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STABILIZATION IN DEGENERATE PARABOLIC EQUATIONS
IN DIVERGENCE FORM AND APPLICATION

TO CHEMOTAXIS SYSTEMS

Sachiko Ishida and Tomomi Yokota

Abstract. This paper presents a stabilization result for weak solutions of
degenerate parabolic equations in divergence form. More precisely, the result
asserts that the global-in-time weak solution converges to the average of the
initial data in some topology as time goes to infinity. It is also shown that the
result can be applied to a degenerate parabolic-elliptic Keller-Segel system.

1. Introduction: stabilization result

Let Ω ⊂ RN (N ∈ N) be a bounded domain with smooth boundary ∂Ω. Then we
consider the initial-boundary value problem for the degenerate parabolic equation,

(1.1)


ut = ∇ · (f(u)∇u+ g(u, x, t)) , x ∈ Ω, t > 0 ,
(f(u)∇u+ g(u, x, t)) · ν = 0 , x ∈ ∂Ω, t > 0 ,
u(x, 0) = u0(x) , x ∈ Ω ,

where f is supposed to be a non-negative function satisfying

f ∈ C([0,∞)) ∩ C2((0,∞)) ,(1.2)
f(σ) ≥ k0σ

m−1 with some k0 > 0, m ≥ 1 (∀σ ≥ 0) , lim sup
σ↘0

σf ′(σ) <∞ ,(1.3)

and moreover, g is assumed to be a vector-valued function approximated by
gε ∈ C([0,∞) × Ω × [0,∞); RN ) ∩ C1,1,0([0,∞) × Ω × (0,∞); RN ) with some
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{ε} ⊂ (0, 1) fulfilling ε→ 0 such that for all T > 0,

0 ≤ wε, w ∈ L∞(0, T ;L∞(Ω)) ,(1.4)
wε → w a.e. on Ω× (0, T ) and weakly* in L∞(0, T ;L∞(Ω))
⇒ gε(wε, ·, ·)→ g(w, ·, ·) weakly in L2(0, T ; (L2(Ω))N ) ,

0 ≤ w ∈ L∞(0,∞;L∞(Ω)) with ‖w‖L∞(0,∞;L∞(Ω)) ≤ c(1.5)
⇒ ‖gε(w, ·, ·)‖L2(0,∞;(L2(Ω))N ) ≤M(c) ,

where M(c) ≥ 0 is a constant depending on c.
We first state the definition of weak solutions to (1.1) as follows:

Definition 1.1. A non-negative function u(x, t) defined in Ω× (0,∞) is called a
global weak solution of (1.1) if the following conditions are satisfied for all T > 0:

– u ∈ L∞(0, T ;L∞(Ω)),

–
∫ u

0
f(σ) dσ ∈ L2(0, T ;H1(Ω)), g(u, x, t) ∈ L2(0, T ; (L2(Ω))N ),

– u fulfills (1.1) in the distributional sense: for every ϕ ∈ L2(0, T ;H1(Ω)) ∩
W 1,1(0, T ;L1(Ω)) with suppϕ(x, ·) ⊂ [0, T ) (a.a. x ∈ Ω),∫ T

0

∫
Ω

(
∇
(∫ u

0
f(σ) dσ

)
· ∇ϕ− g(u, x, t) · ∇ϕ− uϕt

)
dx dt

=
∫

Ω
u0(x)ϕ(x, 0) dx .

We next give the following approximate problem:
(uε)t = ∇ · (f(uε + ε)∇uε + gε(uε, x, t)) , x ∈ Ω, t > 0 ,(
f(uε + ε)∇uε + gε(uε, x, t)

