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UNIFORM ATTRACTORS IN SUP-NORM FOR SEMI LINEAR
PARABOLIC PROBLEM AND APPLICATION TO THE ROBUST

STABILITY THEORY

Oleksiy Kapustyan, Olena Kapustian, Oleksandr Stanzytskyi,
and Ihor Korol

Abstract. In this paper we establish the existence of the uniform attractor for
a semi linear parabolic problem with bounded non autonomous disturbances
in the phase space of continuous functions. We applied obtained results to
prove the asymptotic gain property with respect to the global attractor of the
undisturbed system.

1. Introduction

Stability property of stationary points plays an important role in robust control
theory. The notion of input-to-state stability, firstly appeared in [23] now is widely
used to nonlinear systems of different nature [24]. Other approaches in the control
theory for nonlinear systems can be found in [2]–[11]. In recent years there have
appeared many papers devoted to adaptation of input-to-state stability theory
to infinite dimensional case [7]–[13]. One of the central object in the qualitative
theory of dissipative infinite-dimensional systems is a global attractor [19], [22].
Stability properties of global attractors, including impulsive perturbations, can
be found in [1]–[5], [9]. Recently in [6], [21] there have been obtained results
about input-to-state stability and asymptotic gain properties with respect to global
attractors of semi linear heat and wave equations in L2 space. This results requires
that the corresponding non autonomous problem generated semi process family
with uniform attractor [3] which tends to the global attractor of undisturbed system.
In the present paper we apply this scheme to the case of the phase space C0 of
continuous functions supplied with sup-norm. Similar results for other type of
perturbations were studied in [25], [26]. The work consists of two parts. In the
first part we set the problem, provide necessary definitions and auxiliary results,
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and prove that under suitable assumptions mild solutions of the perturbed system
generate a semi process family on C0 which has a uniform attractor. In the second
part we use this result to establish the asymptotic gain properties with respect to
the global attractor of the unperturbed system.

2. Setting of the problem and uniform attractors

We consider the following problem

(2.1)


∂u
∂t = Au+ f(u) + h(t, x) , (t, x) ∈ (0,∞)× Ω ,
u|∂Ω = 0 ,
u(0, x) = u0(x) ,

where u(t, x) is an unknown function, Ω ⊂ RN is a bounded domain with sufficiently
smooth boundary,

Au =
N∑

i,j=1

∂

∂xj

(
aij(x) ∂u

∂xi

)
+

n∑
i=1

bi(x) ∂u
∂xi

+ c(x)u .

Assume that

(2.2) −A is a strongly elliptic self adjoint operator with bounded sufficiently
smooth coefficients,

f : R→ R is locally Lipschitz, f(0) = 0 and

(2.3) ∃C > 0 such that ∀ |s| ≥ C s · f(s) ≤ 0 .

Assume that h ∈ L∞(0,+∞;X), where

X = C0(Ω) =
{
v ∈ C(Ω)|v = 0 on ∂Ω

}
supplied with the sup-norm ‖v‖X = sup

x∈Ω
|v(x)|. In the future we will use the spaces

H1 = W 1,2(Ω), H1
0 =

{
v ∈ H1, v|∂Ω = 0

}
, H2 = W 2,2(Ω), L2 = L2(Ω). We will

study qualitative behaviour of mild solutions of (2.1) in the phase space X.

Definition 2.1. The function u ∈ C([0, T ];X) is a mild solution of (2.1) with
initial data u0 ∈ X if for all t ∈ [0, T ] we have

(2.4) u(t) = T (t)u0 +
t∫

0

T (t− s)F (u(s))ds+
t∫

0

T (t− s)h(s) ds ,

where F : X → X, F (u)(x) = f(u(x)), T (t) is a C0 semigroup of bounded operators,
generated by A in X.

We prove that for all initial condition u0 ∈ X there exists a unique global mild
solution of (2.1) with u(0) = u0, which will be denoted by u(t) = Sh(t, 0, u0).

