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FINITE-TIME BLOW-UP IN A TWO-SPECIES
CHEMOTAXIS-COMPETITION MODEL

WITH SINGLE PRODUCTION

Masaaki Mizukami and Yuya Tanaka

Abstract. This paper is concerned with blow-up of solutions to a two-species
chemotaxis-competition model with production from only one species. In
previous papers there are a lot of studies on boundedness for a two-species
chemotaxis-competition model with productions from both two species. On
the other hand, finite-time blow-up was recently obtained under smallness
conditions for competitive effects. Now, in the biological view, the production
term seems to promote blow-up phenomena; this implies that the lack of the
production term makes the solution likely to be bounded. Thus, it is expected
that there exists a solution of the system with single production such that
the species which does not produce the chemical substance remains bounded,
whereas the other species blows up. The purpose of this paper is to prove that
this conjecture is true.

1. Introduction and main result

In this paper we deal with the two-species chemotaxis-competition model with
single production,

∂u

∂t
= d1∆u− χ1∇ · (u∇w) + µ1u(1− uκ1−1 − a1v

λ1−1) ,
∂v

∂t
= d2∆v − χ2∇ · (v∇w) + µ2v(1− a2u

λ2−1 − vκ2−1) ,
0 = d3∆w + αu− γw ,
(∇u · ν)|∂Ω = (∇v · ν)|∂Ω = (∇w · ν)|∂Ω = 0 ,
u(x, 0) = u0(x), v(x, 0) = v0(x)

(1.1)

in a ball Ω := BR(0) ⊂ Rn (n ≥ 3, R > 0). Here, ν is the outward normal vector
to ∂Ω; d1, d2, d3, χ1, χ2, µ1, µ2, a1, a2, α, γ > 0 and κ1, κ2, λ1, λ2 > 1; u0,
v0 ∈ C0(Ω) are nonnegative and radially symmetric. This system describes a
situation in which multi species move toward higher concentrations of the signal
substance (which is produced by the spesies), and compete with each other.
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In a two-species chemotaxis-competition model obtained on replacing the third
equation in (1.1) by

0 = d3∆w + αu+ βv − γw (β > 0) ,
boundedness and stabilization in the case κ1 = κ2 = λ1 = λ2 = 2 were established
under smallness conditions for χ1 and χ2 in [2, 5, 7, 8]; more related works can be
found in [1, 9]. On the other hand, a result on finite-time blow-up in the two-species
chemotaxis system was recently obtained in [6, Theorem 4.1] under the condition

max{κ1, λ1, κ2, λ2} <

{
7
6 if n ∈ {3, 4} ,
1 + 1

2(n−1) if n ≥ 5 .

Now, in the biological view, the production term seems to promote blow-up
phenomena; this implies that the lack of the production term makes the solution
likely to be bounded. Thus, since the third equation in (1.1) lacks the production
term βv, it is expected that there exists a solution of (1.1) such that v remains
bounded, whereas u blows up. The purpose of this paper is to prove that this
conjecture is true.

The main results read as follows. The first theorem gives blow-up in (1.1).

Theorem 1.1. Let d1, d2, d3, χ1, χ2, µ1, µ2, a1, a2, α, γ > 0 and κ1, κ2, λ1,
λ2 > 1. Assume that κ1 and λ1 satisfy that

max{κ1, λ1} <

{
7
6 if n ∈ {3, 4} ,
1 + 1

2(n−1) if n ≥ 5 .
(1.2)

Then, for all L > 0, M0 > 0 and M̃0 ∈ (0,M0) there exists r? ∈ (0, R) with the
following property: If

u0, v0 ∈ C0(Ω) are nonnegative and radially symmetric(1.3)
and ∫

Ω
(u0(x) + v0(x)) dx = M0 and

∫
Br? (0)

u0(x) dx ≥ M̃0(1.4)

as well as
u0(x) + v0(x) ≤ L|x|−n(n−1) for all x ∈ Ω,(1.5)

then there exist T ∗ <∞ and exactly one triplet (u, v, w) of (1.1) which blows up
in finite time in the sense that

lim
t↗T∗

(‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω)) =∞.(1.6)

Remark 1.2. This result means that whether blow-up in (1.1) occurs or not can
be determined by the parameters which come only from the first equation.

