q, l) = [m^{p-1}(n - 1 - (m+1)(p-1))]^{\frac{1}{q-(p-1)}}.$$

This singular solution can be defined for l > -p and $q > \frac{(p-1)(n+l)}{n-p}$ because n-1-(m+1)(p-1) > 0. Then, we observe the asymptotic self-similar behavior.

Theorem 1.1. Let n > p > 1 and $q > \frac{(p-1)(n+l)}{n-p}$ with l > -p. If $r^{-l}K(r) \to 1$ as $r \to \infty$, then any positive solution u of (1.2) near ∞ satisfies one of the two asymptotic behavior: either

(1.6)
$$\liminf_{r \to \infty} r^m u(r) \le L \le \limsup_{r \to \infty} r^m u(r) < \infty$$

with L = L(n, p, q, l) given by (1.5) or $r^{(n-p)/(p-1)}u(r) \rightarrow C > 0$ as $r \rightarrow \infty$.

Moreover, (1.6) can be the asymptotic self-similarity

$$\lim_{r \to \infty} r^m u(r) = L$$

In a forthcoming paper, we study entire solutions of (1.2) with this asymptotic behavior in a supercritical range.

1.1. Lower bound. The *p*-Laplace equation has the radial form

(1.7)
$$(|u_r|^{p-2}u_r)_r + \frac{n-1}{r}|u_r|^{p-2}u_r = 0$$

where n > p > 1. Then, (1.7) possesses a solution $|x|^{-\theta}$ with $\theta = \frac{n-p}{p-1}$. Let u be a positive radial solution satisfying the quasilinear inequality

(1.8)
$$r^{1-n}(r^{n-1}|u_r|^{p-2}u_r)_r = (|u_r|^{p-2}u_r)_r + \frac{n-1}{r}|u_r|^{p-2}u_r \le 0.$$

If $u_r(r_0) \leq 0$ for some $r_0 > 0$, then $u_r(r) \leq 0$ for $r > r_0$. Hence, u is monotone near ∞ . Assume $u_r \leq 0$ for $r \geq r_0$ with some $r_0 > 1$. Setting $V(t) = r^{\theta}u(r)$ for $t = \log r \geq t_0 = \log r_0$, we see that $g(t) = \theta V(t) - V'(t) = r^{\theta+1}(-u_r(r)) = r^{\frac{n-1}{p-1}}(-u_r(r))$ satisfies

$$\frac{d}{dt}(g^{p-1}(t)) = (n-1)g^{p-1}(t) + r^n[(-u_r)^{p-1}]_r \ge 0$$

for $t \ge t_0$. Hence, g is increasing for $t \ge t_0$. Then, V satisfies that for $t > T \ge t_0$, $V'(t) - \theta V(t) \le V'(T) - \theta V(T)$.

Suppose V'(T) < 0. Setting $c = \theta V(T) - V'(T)$, we have $(e^{-\theta t}V(t))' \leq -ce^{-\theta t}$ and

$$V(t) \le e^{\theta(t-T)} (V(T) - \frac{c}{\theta}) + \frac{c}{\theta} = e^{\theta(t-T)} \frac{V'(T)}{\theta} + \frac{c}{\theta}$$

Hence, V has a finite zero. Therefore, in order for u to be positive near ∞ , V must be increasing and $(r^{\theta}u(r))_r \geq 0$ near ∞ . This is true obviously in the other case that $u_r > 0$ near ∞ .

Lemma 1.2. Let n > p > 1. If u is a positive radial solution satisfying (1.8) near ∞ , then $r^{\frac{n-p}{p-1}}u(r)$ is increasing.

Now, we classify positive solutions of (1.8) near ∞ into two groups according to their behaviors. If $r^{\frac{n-p}{p-1}}u$ converges to a positive constant at ∞ , then we call u a fast decaying solution. Otherwise, u is a slowly decaying solution if $r^{\frac{n-p}{p-1}}u(r) \to \infty$ as $r \to \infty$.