Taking the set Σ(h) of all time shifts of h we show that the semiprocess family
{Sσ}σ∈Σ(h) (see definition below) has uniform attractor ΘΣ(h) in the phase space
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X and, moreover, for the global attractor Θ of the unperturbed system (h ≡ 0) we
have:

(2.5) distX(ΘΣ(h),Θ)→ 0 as h→ 0 ,

where
distX(A,B) = sup

a∈A
inf
b∈B
‖a− b‖X .

Limit equality (2.5) allow us to get the following result concerning robust stability:
there exists a continuous strictly increasing function γ, vanishing at the origin,
such that ∀u0∈X

(2.6) lim
t→∞
‖Sh(t, 0, u0)‖Θ ≤ γ(‖h‖∞) ,

where
‖u‖Θ := inf

ξ∈Θ
‖ξ − u‖X , ‖h‖∞ = sup

t≥0
‖h(t)‖X .

To prove (2.5), (2.6) we need some auxiliary results. First let us assume that
h ∈ L2

loc(0,+∞;X). Then, using Lipschitz continuity of f , we can use the classical
result [17] (see Th. 1.4, Ch. 6) and claim that for every u0 ∈ X there exists T =
T (u0, h) > 0 such that there exists a unique mild solution of (2.1), u ∈ C([0, T ];X)
with u(0) = u0. Moreover, condition (2.3) allow us to use well-known comparison
principle [12] and deduce the following estimate holds

(2.7) ‖u(t)‖X ≤Me−λt‖u0‖X + MC1

λ
+

t∫
0

Me−λ(t−s)‖h(s)‖X ds ,

where constant C1 > 0 depends on f and positive constants M,λ are taken from
the inequality

(2.8) ‖T (t)‖ ≤Me−λt ∀ t ≥ 0 .

This estimate shows that every mild solution is global, i.e., defined on [0,+∞).
In the sequel we will use the following facts. It is known that A is the infinitesimal

generator of an analytic semigroup (still denoted by T (t)) in Lp(Ω), p ≥ 2 [17].
Both in Lp(Ω), p ≥ 2 and in X, we have the following estimates [3], [10]: there
exist c > 0, α ∈ (0, 1), δ ∈ ( 1

2 , 1) such that

∀u0 ∈ L2(Ω) ‖T (t)u0‖H2 ≤ c

t
‖u0‖L2 ,(2.9)

]3pt]∀u0 ∈ X ‖T (t)u0‖C1+α ≤ c

tδ
‖u0‖X .(2.10)

Let us consider linear nonhomogeneous problem

(2.11)
{
du
dt = Au+ g(t) ,

u|t=0 = u0 ∈ L2(Ω) ,

where g ∈ L2(0, T ;L2(Ω)) is a given function.
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We consider mild solution of (2.11), i.e. u ∈ C([0, T ];L2(Ω)),

(2.12) u(t) = T (t)u0 +
t∫

0

T (t− s)g(s) ds .

It is known [17] that mild solution of (2.11) is a weak solution of (2.11), i.e.
u ∈ L2(0, T ;H1

0 ) such that ∀ v ∈ H1
0 , ∀ η ∈ C∞0 (0, T )

(2.13)
T∫

0

(u(t), v)η ds+
T∫

0

(A 1
2u(t), A 1

2 v)η ds =
T∫

0

(g(t), v)η ds ,

where (·, ·) is a scalar product in L2, ‖u‖ =
√

(u, u). Moreover, every weak solution
u of (2.11) is a mild continuous of (2.11) in [0, T ]. Additionally, if u0 ∈ H1

0 then
u ∈ C([0, T ];H1

0 )
⋂
L2(0, T ;H2), ut ∈ L2(0, T ;L2). All this facts help us to prove

the global existence result.
Now we are in position to construct the semi processes family, generated by the

equation (2.1).
Let h ∈ L∞(0,+∞;X) and let Σ(h) ⊂ L2

loc(0,+∞;X), (Σ(0) = {0}) be an
arbitrary shift invariant (i.e. ∀ d ∈ Σ(h), ∀ s ≥ 0 d(s+ ·) ∈ Σ(h)) topological space
generated by h.

