
ARCHIVUM MATHEMATICUM (BRNO)
Tomus 59 (2023), 201–213

WEAK-STRONG UNIQUENESS FOR A CLASS
OF DEGENERATE PARABOLIC CROSS-DIFFUSION SYSTEMS

Philippe Laurençot and Bogdan-Vasile Matioc

Abstract. Bounded weak solutions to a particular class of degenerate par-
abolic cross-diffusion systems are shown to coincide with the unique strong
solution determined by the same initial condition on the maximal existence
interval of the latter. The proof relies on an estimate established for a relative
entropy associated to the system.

1. Introduction

Let Ω be a bounded domain of RN , N ≥ 1, with smooth boundary ∂Ω and outer
unit normal n, and assume that the constants a, b, c, and d satisfy
(1.1) (a, b, c, d) ∈ (0,∞)4 and ad > bc .

We consider the evolution equations

(1.2a)
∂tf = div

(
f∇[af + bg]

)
∂tg = div

(
g∇[cf + dg]

) } in (0,∞)× Ω ,

supplemented with homogeneous Neumann boundary conditions
(1.2b) ∇f · n = ∇g · n = 0 on (0,∞)× ∂Ω ,

and non-negative initial conditions
(1.2c) (f, g)(0) = (f in, gin) in Ω .

The porous medium equation [27] as well as the thin film Muskat problem [10]
arise as special cases of (1.2a).

We point out that (1.2a) is a quasilinear degenerate parabolic system with a full
diffusion matrix, so that the study of its well-posedness is already a challenging
issue. On the one hand, owing to its parabolic structure, the system (1.2) fits into
the theory developed in [2], from which the local existence and uniqueness of a
strong solution starting from an initial condition with positive components can be
inferred, see Theorem 2.1 below. However, comparison principles cannot be applied
in the context of (1.2) and the degeneracy featured in (1.2a) might lead to the
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breakdown of the positivity of the components in finite time and thus to that of
their regularity. As a consequence, strong solutions cannot be extended beyond
a finite time in general. On the other hand, non-negative global weak solutions
to (1.2), which are also bounded, are constructed in [20, 22], but the uniqueness
of such solutions is an open problem, even in dimension N = 1. This is in sharp
contrast with the porous medium equation for which several uniqueness results
for weak solutions are available in the literature, see [1, 3, 7, 21, 24, 25, 27] and
the references therein. It is actually the strong coupling in (1.2a) which makes it
difficult to generalize the methods from the above references to this two-phase
version of the porous medium equation.

The goal of this paper is to prove a weaker result, namely that, given a sufficiently
smooth initial condition (f in, gin) with positive components, all bounded weak solu-
tions to (1.2) coincide on the time interval on which the strong solution exists. For
that purpose, we shall rely on the availability of a suitable relative entropy functional,
an idea which has proved instrumental in several recent works on weak-strong unique-
ness/stability results for (systems of) partial differential equations. In particular, this
method has been applied in various settings such as: the compressible Navier-Stokes
system [11] and the Fourier-Navier-Stokes system [12], the (isentropic) Euler equa-
tions [5, 16], hyperbolic-parabolic systems [9], the Navier-Stokes-Korteweg and the
Euler-Korteweg systems [6, 15], the Navier-Stokes equation with surface tension [14],
(reaction-)cross-diffusion systems [8, 19], entropy-dissipating reaction-diffusion equa-
tions [13], energy-reaction-diffusion systems [17], and Maxwell-Stefan systems [18].

Before stating precisely our main result, let us first make precise the meaning
of weak and strong solutions to (1.2). Here and below, for p ∈ [1,∞], Lp,+(Ω,R2)
denotes the positive cone of Lp(Ω,R2); that is,

Lp,+(Ω,R2) := {(f, g) ∈ Lp(Ω,R2) : f ≥ 0 and g ≥ 0 a.e. in Ω} .