1.2. Known results. One of Liouville's theorems related to *p*-Laplace equation is the nonexistence of nontrivial nonnegative solutions in $W^{1,p}_{\text{loc}}(\mathbf{R}^n) \cap C(\mathbf{R}^n)$ to the following quasilinear inequality

$$-\Delta_p u \ge c|x|^l u^q$$

with c > 0 and l > -p, when n > p > 1 and

$$q \le \frac{(p-1)(n+l)}{n-p}$$

See [1, Theorem 3.3 (iii)]. For the existence of nontrivial solutions to

$$\Delta_p u + u^q = 0 \, ,$$

on \mathbf{R}^n with n > p > 1 and q > p-1, it is necessary and sufficient that $q \ge \frac{n(p-1)+p}{n-p}$ [6]. On the other hand, (1.3) with $q = q_s := \frac{n(p-1)+p+pl}{n-p}$ admits the one-parameter family of positive solutions given by

$$\overline{u}_{\alpha}(x) = \frac{\alpha}{\left(1 + \xi\left(\alpha^{\frac{p}{n-p}}|x|\right)^{\frac{p+l}{p-1}}\right)^{\frac{n-p}{p+l}}}$$

with $\xi = \xi_{p,n} = \frac{p-1}{(n-p)(n+l)^{1/(p-1)}}$ and $\overline{u}_{\alpha}(0) = \alpha > 0$. A radial solution u(x) = u(|x|) of (1.3) satisfies the equation

(1.9)
$$(|u_r|^{p-2}u_r)_r + \frac{n-1}{r}|u_r|^{p-2}u_r + r^l u^q = 0.$$

For l > -p, (1.9) with $u(0) = \alpha > 0$, has a unique positive solution $u \in C^1(0, \epsilon) \cap C[0, \epsilon)$ for small $\epsilon > 0$ such that $|u_r|^{p-2}u_r \in C^1[0, \epsilon)$. If $q < q_s$, then every local solution of (1.9) has a finite zero [2, 5]. In the opposite case $q > q_s$, every local solution of (1.9) is to be a slowly decaying solution [2, 3, 5].

2. Local existence

Let $n \ge p > 1$, l > -p and $q \ge p - 1$. First, in order to prove the local existence of positive radial solutions of (1.3), we consider the integral equation

$$u(r) = \alpha - \int_0^r t^{\frac{1-n}{p-1}} (\int_0^t s^{n-1+l} u^q(s) ds)^{\frac{1}{p-1}} dt$$

with $\alpha > 0$.

S. BAE

2.1. Integral representation. On a space

$$S = \{ u \in C[0, \varepsilon] \, | \, 0 \le u \le \alpha \}$$

we study a nonlinear operator T from S to $C[0,\varepsilon]$ by

$$T(u)(r) = \alpha - T_1(u)(r),$$

where

$$T_1(u)(r) = \int_0^r t^{\frac{1-n}{p-1}} (\int_0^t s^{n-1+l} u^q(s) ds)^{\frac{1}{p-1}} dt.$$

For $\varepsilon > 0$ small enough, T_1 satisfies that

$$0 \le T_1 \le \alpha^{\frac{q}{p-1}} \int_0^r t^{\frac{1-n}{p-1}} (\int_0^t s^{n-1+l} ds)^{\frac{1}{p-1}} dt \le (\frac{\alpha^q}{n+l})^{\frac{1}{p-1}} \frac{p-1}{p+l} \varepsilon^{\frac{p+l}{p-1}} \le \alpha.$$

Hence, $T(S) \subset S$. Minkowski's inequality for $p \geq 2$ shows that for $u_1, u_2 \in S$,

$$\begin{split} \|T(u_2) - T(u_1)\| &\leq \int_0^r t^{\frac{1-n}{p-1}} (\int_0^t s^{n-1+l} |u_2^{\frac{q}{p-1}} - u_1^{\frac{q}{p-1}}|^{p-1} ds)^{\frac{1}{p-1}} dt \\ &\leq \frac{q}{p-1} \alpha^{\frac{q-(p-1)}{p-1}} \int_0^r t^{\frac{1-n}{p-1}} (\int_0^t s^{n-1+l} ds)^{\frac{1}{p-1}} dt \, \|u_2 - u_1\| \\ &= \frac{q}{p-1} \alpha^{\frac{q-(p-1)}{p-1}} (\frac{1}{n+l})^{\frac{1}{p-1}} \frac{p-1}{p+l} \varepsilon^{\frac{p+l}{p-1}} \|u_2 - u_1\|. \end{split}$$