Let us consider the problem (2.1) where h is replaced by d ∈ Σ(h)

(2.14)


∂u
∂t = Au+ f(u) + d(t, x) , (t, x) ∈ (0,∞)× Ω
u|∂Ω = 0 ,
u(0, x) = u0(x) ,

From the previous arguments we deduce that every solution of (2.14) is global. We
denote by

Sd(t, τ, uτ )
the solution of (2.14) at the moment t ≥ τ with initial data (τ, uτ ) ∈ [0,∞)×X.
Then the family {Sd(t, τ, uτ )}d∈Σ(h) generates a semiprocess family [19], i.e. ∀ t ≥
τ ≥ 0 ∀uτ ∈ X ∀ d ∈ Σ(h)

Sd(τ, τ, uτ ) = uτ ,

Sd(t, s, Sd(s, τ, uτ )) = Sd(t, τ, uτ ) ∀ t ≥ s ≥ τ ,
Sd(t+ p, τ + p, uτ ) = Sd(·+p)(t, τ, uτ ) ∀ p ≥ 0 .

Every semiprocess family satisfies the cocycle property
Sd(t+ p, 0, u) = Sd(·+p)

(
t, 0, Sd(p, 0, u)

)
.

In particular, for d ≡ 0
S0(t+ p, 0, u) = S0

(
t, 0, S0(p, 0, u)

)
,

i.e. S0 is a semigroup.
It is known [8] that under conditions (2.2), (2.3) the semigroup S0 processes a

global attractor Θ ⊂ X, that is
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1) Θ is a compact set;
2) Θ = S0(t, 0,Θ) ∀ t ≥ 0;
3) for every bounded set B ⊂ X

sup
u∈B

distX(S0(t, 0, u),Θ)→ 0 as t→∞ .

In the sequel we denote for Σ = Σ(h), B ⊂ X

SΣ(t, τ, B) =
⋃
d∈Σ

⋃
u∈B

Sd(t, τ, u) .

Definition 2.2. A compact set ΘΣ ⊂ X is called a uniform attractor of the
semiprocess family {Sd}d∈Σ if for every bounded set B ⊂ X we have

(2.15) distX(SΣ(t, 0, B),ΘΣ)→ 0 as t→∞ ,

and ΘΣ is the minimum among all closed sets satisfying (2.15).

The following well known result provides conditions for existence of uniform
attractor.

Lemma 2.3 ([3]). Let {Sd}d∈Σ be a semiprocess family with a first countable space
Σ, and

1) there exists a bounded set B0 ⊂ X such that for every bounded set B ⊂ X,

∃T = T (B) ∀ t ≥ T SΣ(t, 0, B) ⊂ B0 ;

2) ∀ dn ⊂ Σ ∀tn →∞ ∀ bounded {un} ⊂ X the sequence {Sdn(tn, 0, un)} is
precompact in X.

Then {Sd}d∈Σ has a uniform attractor ΘΣ.
If, additionally, for all t ≥ 0 the map

(2.16) X × Σ � (u, d)→ Sd(t, 0, u) ∈ X

is continuous, then ΘΣ is negatively invariant, i.e.

(2.17) ∀ t ≥ 0 ΘΣ ⊂ SΣ(t, 0,ΘΣ) .

Remark 2.4. From (2.17) we get inclusion: ΘΣ ⊂ B0.