Definition 1.1 (Bounded weak solution). Assume (1.1) and let uin := (f in, gin)
be an element of L∞,+(Ω,R2). Given T ∈ (0,∞], a bounded weak solution u to (1.2)
on [0, T ) is a pair of functions u = (f, g) such that:

(i) for each t ∈ (0, T ),
(1.3) (f, g) ∈ L∞,+((0, t)×Ω,R2)∩L2((0, t), H1(Ω,R2))∩W 1

2 ((0, t), H1(Ω,R2)′) ;
(ii) for all ϕ ∈ H1(Ω) and t ∈ (0, T ),∫

Ω
(f(t, x)− f in(x))ϕ(x) dx

+
∫ t

0

∫
Ω
f(s, x)∇[af + bg](s, x) · ∇ϕ(x) dxds = 0(1.4a)

and ∫
Ω

(g(t, x)− gin(x))ϕ(x) dx

+
∫ t

0

∫
Ω
g(s, x)∇[cf + dg](s, x) · ∇ϕ(x) dxds = 0 .(1.4b)
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Observe that the boundedness and weak differentiability required on f and g
in (1.3) guarantee that the integrals in (1.4) are finite.

We next turn to strong solutions to (1.2) and first introduce some notation: for
p > N and s ∈ (1 +N/p, 2], we set

Hs
p,B(Ω) := {z ∈ Hs

p(Ω) : ∇z · n = 0 on ∂Ω} ,

where Hs
p(Ω) denotes the Bessel potential space, see [2, Section 5] for instance, and

(1.5) Osp := {u = (f, g) ∈ Hs
p,B(Ω,R2) : f > 0 and g > 0 in Ω} .

We observe that the continuous embedding of Hs
p(Ω) in C1(Ω) for p > N and

s ∈ (1 +N/p, 2] guarantees that Osp is an open subset of Hs
p,B(Ω,R2).

Definition 1.2 (Strong solution). Assume (1.1) and let p > N , s ∈ (1 +N/p, 2),
T ∈ (0,∞], and uin = (f in, gin) ∈ Osp. A strong solution u to (1.2) on [0, T ) is a
pair u = (f, g) such that

u ∈ C([0, T ),Osp) ∩ C1((0, T ), Lp(Ω,R2)) ∩ C((0, T ), H2
p,B(Ω,R2)) ,

which satisfies (1.2) in a strong sense (and in particular a.e. in (0, T )× Ω).

One may easily check that a strong solution to (1.2) on [0, T ) in the sense of
Definition 1.2 is also a bounded weak solution on [0, T ) in the sense of Definition 1.1.
We emphasize here that strong solutions emanate from initial conditions with
positive components, while only non-negativity of initial conditions is required for
weak solutions.

The aim of this paper is to establish a weak-strong uniqueness result for (1.2)
as stated in Theorem 1.3 below. As in [13], the main tool to be used in the proof is
the relative entropy functional

(1.6) H(u1|u2) :=
∫

Ω

{[
f1 ln

(f1

f2

)
−(f1−f2)

]
+
b

c

[
g1 ln

(g1

g2

)
−(g1−g2)

]}
dx ,

which is well-defined for ui = (fi, gi) ∈ L2,+(Ω,R2), i = 1, 2, provided that f2 and
g2 are bounded from below by positive constants. It is important to remark that
H(u1|u2) controls the square of the L2-norm of u1− u2, see (2.14) below, if u1 and
u2 are additionally bounded functions.

The main step in the proof of Theorem 1.3 is to derive the integral inequality (1.7)
which measures the “distance” between a bounded weak solution in the sense of
Definition 1.1 and a strong solution in the sense of Definition 1.2. Gronwall’s
inequality then provides the weak-strong uniqueness property for the evolution
problem (1.2).

Theorem 1.3. Consider uin1 ∈ L∞,+(Ω,R2) and uin2 ∈ Osp for some s ∈ (1+N/p, 2)
and p > N . Let u2 = (f2, g2) be the strong solution to (1.2) with initial condition uin2
defined on its maximal existence interval [0, T+), T+ ∈ (0,∞], see Theorem 2.1 be-
low. If u1 = (f1, g1) is a bounded weak solution to (1.2) on [0, T+) with initial condi-
tion uin1 and T ∈ (0, T+), there exists a positive constant C = (a, b, c, d, u1, u2, T )
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such that

(1.7) H(u1(t)|u2(t)) ≤ H(uin1 |uin2 )+ C

∫ t

0
H(u1(s)|u2(s)) ds for all t ∈ [0, T ] .

In particular, if uin1 = uin2 ∈ Osp, then u1(t) = u2(t) for all t ∈ [0, T+).