)
· ν = 0 , x ∈ ∂Ω, t > 0 ,

uε(x, 0) = u0ε(x) , x ∈ Ω ,

(1.6)

where gε ∈ C([0,∞) × Ω × [0,∞); RN ) ∩ C1,1,0([0,∞) × Ω × (0,∞); RN ) with
some {ε} ⊂ (0, 1) fulfilling ε→ 0 is an approximation of g, which also appears in
(1.4), (1.5). The initial data u0ε is the regularization of u0 such that u0ε ∈ C∞0 (Ω)
and u0ε → u0 in Lp(Ω) as ε→ 0 for any p ∈ [1,∞). For example, we define it as
u0ε := [ζε(ρε∗ũ0)]|Ω, where ũ0 denotes the zero extension of u0 on RN . The function
ρε is the mollifier such that 0 ≤ ρε ∈ C∞0 (RN ), supp ρε ⊂ B(0, ε),

∫
RN ρε(x) dx = 1,

and ζε is the cut-off function defined as ζε(x) := ζ(εx), where ζ is a fixed function
in C∞0 (RN ) such that 0 ≤ ζ ≤ 1, ζ(x) = 1 (|x| ≤ 1), ζ(x) = 0 (|x| ≥ 2). We assume
that (1.6) possesses global classical solutions uε ∈ C0(Ω× [0,∞))∩C2,1(Ω×(0,∞)).

We now present a stabilization result established in [7].

Theorem 1.2. Let f , g satisfy (1.2), (1.3), (1.4), (1.5) and u0 ∈ L∞(Ω), u0 ≥ 0.
Let uε be a global classical solution of (1.6). Suppose that there exists a constant
umax > 0, which is independent of ε and t, such that

‖uε(t)‖L∞(Ω) ≤ umax for all t > 0 .
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Then there exists a global weak solution to (1.1), which is given by

uε → u weakly* in L∞(0,∞;L∞(Ω)) as ε→ 0

for some subsequence of {ε}, satisfying

u ∈ Cw−∗([0,∞);L∞(Ω)) ,
‖u(t)‖L∞(Ω) ≤ umax for all t ≥ 0 ,
u(t)→ u0 weakly* in L∞(Ω) as t→∞ ,

where u0 :=
∫

Ω u0(x) dx.

The above theorem is applicable to some degenerate parabolic equations with
drift terms in divergence form, whereas a similar result on stabilization in the
case of non-divergence form with reaction terms has already been developed by [9].
In [7] we applied Theorem 1.2 to a parabolic–parabolic Keller-Segel system with
degenerate diffusion. In this paper we give another application.

2. Application to chemotaxis systems

Consider the following degenerate parabolic–elliptic Keller-Segel system:

(2.1)


ut = ∇ · (D(u)∇u− u∇v) , x ∈ Ω, t > 0 ,
0 = ∆v − v + u , x ∈ Ω, t > 0 ,(
D(u)∇u+ S(u)∇v

)
· ν = ∇v · ν = 0 , x ∈ ∂Ω, t > 0 ,

u(x, 0) = u0(x) , x ∈ Ω ,

where Ω ⊂ RN (N ∈ N) is a bounded domain with smooth boundary ∂Ω. Assume
that the diffusivity function D fulfills the following conditions:

D ∈ C([0,∞)) ∩ C2((0,∞)),(2.2)
D(σ) ≥ k0σ

m−1 (σ ≥ 0) with some k0 > 0, m ≥ 1, lim sup
σ↘0

σD′(σ) <∞(2.3)

and that the initial data (u0, v0) satisfies

(2.4) u0 ≥ 0 , u0 ∈ L∞(Ω) .

We define weak solutions of (2.1).

Definition 2.1. A couple (u, v) of non-negative functions satisfying the following
is called a global weak solution of (2.1):
• u ∈ L∞(0, T ;L∞(Ω)),

∫ u
0 D(σ) dσ ∈ L2(0, T ;H1(Ω)) for all T > 0,

• v ∈ L∞(0, T ;W 1,∞(Ω)) for all T > 0,
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• (u, v) fulfills (2.1) in the distributional sense: for all ϕ ∈ L2(0, T ;H1(Ω)) ∩
W 1,1(0, T ;L1(Ω)) with suppϕ(x, ·) ⊂ [0, T ) (a.a. x ∈ Ω),∫ T

0

∫
Ω

(
∇
(∫ u

0
D(σ) dσ

)
· ∇ϕ− u∇v · ∇ϕ− uϕt

)
dx dt

=
∫

Ω
u0(x)ϕ(x, 0) dx ,∫ T

0

∫
Ω

(∇v · ∇ϕ+ vϕ− uϕ) dx dt = 0 .