Assume that

(2.18) h(t, x) =
K∑
j=1

hj(t)ϕj(x) ,

where K ≥ 1, hj ∈ L∞(0,+∞), ϕj ∈ X.
Let us put

W := cl(L2,w
loc

(0,+∞))K {(h1(·+ s), . . . , hK(·+ s)) s ≥ 0} ,

(2.19) Σ = Σ(h) =
{ K∑
j=1

dj(t)ϕj(x) | {d1, . . . , dK} ∈W
}
.
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It is known [22] that the set

Wg := clL2,w
loc

(0,+∞) {g(·+ s) | s ≥ 0}

is compact in L2,w
loc (0,+∞)⇔ ‖g‖+ := supt≥0

t+1∫
t

‖g(s)‖2Xds <∞. Moreover, such

a set is shift-invariant, and ∀ξ ∈Wg

‖ξ‖+ ≤ ‖g‖+ .

Therefore, the set Σ defined by (2.19) is shift-invariant, and

(2.20) ∀d ∈ Σ(h) ‖d‖+ ≤ ‖h‖∞ .

Theorem 2.5. Assume that conditions (2.2), (2.3), (2.18) take place. Then the
semiprocess family {Sd}d∈Σ generated by mild solutions of the problem (2.1), has a
uniform attractor AΣ, which satisfies (2.17).

Proof. For every d with ‖d‖+ <∞ inequality (2.7) implies

‖u(t)‖X ≤Me−λt‖u0‖X + MC1

λ
+ ‖d‖

1
2
+(1− e−λ)− 1

2 .

So, from (2.20) for every d ∈ Σ(h) we get that for all bounded B ⊂ X ∃T = T (B)
∀t ≥ T

(2.21) SΣ(t, 0, B) ⊂ B0 = {u ∈ X | ‖u‖X ≤ 1 + C} ,

for some positive constant C, which does not depend on B. Therefore, assumption
1) from Lemma 2.3 takes place. Moreover, for every bounded B ⊂ X and every
u(·) with u(0) = u0 there exists K = K(B) such that for all d ∈ Σ and all u0 ∈ B,
t ≥ 0

‖f(u(t))‖∞ ≤ K .

Then due to (2.10) for t > 0 and δ ∈
( 1

2 , 1
)

(2.22) ‖u(t)‖C1+α ≤ C

tδ
‖u0‖X +

t∫
0

C

sδ
Kds+

t∫
0

C

sδ
‖h‖∞ds ≤ r(t) .

Due to compact embedding C1+α b X and inclusions: for {dn} ⊂ Σ, tn → ∞,
‖un0‖X ≤ r

ξn = Sdn(tn, 0, un0 ) = Sdn(tn, tn − 1, Sdn(tn − 1, 0, un0 )) =

= Sdn(·+tn−1)(1, 0, Sdn(tn − 1, 0, un0 )) ⊂ SΣ(1, 0, B0)

for sufficiently large n ≥ 1, where B0 is taken from (2.21). So, we conclude that
{ξn} is precompact in X, and, therefore, semiprocess family {Sd}d∈Σ possesses a
uniform attractor ΘΣ. �

Let us prove (2.17). For this aim we prove the following result.
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Lemma 2.6. Assume that for dn = (dn1 , . . . , dnk ), d = (d1, . . . , dk)

(2.23) dn → d in
(
L2,w

loc (0,+∞)
)K

, un0 → u0 in X .

Then for all t ∈ [0, T ] we have

(2.24) un(t) = Sdn(t, 0, u0)→ u(t) = Sd(t, 0, u0) in X .

Proof. Due to (2.21) both {un} and {f(un)} are bounded in C([0, T ];X). Let us
consider un as a weak solution of (2.11) with right side

gn(t) = f(un) +
K∑
j=1

dnj (t)ϕj .

Then {gn} is bounded in L2(0, T ;X), {un} is bounded in L2(0, T ;H1
0 ), {unt} is

bounded in L2(0, T ;H−1). So, due to Aubin-Lions Lemma there exists a function
u ∈ C([0, T ];L2) such that up to subsequence:

un → u weakly in L2(0, T ;H−1) ,

un → u in L2(0, T ;L2) and almost everywhere (a.e.) in (0, T )× Ω ,

(2.25) ∀ t ∈ [0, T ] un(t)→ u(t) weakly in L2 .