We emphasize that Theorem 1.3 applies to any pair of initial conditions uin1 ∈
L∞,+(Ω,R2) and uin2 ∈ Osp for some s ∈ (1 + N/p, 2) and p > N . Indeed, the
existence of a bounded weak solution to (1.2) on [0,∞) with initial condition uin1
follows from [20, 22], while that of a strong solution to (1.2) on some maximal time
interval with initial condition uin2 is provided in Theorem 2.1 below.

2. Proof of the main result

We start this section by considering the evolution problem (1.2) in the setting
of strong solutions as specified in Definition 1.2. Using the quasilinear parabolic
theory developed in [2], we then prove in Theorem 2.1 that (1.2) is well-posed in
this strong setting. The remaining part is then devoted to the proof of Theorem 1.3.

2.1. Strong solutions to the evolution problem (1.2). In order to construct
strong solutions to (1.2) we reformulate (1.2a) in a suitable framework. For that
purpose, we fix p > N and s ∈ (1 +N/p, 2) and introduce the mobility matrix

(2.1) M(X) = (mjk(X))1≤j,k≤2 :=
(
aX1 bX1
cX2 dX2

)
, X = (X1, X2) ∈ R2 .

The problem (1.2) can then be recast as

(2.2) du
dt (t) = Φ(u(t))[u(t)], u(0) = uin ,

where the quasilinear operator Φ : Osp → L(H2
p,B(Ω,R2), Lp(Ω,R2)) is defined by

the relation

Φ(u)[v] := div(M(u)∇v) =
N∑
i=1

∂i(M(u)∂iv), u ∈ Osp, v ∈ H2
p,B(Ω,R2) .

Observing that, for u ∈ Osp, the matrix-valued functionM(u) belongs to C1(Ω,R2×2)
and that M(u(x)), x ∈ Ω, has its spectrum contained in the right-half plane
{Re z > 0}, we infer from [2, Theorem 4.1 and Example 4.3 (e)] that Φ(u) is, for
each u ∈ Osp, the generator of an analytic semigroup in L(Lp(Ω,R2)). Since

[Lp(Ω), H2
p,B(Ω)]s/2 = Hs

p,B(Ω) ,
where [·, ·] is the complex interpolation functor, see [26, Theorem 4.3.3], we may
now apply to (2.2) the quasilinear parabolic theory presented in [2, Section 12]
(see also [23, Remark 1.2 (ii)]) to obtain the following result.

Theorem 2.1. Let p > N , s ∈ (1 + N/p, 2), and assume that (1.1) is satisfied.
Then, given uin ∈ Osp, the problem (1.2) has a unique maximal strong solution

u ∈ C([0, T+),Osp) ∩ C1((0, T+), Lp(Ω,R2)) ∩ C((0, T+), H2
p,B(Ω,R2)) ,
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where T+ ∈ (0,∞] denotes the maximal existence time.

2.2. Proof of Theorem 1.3. Let T ∈ (0, T+). Since {u2(t) : t ∈ [0, T ]} is a
compact subset of Osp, there is σ ∈ (0, 1) (possibly depending on T ) such that, for
t ∈ [0, T ],

(2.3)
σ ≤ min

x∈Ω
min

{
f2(t, x), g2(t, x)

}
and

max
{
‖∇f2(t)‖∞, ‖∇g2(t)‖∞

}
≤ σ−1 .

Moreover, since u1 is a bounded weak solution, we may assume that also
(2.4) |u1(t, x)|+ |u2(t, x)| ≤ σ−1 a.e. in (0, T )× Ω .

Given η ∈ (0, 1), let

Hη(u1(t)|u2(t)) :=
∫

Ω

[
f1(t) ln

(f1(t) + η

f2(t)

)
− (f1(t)− f2(t))

]
dx

+
b

c

∫
Ω

[
g1(t) ln

(g1(t) + η

g2(t)

)
− (g1(t)− g2(t))

]
dx, t ∈ [0, T ] .

As a consequence of (2.4) and of Definition 1.1, we have ui(t) ∈ L∞(Ω,R2) for
i = 1, 2 and all t ∈ [0, T ], and the dominated convergence theorem, together with
the lower bound in (2.3), yields
(2.5) lim

η→0
Hη(u1(t)|u2(t)) = H(u1(t)|u2(t)) , t ∈ [0, T ] .