Theorem 1.1 gives existence of a constant T ∗ > 0 and a classical solution (u, v, w)
of (1.1) on [0, T ∗) such that limt↗T∗(‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω)) =∞. Then
we consider the next question

whether limt↗T∗ ‖u(·, t)‖L∞(Ω) =∞ and limt↗T∗ ‖v(·, t)‖L∞(Ω) =∞ hold.
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The second theorem is concerned with simultaneous blow-up in (1.1).

Theorem 1.3. Let d1, d2, d3, χ1, χ2, µ1, µ2, a1, a2, α, γ > 0 and κ1, κ2, λ1,
λ2 > 1. Then the following holds:
(i) Assume that u0, v0 ∈ C0(Ω) are nonnegative. Let T ∈ (0,∞] and let (u, v, w)
be a classical solution of (1.1) on [0, T ). Then (u, v, w) satisfies that

if limt↗T ‖v(·, t)‖L∞(Ω) =∞, then limt↗T ‖u(·, t)‖L∞(Ω) =∞.
(ii) Assume that κ1 and λ1 satisfy (1.2). Moreover, suppose that λ2 ≥ 2 and

0 < χ2 <

{
a2d3µ2
α if λ2 = 2 ,

∞ if λ2 > 2 .
(1.7)

Then there are initial data u0, v0 ∈ C0(Ω) and T ∗ <∞ such that the corresponding
solution (u, v, w) of (1.1) on [0, T ∗) satisfies

lim
t↗T∗

‖u(·, t)‖L∞(Ω) =∞ and sup
t∈(0,T∗)

‖v(·, t)‖L∞(Ω) <∞ .

Remark 1.4. This theorem means that if v blows up at time T then u also blows
up at T , and moreover there is a solution such that u blows up at T but v is
bounded in Ω× (0, T ); thus this result gives a positive answer to the conjecture.

This paper is organized as follows. In order to show Theorem 1.1, we will derive
a differential inequality for some moment-type function in Section 2. Section 3 is
devoted to the proof of Theorem 1.3.

2. Proof of Theorem 1.1

We first state a result on local existence of solutions to (1.1).

Lemma 2.1. Let Ω = BR(0) ⊂ Rn (n ≥ 3) be a ball with some R > 0, and let
d1, d2, d3, χ1, χ2, µ1, µ2, a1, a2, α, γ > 0 and κ1, κ2, λ1, λ2 > 1. Assume that
u0, v0 ∈ C0(Ω) are nonnegative. Then there exist Tmax ∈ (0,∞] and a unique triplet
(u, v, w) of functions

u, v, w ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)) ,
which solves (1.1) classically. Moreover, u, v ≥ 0 in Ω× (0, Tmax) and

if Tmax <∞ , then lim
t↗Tmax

(‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω)) =∞.(2.1)

Also, if u0, v0 are radially symmetric, then so are u, v, w for any t ∈ (0, Tmax).

Proof. This lemma is shown by a standard fixed point argument as in [3, 7]. �

In this section we assume that u0, v0 ∈ C0(Ω) are nonnegative and radially
symmetric and that (u, v, w) is a classical solution of (1.1) on [0, Tmax) given by
Lemma 2.1. Moreover, we regard u(x, t), v(x, t) and w(x, t) as functions of r := |x|
and t. Also, we introduce the functions U , V and W as

U(s, t) :=
∫ s

1
n

0
ρn−1u(ρ, t) dρ and V (s, t) :=

∫ s
1
n

0
ρn−1v(ρ, t) dρ
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as well as

W (s, t) :=
∫ s

1
n

0
ρn−1w(ρ, t) dρ

for s ∈ [0, Rn] and t ∈ [0, Tmax), and define φU and ψU as

φU (t) :=
∫ s0

0
s−b(s0 − s)U(s, t) ds

and

ψU (t) :=
∫ s0

0
s−b(s0 − s)U(s, t)Us(s, t) ds

for t ∈ [0, Tmax) with some s0 ∈ (0, Rn) and b ∈ (0, 1). We note that φU belongs to
C0([0, Tmax)) ∩ C1((0, Tmax)). To obtain the differential inequality for φU , we first
give the following lemma.