For $1 , we observe that for <math>u_1, u_2 \in S$,

$$\begin{split} \|T(u_2) - T(u_1)\| &\leq \int_0^r t^{\frac{1-n}{p-1}} \frac{\alpha^{\frac{q(2-p)}{p-1}}}{p-1} (\int_0^t s^{n-1+l} \, ds)^{\frac{2-p}{p-1}} (\int_0^t s^{n-1+l} |u_2^q - u_1^q| \, ds) \, dt \\ &\leq \frac{q}{p-1} \alpha^{\frac{q-(p-1)}{p-1}} \int_0^r t^{\frac{1-n}{p-1}} (\int_0^t s^{n-1+l} \, ds)^{\frac{1}{p-1}} \, dt \, \|u_2 - u_1\| \\ &= \frac{q}{p-1} \alpha^{\frac{q-(p-1)}{p-1}} (\frac{1}{n+l})^{\frac{1}{p-1}} \frac{p-1}{p+l} \varepsilon^{\frac{p+l}{p-1}} \|u_2 - u_1\| \, . \end{split}$$

Now, we assume that

$$\frac{p-1}{p+l}\max\{(\frac{\alpha^{q}}{n+l})^{\frac{1}{p-1}}, \frac{q}{p-1}\alpha^{\frac{q-(p-1)}{p-1}}(\frac{1}{n+l})^{\frac{1}{p-1}}\}\varepsilon^{\frac{p+l}{p-1}}<\min\{\alpha,1\}.$$

Then, T is a contraction mapping in S and thus T has a unique fixed point \bar{u}_{α} .

Generally, we consider the integral equation under condition (KP),

$$u(r) = \alpha - \int_0^r t^{\frac{1-n}{p-1}} (\int_0^t s^{n-1} K(s) u^q(s) ds)^{\frac{1}{p-1}} dt.$$

Then, the integrability of (KP) shows in the same way the local existence of a positive solution u_{α} with $u_{\alpha}(0) = \alpha > 0$ to (1.2). Then, it is easy to see that there exists a sequence $\{r_i\}$ going to 0 such that

(2.1)
$$\lim_{j \to \infty} r_j^{n-1} |u_r(r_j)|^{p-2} u_r(r_j) = 0,$$

and $u_{\alpha}(r)$ is decreasing as long as u remains positive. Moreover, u_{α} is strictly decreasing after K becomes positive.

2.2. Fowler transform. Let n > p > 1 and $q > \frac{(n+l)(p-1)}{n-p}$ with l > -p. Set $m = \frac{p+l}{q-(p-1)}$. Fowler transform $V(t) = r^m u(r)$, $t = \log r$, of a positive solution to (1.2) satisfies

(2.2)
$$(p-1)(mV - V')^{p-2}(V'' - mV') - \xi(mV - V')^{p-1} + k(t)V^q = 0,$$

where $\xi = n - 1 - (m+1)(p-1) = \frac{L^{q-(p-1)}}{m^{p-1}}$ with *L* given by (1.5), and $k(t) = r^{-l}K(r)$. Furthermore, if $-r^{m+1}u_r(r) = mV - V' > 0$, then (2.2) can be rewritten as

$$(p-1)(V''-mV') - \xi(mV-V') = -\frac{k(t)V^q}{(mV-V')^{p-2}}$$

and

$$(p-1)V'' + aV' - \xi mV = -\frac{k(t)V^q}{(mV - V')^{p-2}}$$

where a = n - 1 - (2m + 1)(p - 1). Setting $b = \xi m = \frac{L^{q - (p - 1)}}{m^{p - 2}}$, we have

$$(p-1)V'' + aV' - (b - \frac{k(t)V^{q-1}}{(mV - V')^{p-2}})V = 0.$$

That is,

(2.3)
$$(p-1)V'' + aV' - \frac{1}{m^{p-2}}L^{q-(p-1)}V + \frac{k(t)}{(mV-V')^{p-2}}V^q = 0,$$

which holds as long as the local solution remains positive.

3. A priori estimates

In order to obtain upper bounds, we argue similarly as in Lemma 2.16, Lemma 2.20, Theorem 2.25 in [4].