In this section we deal with the sub-critical case that 2 − 2
N < m, where

m = 2 − 2
N is the critical exponent whether (2.1) possesses a global bounded

solution or not. In view of the results in [10] which dealt with a general quasilinear
chemotaxis term with N ≥ 3, solutions are global and bounded if 2 − 2

N < m,
whereas there are many initial data producing unbounded solutions if m < 2− 2

N .
A similar situation is found in the parabolic-parabolic system: for boundedness in
the case 2− 2

N < m, see [5, 12, 14] on bounded domains, [6, 13] on the whole space;
for blow-up in the case m ≤ 2− 2

N , see [2, 4, 11] and [16].
We would like to turn to the asymptotic behavior of global solutions. To the

best of our knowledge, there are few papers on this topic, e.g., the sub-critical
parabolic–parabolic case is studied in [1, 3, 8] and [15]. For instance, the solution
(u, v) of non-degenerate systems converges to (u0, u0) in (L∞(Ω))2, where u0 :=

1
|Ω|
∫

Ω u0(x) dx, under some smallness condition for initial data ([1, 3, 15]), whereas,
when m ≥ 2, an energy solution (u, v) tends to a non-negative stationary solution
(U, V ) which is potentially non-constant or constant equilibria ([8]). From these
results, solvability has already been achieved for 2− 2

N < m and stabilization has not
been achieved in the case that 2− 2

N < m < 2. In [7] we could establish stabilization
in the fully parabolic version of (2.1) by applying Theorem 1.2. However, there
seems to be still room for consideration in the parabolic–elliptic Keller–Segel system
(2.1). In this section, we will extend the range of the application of Theorem 1.2.

In stating the main theorem, we use the constant in the Poincaré inequality
through the embedding W 1,α(Ω) ↪→ L2(Ω) for any α ≥ 2N

N+2 :

‖ψ − ψ‖2L2(Ω) ≤ kP‖∇ψ‖
2
Lα(Ω) (∀ψ ∈W 1,α(Ω)),(2.5)

where ψ := 1
|Ω|
∫

Ω ψ and kP = kP(α,N,Ω) is a positive constant.

Theorem 2.2. Let D satisfy the conditions (2.2), (2.3) with

2− 2
N

< m ≤ 2 .

Let (u0, v0) satisfy (2.4) and assume that

(2.6) ‖u0‖2−mL1(Ω) <
k0

kP
,
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where kP is the same one as in (2.5) with α = 2
3−m . Then, there exists a global

weak solution (u, v) of (2.1) which satisfies

u ∈ Cw−∗([0,∞);L∞(Ω)),
‖u(t)‖L∞(Ω) ≤ umax for all t ≥ 0,
‖v(t)‖W 1,∞(Ω) ≤ vmax for all t ≥ 0,
u(t)→ u0 weakly* in L∞(Ω) as t→∞,
v(t)→ u0 strongly in L∞(Ω) as t→∞ ,(2.7)

where umax, vmax ≥ 0 are constants that appear in Lemma 2.3 and u0 := 1
|Ω|
∫

Ω u0.

As in Theorem 1.2, we consider the approximate problem

(2.8)


(uε)t = ∇ · (D(uε + ε)∇uε)−∇ · (uε∇vε) , x ∈ Ω, t > 0 ,
0 = ∆vε − vε + uε , x ∈ Ω, t > 0 ,
∂uε
∂ν = ∂vε

∂ν = 0 x ∈ ∂Ω, t > 0 ,
uε(x, 0) = [ζε(ρε ∗ ũ0)]|Ω , x ∈ Ω ,

where ũ0 denotes the zero extension of u0 on RN , ρε is the mollifier and ζε is the
cut-off function.

We first give existence of global bounded solutions to the approximate problem
(2.8), which can be proved by the same way as in [6] for the fully parabolic case;
note that in the parabolic-elliptic case it suffices to replace ∆v with v − u instead
of the use of the maximal Sobolev regularity in [6, (28)].