Lemma 2.2. Let s0 ∈ (0, Rn) and b ∈ (0, 1). Then

φ′U (t) ≥ d1n
2
∫ s0

0
s2− 2

n−b(s0 − s)Uss ds

+ αχ1n

d3
ψU (t)− γχ1n

d3

∫ s0

0
s−b(s0 − s)UsW ds

− µ1n
κ1−1

∫ s0

0
s−b(s0 − s)

(∫ s

0
Uκ1
s (σ, t) dσ

)
ds

− a1µ1n
λ1−1

∫ s0

0
s−b(s0 − s)

(∫ s

0
Us(σ, t)V λ1−1

s (σ, t) dσ
)
ds

=: I1 + I2 + I3 + I4 + I5(2.2)

for all t ∈ (0, Tmax).

Proof. By straightforward computations we can derive (2.2) (see [6, (4.17)]). �

We next estimate the third term on the right-hand side of (2.2).

Lemma 2.3. Let b ∈ (0,min{1, 2− 4
n}). For all L > 0 and all M0 > 0 there exists

C > 0 such that if u0, v0 satisfy (1.3) and
∫

Ω(u0(x) + v0(x)) dx = M0 as well as
(1.5), then

I3 ≥ −Cs
2
n
0 ψU (t)− Cs1−b+ 2

n
0(2.3)

for all s0 ∈ (0, Rn) and t ∈ (0,min{1, Tmax}) .

Proof. As in [10, estimate (4.5)], by integration by parts we have

I3 ≥ −(b+ 1)γχ1n

d3
s0

∫ s0

0
s−b−1UW ds

for all t ∈ (0, Tmax). Furthermore, by the structure of the third equation in (1.1), a
result similar to [10, Lemma 4.8] is established, so that we attain (2.3). �
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With regard to Lemma 2.3, by virtue of the structure of the third equation
in (1.1), a term including ψV (t) does not appear unlike [6, Lemma 4.4], where
ψV (t) :=

∫ s0
0 s−b(s0 − s)V (s, t)Vs(s, t) ds. Thus we derive a differential inequality

for only φU to show blow-up.

Lemma 2.4. Assume that κ1 > 1 and λ1 > 1 satisfy (1.2). Then there exists
b ∈

(
1 − 2

n ,min{1, 2 − 4
n}
)

with the property that for all L > 0 and M0 > 0 one
can find C1 > 0, C2 > 0 and s1 ∈ (0, Rn) such that if u0, v0 satisfy (1.3) and∫

Ω(u0(x) + v0(x)) dx = M0 as well as (1.5), then

φ′U (t) ≥ C1s
−(3−b)
0 φ2

U (t)− C2s
1−b+ 2

n
0(2.4)

for all s0 ∈ (0, s1) and t ∈ (0,min{1, Tmax}).