3.1. Upper bound. Let $n > p \ge -\ell$. If u is a positive solution satisfying the inequality

(3.1)
$$(r^{n-1}|u_r|^{p-2}u_r)_r \le -cr^{n-1+\ell}u^q$$

near ∞ for some c > 0, then

(3.2)
$$r^{n-1}|u_r|^{p-2}u_r \le r_0^{n-1}|u_r(r_0)|^{p-2}u_r(r_0) - c\int_{r_0}^r s^{n-1+\ell}u^q(s)\,ds$$

for $r > r_0$, if r_0 is sufficiently large. Then, we may assume that $u_r(r_0) \leq 0$. Indeed, if $u_r(r_0) > 0$, then

$$r^{n-1}|u_r|^{p-2}u_r \le r_0^{n-1}|u_r(r_0)|^{p-2}u_r(r_0) - cu^q(r_0)\frac{1}{n+\ell}(r^{n+\ell} - r_0^{n+\ell})$$

as long as u_r is positive. Hence, u_r is eventually negative. Therefore, (3.2) gives

$$r^{n-1}|u_r|^{p-2}u_r \le -cu^q(r)\frac{1}{n+\ell}(r^{n+\ell}-r_0^{n+\ell})$$

and thus,

$$\frac{u_r}{u^{q/(p-1)}} \le -c_1 r^{\frac{1+\ell}{p-1}}$$

for some $c_1 > 0$. Hence, we obtain

$$u(r) \le \begin{cases} Cr^{-\frac{p+\ell}{q-(p-1)}} & \text{if } \ell > -p, \\ C(\log r)^{-\frac{p-1}{q-(p-1)}} & \text{if } \ell = -p \end{cases}$$

for some C > 0. Combining the a priori estimates and Lemma 1.2, we have the following assertion.

Theorem 3.1. Let $n > p \ge -\ell$ and $q > \frac{(p-1)(n+\ell)}{n-p}$. Then, every positive solution to (3.1) near ∞ satisfies that

$$C_1 r^{-\frac{p+\ell}{q-(p-1)}} \ge u(r) \ge C_2 r^{-\frac{n-p}{p-1}}$$

for $\ell > -p$ and

$$C_1(\log r)^{-\frac{p-1}{q-(p-1)}} \ge u(r) \ge C_2 r^{-\frac{n-p}{p-1}}$$

for $\ell = -p$.

In Theorem 3.1, we use the notation ℓ instead of l to consider the case of $\ell = -p$. It is interesting to study the existence of positive entire solutions of (1.1) with the logarithmic asymptotic behavior at ∞ .

Lemma 3.2. Let $q > \frac{(p-1)(n+l)}{n-p}$. Assume $K(r) = O(r^l)$ at ∞ for some l > -p. If u is a positive solution to (3.1) near ∞ and $u(r) = O(r^{-m-\varepsilon})$ with some $\varepsilon > 0$ at ∞ , then $u(r) = O(r^{\frac{p-n}{p-1}})$ at ∞ .

Proof. Integrating (1.2) over $[r, \infty)$, we obtain

$$u(r) = \int_{r}^{\infty} t^{\frac{1-n}{p-1}} (\int_{0}^{t} K(s) u^{q}(s) s^{n-1} \, ds)^{\frac{1}{p-1}} \, dt$$

On the other hand, we have

$$\begin{split} \int_0^t K(s) u^q(s) s^{n-1} \, ds &\leq C + C \int_1^t s^{n-1+l-q(m+\varepsilon)} \, ds \\ &= \begin{cases} C + C t^{n+l-q(m+\varepsilon)} & \text{if } n+l \neq q(m+\varepsilon) \,, \\ C + C \log t & \text{if } n+l = q(m+\varepsilon) \,. \end{cases} \end{split}$$

If $n + l < q(m + \varepsilon)$, we are done. If $n + l \ge q(m + \varepsilon)$, then

$$u(r) \leq \begin{cases} Cr^{\frac{p-n}{p-1}} + Cr^{\frac{p-n}{p-1}} (\log r)^{\frac{1}{p-1}} & \text{if} \quad n+l = q(m+\varepsilon) \,, \\ Cr^{\frac{p-n}{p-1}} + Cr^{\frac{p+l}{p-1} - \frac{q(m+\varepsilon)}{p-1}} & \text{if} \quad p+l < q(m+\varepsilon) < n+l \,. \end{cases}$$