Lemma 2.3. Assume that D satisfy the conditions (2.2), (2.3) with 2− 2
N < m.

Then for any initial data satisfying (2.4), there exists a pair (uε, vε) of non-negative
functions

uε, vε ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)) ,(2.9)

which solves (2.8) classically, and (uε, vε) fulfills

‖uε(t)‖L∞(Ω) ≤ umax, ‖vε(t)‖W 1,∞(Ω) ≤ vmax for all t ∈ (0, T ) ,

where umax, vmax are positive constants which are independent of t, ε. Moreover,
there exist a subsequence {εn}n ⊂ {ε} and non-negative functions

u ∈ L∞(0,∞;L∞(Ω)), v ∈ L∞(0,∞;W 1,∞(Ω))

such that

uεn → u weakly* in L∞(0,∞;L∞(Ω)),
uεn → u a.e. on Ω× (0,∞),
vεn → v weakly* in L∞(0,∞;W 1,∞(Ω))(2.10)

as n→∞.
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In order to apply Theorem 1.2, we will verify the conditions (1.2)–(1.5) with

f(σ) = D(σ) , g(w, x, t) = w∇v , gε(w, x, t) = w∇vε ,

where ε := εn for large n. In the following proof, ci (i = 1, 2, · · · ) denote positive
constants independent of t and ε.
Proof of Theorem 2.2. We first observe that (1.2) and (1.3) are satisfied by
(2.2) and (2.3). In view of (2.9) we can define gε ∈ C([0,∞)× Ω× [0,∞); RN ) ∩
C1,1,0([0,∞)× Ω× (0,∞); RN ) as

gε(w, x, t) := w∇vε ,

where {ε} ⊂ (0, 1) fulfilling ε→ 0 is defined as ε := εn appearing in Lemma 2.3 for
large n. From now on we omit the proviso that ε→ 0.

Next, we will confirm (1.4). Let wε, w be non-negative functions which belong
to L∞(0, T ;L∞(Ω)) for all T > 0 and satisfy

wε → w a.e. on Ω× (0, T ) and weakly* in L∞(0, T ;L∞(Ω)) .

Since there exists c1 such that ‖wε‖L∞(0,T ;L∞(Ω)) ≤ c1, we see from the Lebesgue do-
minated convergence theorem that wε → w strongly in L2(0, T ;L2(Ω)). Combining
this convergence with (2.10) ensures that

gε(wε, ·, ·)→ w∇v = g(w, x, t) weakly in L2(0, T ; (L2(Ω))N ) .

We next consider (1.5). Let w ∈ L∞(0,∞;L∞(Ω)) with ‖w‖L∞(0,∞;L∞(Ω)) ≤ c2.
Then we have ∫ ∞

0

∫
Ω
|gε(w)|2 dx dt ≤ c22

∫ ∞
0

∫
Ω
|∇vε|2 dx dt .(2.11)

Set
zε(t) := vε(t)− vε(t) = vε(t)−

1
|Ω|

∫
Ω
vε(t).

Then, due to vε(t) = u0ε, which is obtained by integrating the second equation in
(2.8) over Ω, zε satisfies

(2.12)
{

0 = ∆zε − zε + (uε − u0ε) , x ∈ Ω, t > 0 ,
∇zε · ν = 0 , x ∈ ∂Ω .

Testing the equation in (2.12) by uε − u0ε and zε, we obtain

0 = −
∫

Ω
∇uε · ∇vε dx−

∫
Ω

(uε − u0ε)zε dx+
∫

Ω
(uε − u0ε)2 dx,

0 = −
∫

Ω
(|∇zε|2 + |zε|2) dx+

∫
Ω

(uε − u0ε)zε dx .

From the first equation in (2.8) we see that

d

dt

∫
Ω

(uε log uε − uε) dx = −
∫

Ω

D(uε + ε)
uε

|∇uε|2 dx+
∫

Ω
∇vε · ∇uε dx .
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Adding the above three identities, we have

d

dt

∫
Ω

(uε log uε − uε) dx(2.13)

= −
∫

Ω
(|∇zε|2 + |zε|2) dx−

∫
Ω

D(uε + ε)
uε

|∇uε|2 dx+
∫

Ω
(uε − u0ε)2 dx .