Proof. Let us fix ε > 0 such that

2ε ≤ 1− 2
n
.(2.5)

Moreover, we can take b ∈
(
1− 2

n ,min{1, 2− 4
n}
)

such that

(n− 1)(max{κ1, λ1} − 1) < b

2 ,(2.6)

because (1.2) ensures that (n − 1)(min{κ1, λ1} − 1) < 1
3 = 1

2
(
2 − 4

n

)
if n = 3,

and that (n− 1)(min{κ1, λ1} − 1) < 1
2 if n ≥ 4. Noting that (1.3), (1.5) and the

condition
∫

Ω(u0(x) + v0(x)) dx = M0, from [6, Lemma 4.2] we can find c1, c2 > 0
such that

I1 ≥ −c1s
3−b

2 −
2
n

0
√
ψU (t)

and

I4 ≥ −c2s
−(n−1)(κ1−1)+ 3−b

2 −ε
0

√
ψU (t)

for all t ∈ (0,min{1, Tmax}). Moreover, thanks to [6, Lemma 4.5], there exists
c3 > 0 satisfying

I5 ≥ −c3s
−(n−1)(λ1−1)+ 3−b

2 −ε
0

√
ψU (t)

for all t ∈ (0,min{1, Tmax}). Hence, plugging these inequalities and Lemma 2.3
into (2.2) entails that

φ′U (t) ≥ αχ1n

d3
ψU (t)− c4s

2
n
0 ψU (t)− c4s

1−b+ 2
n

0

− c1s
3−b

2 −
2
n

0
√
ψU (t)

− c2s
−(n−1)(κ1−1)+ 3−b

2 −ε
0

√
ψU (t)

− c3s
−(n−1)(λ1−1)+ 3−b

2 −ε
0

√
ψU (t)
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for all t ∈ (0,min{1, Tmax}) with some c4 > 0. By Young’s inequality we infer that

φ′U (t) ≥ c5ψU (t)− c4s
2
n
0 ψU (t)

− c6s
1−b+ 2

n
0

(
s

2− 6
n

0 + 1 + s
2− 2

n−2(n−1)(κ1−1)−2ε
0 + s

2− 2
n−2(n−1)(λ1−1)−2ε

0

)
for all t ∈ (0,min{1, Tmax}) with some c5 > 0 and c6 > 0. Now let us choose
s1 ∈ (0, Rn) such that c4s

2
n
1 ≤ c5

2 . Noting from (2.5) and (2.6) that

2− 2
n
− 2(n− 1)(min{κ1, λ1} − 1)− 2ε > 1− b > 0 ,

we have from the relation 2− 6
n ≥ 0 that

φ′U (t) ≥ c5
2 ψU (t)− c7s

1−b+ 2
n

0(2.7)

for all s0 ∈ (0, s1) and t ∈ (0,min{1, Tmax}) with some c7 > 0, where we have used
the relations c4s

2
n
0 < c4s

2
n
1 ≤ c5

2 and s0 < Rn. Now from [10, Lemma 4.4] there
exists c8 > 0 satisfying that ψU (t) ≥ c8s

−(3−b)
0 φ2

U (t) for all t ∈ (0, Tmax), which
together with (2.7) yields (2.4). �

We are now in the position to prove Theorem 1.1.
Proof of Theorem 1.1. Thanks to Lemma 2.4, there exist c1 > 0, c2 > 0 and
s1 ∈ (0, Rn) such that

φ′U (t) ≥ c1s−(3−b)
0 φ2

U (t)− c2s
1−b+ 2

n
0

for all s0 ∈ (0, s1) and t ∈ (0,min{1, Tmax}). Let us pick s0 ∈ (0, s1) fulfilling√
c2
c1
s

1
n
0 + 2

c1
s0 ≤

M̃0

23−bωn
.

Then it follows that

M̃0

23−bωn
s2−b

0 ≥
√
c2
c1
s

2−b+ 1
n

0 + 2
c1
s3−b

0 .

Moreover, put

r? :=
(s0

4

) 1
n ∈ (0, R) ,

and select initial data u0, v0 satisfy (1.3), (1.4) and (1.5). By [10, estimate (5.5)],
we can verify that

φU (0) ≥ M̃0

23−bωn
s2−b

0 .