In case $n + l = q(m + \varepsilon)$, we replace ε by $\frac{n-p}{p-1} - m - \delta$ in the above arguments, where $\delta > 0$ is so small that $\delta < \frac{n-p}{p-1} - m$. Note that $m < \frac{n-p}{p-1}$ iff $q > \frac{(p-1)(n+l)}{n-p}$.

$$u(r) \leq \begin{cases} Cr^{\frac{p-n}{p-1}} & \text{if } n+l = q(m+\varepsilon) \,, \\ Cr^{\frac{p-n}{p-1}} + Cr^{\frac{p+l}{p-1} + \frac{q(p+l)}{(p-1)^2} - \frac{q^2(m+\varepsilon)}{(p-1)^2}} & \text{if } p+l < q(m+\varepsilon) < n+l \,. \end{cases}$$

In case $q(m + \varepsilon) < n + l$, we iterate this process to obtain

$$u(r) \le Cr^{\frac{p-n}{p-1}} + Cr^{\frac{p+l}{p-1}\sum_{i=0}^{j-1} (\frac{q}{p-1})i - \frac{q^{j}(m+\varepsilon)}{(p-1)^{j}}}$$
$$= Cr^{\frac{p-n}{p-1}} + Cr^{-m-\varepsilon(\frac{q}{p-1})^{j}}$$

for any positive integer j. Since q > p - 1, we reach the conclusion after a finite number of iterations.

Lemma 3.3. Let
$$q > \frac{(p-1)(n+l)}{n-p}$$
. Assume $K(r) = O(r^l)$ at ∞ for some $l > -p$. If $u(r) = o(r^{-m})$ at ∞ , then $(r^m u(r))_r < 0$ near ∞ .

Proof. Let $V(t) = r^m u(r)$, $t = \log r$. Then, V satisfies (2.3). Suppose V'(T) = 0 for some T near ∞ and $k(t)V^{q-(p-1)}(t) < m^{p-2}b$ for $t \in [T, \infty)$. Then, V''(T) > 0 and V(t) is strictly increasing near T but for t > T. Since $V \to 0$ at ∞ , there exists $T_1 > T$ such that $V'(T_1) = 0$ and

$$V''(T_1) = \frac{1}{p-1} \left(b - \frac{1}{m^{p-2}} k(T_1) V^{q-(p-1)}(T_1) \right) V(T_1) \le 0,$$

a contradiction.

Theorem 3.4. Let $q > \frac{(p-1)(n+l)}{n-p}$. Assume $K(r) = O(r^l)$ at ∞ for some l > -p. If $u(r) = o(r^{-m})$ at ∞ , then $u(r) = O(r^{\frac{p-n}{p-1}})$ at ∞ .

Proof. Let $\varphi(r) = r^m u(r)$. Then, φ satisfies

$$\varphi_{rr} + (1 + \frac{a}{p-1})\frac{1}{r}\varphi_r - \frac{b}{(p-1)r^2}\varphi + \frac{k}{(p-1)(m\varphi - r\varphi_r)^{p-2}r^2}\varphi^q = 0.$$

For $\varepsilon > 0$, define the elliptic operator

$$\mathcal{L}_{\varepsilon}\varphi = \Delta\varphi - [2m + (n-1)\frac{p-2}{p-1}]\frac{x \cdot \nabla\varphi}{|x|^2} - m(\frac{L^{q-(p-1)}}{m^{p-1}} - \varepsilon)\frac{\varphi}{|x|^2},$$

where $\frac{L^{q-(p-1)}}{m^{p-1}} = n - 1 - (m+1)(p-1)$. It follows from Lemma 3.3 that for any $\varepsilon > 0$, there exists $R_{\varepsilon} > 0$ such that

$$\mathcal{L}_{\varepsilon}\varphi = m\varepsilon\frac{\varphi}{r^2} - \frac{k\varphi^q}{(p-1)r^2(m\varphi - r\varphi_r)^{p-2}} \ge (m\varepsilon - \frac{k\varphi^{q-(p-1)}}{(p-1)m^{p-2}})\frac{\varphi}{r^2} \ge 0$$