Furthermore, by virtue of Definition 1.1, Definition 1.2, (2.3), (2.4), and the
continuous embedding of Osp in C1(Ω,R2) we have

f1, g1 ∈ L2((0, T ), H1(Ω)) ∩W 1
2 ((0, T ), H1(Ω)′)

and
ln f2, ln g2 ∈ L2((0, T ), H1(Ω)) ∩W 1

2 ((0, T ), H1(Ω)′) .
These properties, together with (2.3), (2.4), and suitable versions of the Lions-Mage-
nes lemma, see, e.g., [4, Theorem II.5.12] and Lemma A.1, imply that

[t 7→ Hη(u1(t)|u2(t))] : [0, T ]→ R

is continuous and

(2.6)

Hη(u1(t)|u2(t))−Hη(uin1 |uin2 )

=
∫ t

0

〈
∂tf1, ln

(f1 + η

f2

)
+ f1

f1 + η

〉
(H1)′,H1

ds

−
∫ t

0

〈
∂tf2,

f1

f2

〉
(H1)′,H1

ds

+
b

c

∫ t

0

〈
∂tg1, ln

(g1 + η

g2

)
+ g1

g1 + η

〉
(H1)′,H1

ds

−
b

c

∫ t

0

〈
∂tf2,

f1

f2

〉
(H1)′,H1

ds
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for all t ∈ [0, T ], where 〈·, ·〉(H1)′,H1 is the duality bracket between H1(Ω) and
H1(Ω)′. Reformulating (2.6) with the help of (1.4), we find

Hη(u1(t)|u2(t))−Hη(uin1 |uin2 )

= −
∫ t

0

∫
Ω
f1∇(af1 + bg1) ·

( ∇f1

f1 + η
− ∇f2

f2

)
dxds

−
∫ t

0

∫
Ω

[
f1∇(af1 + bg1) · ∇

( f1

f1 + η

)
− f2∇(af2 + bg2) · ∇

(f1

f2

)]
dxds

−
b

c

∫ t

0

∫
Ω
g1∇(cf1 + dg1) ·

( ∇g1

g1 + η
− ∇g2

g2

)
dxds

−
b

c

∫ t

0

∫
Ω

[
g1∇(cf1 + dg1) · ∇

( g1

g1 + η

)
− g2∇(cf2 + dg2) · ∇

(g1

g2

)]
dxds .

Hence,

(2.7) Hη(u1(t) | u2(t))−Hη(uin1 |uin2 ) = T 1
η (t) + T 2(t) ,

where

T 1
η (t) := η2

∫ t

0

∫
Ω
∇(af1 + bg1) · ∇f1

(f1 + η)2 dxds

+ η2 b

c

∫ t

0

∫
Ω
∇(cf1 + dg1) · ∇g1

(g1 + η)2 dxds

and

T 2(t) :=−
∫ t

0

∫
Ω

[
∇(af1+bg1) ·

(
∇f1−

f1

f2
∇f2

)
−f2∇(af2+bg2) · ∇

(f1

f2

)]
dxds

−
b

c

∫ t

0

∫
Ω

[
∇(cf1+ dg1) ·

(
∇g1−

g1

g2
∇g2

)
−g2∇(cf2+dg2) · ∇

(g1

g2

)]
dxds .

In view of Definition 1.1 (i), both functions ∇(af1 +bg1) ·∇f1 and ∇(cf1 +dg1) ·∇g1
belong to L1((0, t)× Ω) and

lim
η→0

η2 ∇f1

(f1 + η)2 = 0

lim
η→0

η2∇ g1

(g1 + η)2 = 0

 a.e. in (0, t)× Ω ,

as∇f1 = 0 a.e. on {(s, x) : f1(s, x) = 0} and∇g1 = 0 a.e. on {(s, x) : g1(s, x) = 0}.
The dominated convergence theorem now implies that

(2.8) lim
η→0

T 1
η (t) = 0 for all t ∈ [0, T ] .

Hence, letting η → 0 in (2.7), we deduce from (2.5) and (2.8) that

(2.9) H(u1(t)|u2(t))−H(uin1 |uin2 ) = T 2(t) for t ∈ [0, T ] .
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With respect to T 2(t), we note that

(2.10)

T 2(t)
a

=−
∫ t

0

∫
Ω

[
∇f1 · ∇

(
f1+ b

a
g1

)
+ b

a
∇g1 · ∇

(
f1 + d

c
g1

)]
dxds

+
∫ t

0

∫
Ω

[
f1

f2
∇f2 · ∇

(
f1+ b

a
g1

)
+ b

a

g1

g2
∇g2 · ∇

(
f1+ d

c
g1

)]
dxds

+
∫ t

0

∫
Ω

[
∇f1 · ∇

(
f2+ b

a
g2

)
+ b

a
∇g1 · ∇

(
f2+ d

c
g2

)]
dxds

−
∫ t

0

∫
Ω

[
f1

f2
∇f2 · ∇

(
f2+ b

a
g2

)
+ b

a

g1

g2
∇g2 · ∇

(
f2+ d

c
g2

)]
dxds .