As in the proof of [4, Lemma 4.6] (with d1(s0) = c1s
−(3−b)
0 , d2(s0) = c2s

1−b− 2
n

0 and
φ(s0) = M̃0

23−bωn
s2−b

0 ), we can derive that Tmax ≤ 1
2 . Therefore, from (2.1) we arrive

at (1.6), which completes the proof. �
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3. Proof of Theorem 1.3

In the following, we let T ∈ (0,∞] and let (u, v, w) be a classical solution of
(1.1) on [0, T ) with u0, v0 ∈ C0(Ω) being nonnegative. Now we put

Lṽ := d2∆ṽ − χ2∇ṽ · ∇w

for ṽ ∈ C2(Ω). Then we note from the second and third equations in (1.1) that
∂v

∂t
= Lv − χ2v∆w + µ2v(1− a2u

λ2−1 − vκ2−1)

= Lv + αχ2

d3
uv − γχ2

d3
vw + µ2v(1− a2u

λ2−1 − vκ2−1)

≤ Lv + αχ2

d3
uv + µ2v − a2µ2u

λ2−1v − µ2v
κ2(3.1)

for all x ∈ Ω and t ∈ (0, T ). By using this inequality we will show the following
two lemmas which play an important role in the proof of Theorem 1.3.

Lemma 3.1. The solution (u, v, w) satisfies that if limt↗T ‖u(·, t)‖L∞(Ω) < ∞,
then limt↗T ‖v(·, t)‖L∞(Ω) <∞.

Proof. Assume that ‖u(·, t)‖L∞(Ω) ≤ c1 for all t ∈ (0, T ) with some c1 > 0. Then,
from (3.1) we see that

∂v

∂t
≤ Lv +

(αχ2

d3
c1 + µ2

)
v − µ2v

κ2

for all x ∈ Ω and t ∈ (0, T ). Let us next choose v ∈ (0,∞) such that ‖v0‖L∞(Ω) ≤ v,
and denote by y : [0,∞)→ R the function solvingy′(t) =

(
αχ2

d3
c1 + µ2

)
y(t)− µ2y

κ2(t) , t > 0 ,

y(0) = v .

Then, by a comparison principle, we can observe that for all x ∈ Ω and t ∈ (0, T ),

v(x, t) ≤ y(t) ≤ max


(
αχ2
d3
c1 + µ2

µ2

) 1
κ2−1

, v

 =: c2

holds, which implies that ‖v(·, t)‖L∞(Ω) ≤ c2 for all t ∈ (0, T ). �

Lemma 3.2. Assume that λ2 ≥ 2 and χ2 satisfies (1.7). Then

‖v(·, t)‖L∞(Ω) ≤ C(3.2)

holds for all t ∈ (0, T ) with some C > 0.

Proof. When λ2 = 2, by (3.1) and the fact a2µ2 − αχ2
d3

> 0 (from (1.7)) we have

∂v

∂t
≤ Lv + µ2v − µ2v

κ2 −
(
a2µ2 −

αχ2

d3

)
uv

≤ Lv + µ2v − µ2v
κ2
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for all x ∈ Ω and t ∈ (0, T ). Thus a comparison principle yields (3.2). On the
other hand, in the case that λ2 > 2, Young’s inequality enables us to find some
constant c1 > 0 satisfying ∂v

∂t ≤ Lv+ (c1 +µ2)v−µ2v
κ2 for all x ∈ Ω and t ∈ (0, T ).

Similarly, a comparison principle yields (3.2), which concludes the proof. �

Proof of Theorem 1.3. Lemma 3.1 directly entails Theorem 1.3 (i). We next
show Theorem 1.3 (ii). Theorem 1.1 asserts that there are initial data u0, v0 ∈ C0(Ω)
and T ∗ < ∞ such that the corresponding solution (u, v, w) of (1.1) on [0, T ∗)
satisfies that limt↗T∗(‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω)) = ∞. Then, noticing from
Lemma 3.2 with T = T ∗ that supt∈(0,T∗) ‖v(·, t)‖L∞(Ω) < ∞ holds, we see that
limt↗T∗ ‖u(·, t)‖L∞(Ω) =∞ holds, which means that Theorem 1.3 (ii) holds. �
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