in $\mathbf{R}^n \setminus B_{R_{\varepsilon}}(0)$. For $0 < \varepsilon < n - 1 - (m + 1)(p - 1)$, let $\eta_{\varepsilon}(x) = |x|^{\sigma_{\varepsilon}}$ with σ_{ε} being the negative root of $\sigma(\sigma - 1) + (n - 1 - 2m - (n - 1)\frac{p-2}{p-1})\sigma - m(\frac{L^{q-(p-1)}}{m^{p-1}} - \varepsilon) = 0$, i.e.,

$$\sigma_{\varepsilon} = \frac{1}{2} \left[-(n-2-2m-(n-1)\frac{p-2}{p-1}) - \sqrt{D} \right] ,$$

where $D = (n-1-2m-(n-1)\frac{p-2}{p-1})^2 + 4m(\frac{L^{q-(p-1)}}{m^{p-1}}-\varepsilon)$. Setting $C_{\varepsilon} = \varphi(R_{\varepsilon})R_{\varepsilon}^{-\sigma_{\varepsilon}}$, we see that $\mathcal{L}_{\varepsilon}(\varphi - C_{\varepsilon}\eta_{\varepsilon}) \geq 0$ in $\mathbf{R}^n \setminus B_{R_{\varepsilon}}(0)$ and $\varphi(R_{\varepsilon}) = C_{\varepsilon}\eta_{\varepsilon}(R_{\varepsilon}), \varphi - C_{\varepsilon}\eta_{\varepsilon} \to 0$ as $r \to \infty$. Then, the maximum principle implies that $\varphi - C_{\varepsilon}\eta_{\varepsilon} \leq 0$ in $\mathbf{R}^n \setminus B_{R_{\varepsilon}}(0)$. Hence, $\varphi(r) \leq C_{\varepsilon}\eta_{\varepsilon}(r)$ at ∞ . Then, Lemma 3.2 implies the conclusion.

 \square

Proof of Theorem 1.1. When $k(t) = r^{-l}K(r) \to 1$ as $t = \log r \to +\infty$, it follows from Theorem 3.1 and (2.3) that slowly decaying solutions satisfy

$$\liminf_{r \to \infty} r^m u(r) \le L \le \limsup_{r \to \infty} r^m u(r) < \infty \,.$$

Indeed, at every local minimum (maximum) point of $V(t) = r^m u(r)$, V satisfies

$$\frac{1}{m^{p-2}}L^{q-(p-1)}V \ge (\le)\frac{k(t)}{(mV)^{p-2}}V^q$$

If V is monotonically increasing near $+\infty$, then it is easy to see that $V \to L$ as $t \to +\infty$ by (2.3). If V is monotonically decreasing and $V \to 0$, then it follows from Lemma 1.2 and Theorem 3.4 that $r^{\frac{n-p}{p-1}}u(r) \to C$ for some C > 0.

References

- Bidaut-Véron, M.-F., Pohozaev, S., Nonexistence results and estimates for some nonlinear elliptic problems, J. Anal. Math. 84 (2001), 1–49.
- Kawano, N., Ni, W.-M., Yotsutani, S., A generalized Pohozaev identity and its applications, J. Math. Soc. Japan 42 (1990), 541–564.
- [3] Kawano, N., Yanagida, E., Yotsutani, S., Structure theorems for positive radial solutions to div(|Du|^{m-2}Du) + K(|x|)u^q = 0 in Rⁿ, J. Math. Soc. Japan 45 (1993), 719–742.
- [4] Li, Y., Ni, W.-M., On conformal scalar curvature equation in \mathbb{R}^n , Duke Math. J. 57 (1988), 895–924.
- [5] Ni, W.-M., Serrin, J., Existence and non-existence theorems for ground states of quasilinear partial differential equations: The anomalous case, Atti Convegni Lincei 77 (1986), 231–257.
- [6] Serrin, J., Zou, H., Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math. 189 (2002), 79–142.

DEPARTMENT OF MATHEMATICAL SCIENCES, HANBAT NATIONAL UNIVERSITY, DAEJEON 34158, REPUBLIC OF KOREA *E-mail*: shba@hanbat.ac.kr