Introducing

T 2
I (t) := −

b(ad− bc)
ac

∫ t

0

∫
Ω

[
|∇g1|2 −

(
1 + g1

g2

)
∇g1 · ∇g2 + g1

g2
|∇g2|2

]
dxds

and T 2
II(t) := T 2(t)− T 2

I (t), we note that

T 2
I (t) = −b(ad− bc)

ac

∫ t

0

∫
Ω

[∣∣∣∇g1 −
1
2

(
1 + g1

g2

)
∇g2

∣∣∣2 − ∣∣∣g1 − g2

2g2
∇g2

∣∣∣2] dxds

≤ b(ad− bc)
ac

∫ t

0

∫
Ω

∣∣∣g1 − g2

2g2
∇g2

∣∣∣2 dxds ,(2.11)

thanks to (1.1). Furthermore, in view of the relation

d

c
= b

a
+ ad− bc

ac
,

T 2
II(t)
a

=−
∫ t

0

∫
Ω

∣∣∣∇(f1 + b

a
g1

)∣∣∣2 dxds

−
∫ t

0

∫
Ω
∇
(
f1 + b

a
g1

)
·
[(

1 + f1

f2

)
∇f2 + b

a

(
1 + g1

g2

)
∇g2

]
dxds

−
∫ t

0

∫
Ω
∇
(
f2 + b

a
g2

)
·
(f1

f2
∇f2 + b

a

g1

g2
∇g2

)
dxds

=−
∫ t

0

∫
Ω

∣∣∣∣∇(f1 + b

a
g1

)
− 1

2

[(
1 + f1

f2

)
∇f2 + b

a

(
1 + g1

g2

)
∇g2

]∣∣∣∣2 dxds

+ 1
4

∫ t

0

∫
Ω

∣∣∣(1 + f1

f2

)
∇f2 + b

a

(
1 + g1

g2

)
∇g2

∣∣∣2 dxds

−
∫ t

0

∫
Ω
∇
(
f2 + b

a
g2

)
·
(f1

f2
∇f2 + b

a

g1

g2
∇g2

)
dxds .
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Observing that

1
4

∣∣∣(1+ f1

f2

)
∇f2 + b

a

(
1 + g1

g2

)
∇g2

∣∣∣2 −∇(f2 + b

a
g2

)
·
(f1

f2
∇f2 + b

a

g1

g2
∇g2

)
= 1

4

∣∣∣∇(f2+ b

a
g2

)
+ f1

f2
∇f2+ b

a

g1

g2
∇g2

∣∣∣2−∇(f2+ b

a
g2

)
·
(f1

f2
∇f2+ b

a

g1

g2
∇g2

)
= 1

4

∣∣∣∇(f2+ b

a
g2

)
− f1

f2
∇f2 −

b

a

g1

g2
∇g2

∣∣∣2
= 1

4

∣∣∣(1− f1

f2

)
∇f2 + b

a

(
1− g1

g2

)
∇g2

∣∣∣2
≤ 1

2

∣∣∣f1 − f2

f2
∇f2

∣∣∣2 + b2

2a2

∣∣∣g1 − g2

g2
∇g2

∣∣∣2 ,
the last estimate resulting from Young’s inequality, we are led to

(2.12) T 2
II(t)
a
≤ 1

2

∫ t

0

∫
Ω

[∣∣∣f1 − f2

f2
∇f2

∣∣∣2 + b2

a2

∣∣∣g1 − g2

g2
∇g2

∣∣∣2] dxds .

On behalf of (2.9), (2.11), and (2.12) we conclude that

H(u1(t)|u2(t)) ≤ H(uin1 |uin2 ) + b(ad− bc)
ac

∫ t

0

∫
Ω

∣∣∣g1 − g2

2g2
∇g2

∣∣∣2 dxds

+ a

2

∫ t

0

∫
Ω

[∣∣∣f1 − f2

f2
∇f2

∣∣∣2 + b2

a2

∣∣∣g1 − g2

g2
∇g2

∣∣∣2] dxds .