Then f(un(t, x))→ f(u(t, x)) a.e. and, therefore,

gn → g = f(u) +
K∑
j=1

dj(t)ϕ weakly in L2(0, T ;L2) .

So, u is a weak solution of (2.11) with the right hand side g. Thus, due to the
previous arguments we have that u is a mild solution of (2.11) in L2 and, therefore,
a mild solution of (2.1) in L2. Then u is a mild solution of (2.1) in X. Indeed, due
to the (2.22) and (2.25) ∀ t ∈ [0, T ] un(t) → u(t) in X. Then for all t ∈ [0, T ]
u(t, ·) ∈ X ⇒ f(u(t, ·)) ∈ X ⇒ g ∈ L2(0, T ;X) ⇒ u(t) ∈ Sd(t, 0, u0). Lemma is
proved.

Property (2.24) implies (2.16), and, therefore, (2.17). Theorem is proved. �

3. Application to the robust stability theory

In this section we want to obtain asymptotic gain property (2.6).

Theorem 3.1. Under conditions (2.2), (2.3), (2.18) problem (2.1) for ‖h‖∞ ≤ R0
possesses asymptotic gain property w.r.t. global attractor Θ of the undisturbed
(h ≡ 0) system.

Proof. Let us assume that we have the limit property

(3.1) dist
(
ΘΣ(h),Θ

)
→ 0 as ‖h‖∞ → 0 .
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Let us prove that (3.1) implies (2.6). Indeed, according to construction Σ(0) = {0},
and h ∈ Σ(h). So, for u0 ∈ X, z ∈ ΘΣ(h) , t > 0, u(t) = Sh(t, 0, u0) we have: for
θ ∈ Θ:

‖u(t)− θ‖X ≤ ‖u(t)− z‖X + ‖z − θ‖X ⇒

inf
θ∈Θ
‖u(t)− θ‖X ≤ ‖u(t)− z‖X + inf

θ∈Θ
‖z − θ‖X ⇒

inf
θ∈Θ
‖u(t)− θ‖X ≤ inf

z∈ΘΣ(h)
‖u(t)− z‖X + sup

z∈ΘΣ(h)

inf
θ∈Θ
‖z − θ‖X ⇒

‖u(t)‖Θ ≤ distX
(
u(t),ΘΣ(h)

)
+ distX

(
ΘΣ(h),Θ

)
⇒

‖Sh(t, 0, u0)‖Θ ≤ distX
(
SΣ(h)(t, 0, u0),ΘΣ(h)

)
+ distX

(
ΘΣ(h),Θ

)
.

The first summand in the right part of this inequality tends to zero for every h.
Let us put

γ(s) := sup
‖h‖∞≤s

distX(AΣ(h), A) + s .

Due to (3.1) γ ∈ K and distX(ΘΣ(h),Θ) ≤ γ(‖h‖∞), so we have the required result.
Let us prove (3.1). Assume that (3.1) does not take place. It means that there
exists hn → 0 in L∞(0,+∞;X), there exist ε > 0 and zn ∈ ΘΣ(hn) such that

(3.2) dist(zn,Θ) ≥ ε .
From Theorem 2.5 we have that ΘΣ(h) ⊂ K, where compact K depends on R0 (see
estimation (2.22)). Then

zn ∈ ΘΣ(hn) ⊂ SΣ(hn)(t, 0,ΘΣ(hn)) ⊂ SΣ(hn)(t, 0,K) .

Therefore, zn = un(t) = Sdn(t, 0, ξn), where ξn → ξ in X, ‖dn‖+ ≤ ‖hn‖∞ → 0.
Then from Lemma 2.6
(3.3) un(t)→ u(t) = S0(t, 0, ξ) ⊂ S0(t, 0, B0) .
Due to the uniform attraction we can choose t > 0 such that

distX(S0(t, 0, B0),Θ) < ε

2 .

Then from (3.3)
zn → u(t) ∈ O ε

2
(Θ),

that is a contradiction with (3.2). Theorem is proved. �
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