The condition (2.6) and m ≤ 2 help us to control the last term on the right-hand
side of the above identity by the second term on the same side. The fact that
W 1, 2

3−m (Ω) ↪→ L2(Ω) as 2− 2
N < m and (2.5) provide the constant kP such that

‖uε(t)− u0ε‖2L2(Ω) ≤ kP‖∇uε(t)‖2
L

2
3−m (Ω)

.

From Hölder’s inequality along with ‖uε(t)‖L1(Ω) ≤ ‖u0‖L1(Ω) (∀t ≥ 0) we infer

‖∇uε(t)‖2
L

2
3−m (Ω)

≤
(∫

Ω

|∇uε|2

(uε + ε)2−m dx

)
(‖u0‖L1(Ω) + ε|Ω|)2−m.

Thanks to (2.3), it clearly holds that∫
Ω

|∇uε|2

(uε + ε)2−m dx ≤ 1
k0

∫
Ω

D(uε + ε)
uε

|∇uε|2 dx .

Connecting the above three estimates, we obtain

‖uε(t)− u0ε‖2L2(Ω) ≤
kP
k0

(‖u0‖L1(Ω) + ε|Ω|)2−m
∫

Ω

D(uε + ε)
uε

|∇uε|2 dx .(2.14)

By virtue of (2.6), if we take ε0 small enough to fit

kP
k0

(‖u0‖L1(Ω) + ε|Ω|)2−m − 1 < 0 (ε ∈ (0, ε0)) ,

then (2.13) together with (2.14) warrants that for ε ∈ (0, ε0),

d

dt

∫
Ω

(uε log uε − uε) dx ≤ −
∫

Ω
(|∇zε|2 + |zε|2) dx− c3

∫
Ω

D(uε + ε)
uε

|∇uε|2 dx ,

where c3 = 1 − kP
k0

(‖u0‖L1(Ω) + ε0|Ω|)2−m > 0. Integrating this inequality with
respect to the time variable provides c4 such that for ε ∈ (0, ε0),∫ ∞

0

∫
Ω
|∇vε|2 dx dt =

∫ ∞
0

∫
Ω
|∇zε|2 dx dt

≤ −
∫

Ω
(uε log uε − uε) dx+

∫
Ω

(u0ε log u0ε − u0ε) dx

≤ c4(2.15)

in light of boundedness of f(ξ) = |ξ log ξ − ξ| for ξ ∈ [0, umax]. Plugging (2.15)
into (2.11), we deduce that (1.5) holds. Thus, we can apply Theorem 1.2 to the
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parabolic-elliptic Keller-Segel system (2.1), so that there exists a global weak
solution (u, v) fulfilling

u ∈ Cw−∗([0,∞);L∞(Ω)) ,
‖u(t)‖L∞(Ω) ≤ umax for all t ≥ 0 ,
u(t)→ u0 weakly* in L∞(Ω) as t→∞ .

Moreover, from the Sobolev embedding W 2,N+1(Ω) ↪→ W 1,∞(Ω) and elliptic
regularity as well as ‖u(t)‖L∞(Ω) ≤ umax (t ≥ 0) we have

‖v(t)‖W 1,∞(Ω) ≤ c5‖v(t)‖W 2,N+1(Ω) ≤ c6‖u(t)‖LN+1(Ω) ≤ c6|Ω|
1

N+1umax = vmax

with some c5, c6 > 0. We finally verify (2.7). Since u(t)→ u0 weakly in LN+1(Ω)
as t→∞, the compactness of (I−∆)−1 from LN+1(Ω) in W 1,N+1(Ω) implies that
v(t)− u0 = (I −∆)−1(u(t)− u0)→ 0 strongly in W 1,N+1(Ω) as t→∞ ,

and also strongly in L∞(Ω) by the Sobolev embedding theorem, which implies
(2.7). This completes the proof. �
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