Recalling (2.3), we deduce that there exists a positive constant C = C(a, b, c, d)
such that

(2.13) H(u1(t)|u2(t)) ≤ H(uin1 |uin2 ) + Cσ4
∫ t

0

∫
Ω

[
|f1 − f2|2 + b

c
|g1 − g2|2

]
dxds

for all t ∈ [0, T ]. In view of the inequality

(2.14) x ln
(x
y

)
− (x− y) ≥ 1

2
|x− y|2

max{x, y} , (x, y) ∈ [0,∞)× (0,∞) ,

which follows from [18, Lemma 18], it is not difficult to infer from (2.13), by taking
also into account the boundedness of u1 and u2 in (0, T ) × Ω provided by (2.4),
that

H(u1(t)|u2(t)) ≤ H(uin1 |uin2 ) + C

∫ t

0
H(u1(s)|u2(s)) ds(2.15)

for all t ∈ [0, T ]. This completes the proof of (1.7).
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Annexe A. A version of the Lions-Magenes lemma

In this section we establish a version of the Lions-Magenes lemma, see Lemma A.1
below, which is used in the proof of Theorem 1.3 when differentiating the mapping[

t 7→
∫

Ω
[f(t) ln(f(t) + η)− f(t)] dx

]
: (0, T )→ R , with η > 0 ,

for some appropriate non-negative function f . Before stating the result, we note
that the function Φ(s) := s ln (s+ η)− s, s ≥ 0, satisfies Φ′′(s) = (s+ 2η)/(s+ η)2,
s ≥ 0. Thus

‖Φ′′‖∞ <∞ .

Lemma A.1 (Lions-Magenes lemma). Let Ω ⊂ RN be a bounded open set and Φ ∈
C2(R) satisfy ‖Φ′′‖∞ <∞. Assume that

f ∈ L2((0, T ), H1(Ω)) ∩W 1
2 ((0, T ), H1(Ω)′) .

Then [
t 7→ I(t) :=

∫
Ω

Φ(f(t)) dx
]
∈ C([0, T ],R)

and for all 0 ≤ t0 ≤ t ≤ T we have

(A.1)
∫

Ω
Φ(f(t)) dx−

∫
Ω

Φ(f(t0)) dx =
∫ t

t0

〈
∂tf(τ),Φ′(f(τ))

〉
(H1)′,H1

dτ .

As we are lacking a precise reference for Lemma A.1, we include below a proof
for the sake of completeness. As a first step, we establish in Lemma A.2 an auxiliary
result which is used in the proof of Lemma A.1.

Lemma A.2. Let Ω ⊂ RN be a bounded open set and let f ∈ C1(I, L2(Ω)), where
I ⊂ R is an interval. Let further Φ ∈ C2(R) satisfy ‖Φ′′‖∞ =: L <∞. Then,[

t 7→ I(t) :=
∫

Ω
Φ(f(t)) dx

]
∈ C1(I,R)

and

(A.2) I ′(t) = d
dt

∫
Ω

Φ(f(t)) dx =
∫

Ω
Φ′(f(t))∂tf(t) dx, t ∈ I .

Proof. We may assume without loss of generality that Φ(0) = Φ′(0) = 0 (as the
claim is obvious for affine functions). Then

(A.3) |Φ(r)−Φ(s)| ≤ L(|r|+|s|)|r−s| , |Φ′(r)−Φ′(s)| ≤ L|r−s| , (r, s) ∈ R2 .

In particular, since Φ(0) = Φ′(0) = 0,

|Φ(f(t))| ≤ L|f(t)|2 and |Φ′(f(t))| ≤ L|f(t)| , t ∈ I ,

and it follows that

Φ(f(t)) ∈ L1(Ω) and Φ′(f(t))∂tf(t) ∈ L1(Ω) , t ∈ I .
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Let t 6= t0 ∈ I. We then have∣∣∣I(t)− I(t0)
t− t0

−
∫

Ω
Φ′(f(t0))∂tf(t0) dx

∣∣∣
≤
∫

Ω

∣∣∣Φ(f(t))− Φ(f(t0))
t− t0

− Φ′(f(t0))∂tf(t0)
∣∣∣dx

≤
∫

Ω

∫ 1

0

∣∣∣Φ′((1− s)f(t0) + sf(t))f(t)− f(t0)
t− t0

− Φ′(f(t0))∂tf(t0)
∣∣∣dsdx

≤ J1(t) + J2(t) ,
where

J1(t) :=
∫

Ω

∫ 1

0

∣∣∣Φ′((1− s)f(t0) + sf(t))
[f(t)− f(t0)

t− t0
− ∂tf(t0)

]∣∣∣dsdx ,
J2(t) :=

∫
Ω

∫ 1

0

∣∣∣[Φ′((1− s)f(t0) + sf(t))− Φ′(f(t0))]∂tf(t0)
∣∣∣ dsdx .

By (A.3), Hölder’s inequality, and the regularity of f ,

J1(t) ≤ L(‖f(t0)‖2 + ‖f(t)‖2)
∥∥∥f(t)− f(t0)

t− t0
− df

dt
(t0)

∥∥∥
2
→
t→t0

0 ,

J2(t) ≤ L‖f(t)− f(t0)‖2
∥∥∥∂tf(t0)

∥∥∥
2
→
t→t0

0 .

Therefore, I is differentiable at t0 and its derivative is given by (A.2). It next
readily follows from (A.3) and the regularity of f that Φ′(f) and ∂tf both belong
to C(I, L2(Ω)), from which we deduce that I ′ ∈ C(I) with the help of Hölder’s
inequality. �

We now recall a basic property which is used in the proof of Lemma A.1 below.
Let X, Y be Banach spaces such that the embedding of X in Y is continuous and
dense and let T > 0. Then, C∞([0, T ], X) is dense in

E2(X,Y ) := L2((0, T ), X) ∩W 1
2 ((0, T ), Y ) ,

see, e.g., [4, Lemma II.5.10].
Proof of Lemma A.1. Since C∞([0, T ], H1(Ω)) is dense in E2(H1(Ω), H1(Ω)′),
there is a sequence (fn)n≥1 ∈ C∞([0, T ], H1(Ω)) such that
(A.4) lim

n→∞
‖fn − f‖L2((0,T ),H1(Ω)) = lim

n→∞
‖∂tfn − ∂tf‖L2((0,T ),H1(Ω)′) = 0 .

Moreover, thanks to the continuous embedding of E2(H1(Ω), H1(Ω)′) in C([0, T ],
L2(Ω)), see, e.g., [4, Theorem II.5.13], we deduce from (A.4) that
(A.5) lim

n→∞
sup
t∈[0,T ]

‖fn(t)− f(t)‖2 = 0 .

Let 0 ≤ t0 ≤ t ≤ T . By Lemma A.2

(A.6)
∫

Ω
Φ(fn(t)) dx−

∫
Ω

Φ(fn(t0)) dx =
∫ t

t0

〈
∂tfn(τ),Φ′(fn(τ))

〉
(H1)′,H1 dτ .
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On the one hand, we infer from (A.3), (A.5), and Hölder’s inequality that

(A.7)
lim
n→∞

∫
Ω

Φ(fn(t)) dx =
∫

Ω
Φ(f(t)) dx and

lim
n→∞

∫
Ω

Φ(fn(t0)) dx =
∫

Ω
Φ(f(t0)) dx .

On the other hand, it readily follows from (A.3) and (A.4) that

lim
n→∞

∫ T

0
‖Φ′(fn(τ))− Φ′(f(τ))‖22 dτ = 0 .

Moreover, the boundedness and continuity of Φ′′, (A.4), and Lebesgue’s dominated
convergence theorem entail that

Φ′(fn) ∈ L2((0, T ), H1(Ω)) with ∇Φ′(fn) = Φ′′(fn)∇fn , n ≥ 1 ,

and

lim
n→∞

∫ T

0
‖Φ′′(fn(τ))∇fn(τ)− Φ′′(f(τ))∇f(τ)‖22 dτ = 0 .

Therefore,
lim
n→∞

‖Φ′(fn)− Φ′(f)‖L2((0,T ),H1(Ω)) = 0 .

Combining this convergence with (A.4), leads us to

(A.8) lim
n→∞

∫ t

t0

〈
∂tfn(τ),Φ′(fn(τ))

〉
(H1)′,H1 dτ

=
∫ t

t0

〈
∂tf(τ),Φ(f(τ))

〉
(H1)′,H1 dτ = 0 .

The identity (A.1) is then a direct consequence of (A.6), (A.7), and (A.8). �
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