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FOREWORD TO PROCEEDINGS OF EQUADIFF 15

The Conference on Differential Equations and Their Applications – abbreviated
as Equadiff – is one of the oldest active series of mathematical conferences in
the world. The tradition of the Czechoslovak Equadiff dates back to 1962 when
Equadiff 1 took place in Prague. The subsequent Czechoslovak Equadiff conferences
are held since then periodically in Prague, Bratislava, and Brno every four years
(with few exceptions). The Western Equadiff conferences are organized in various
cities in Western Europe, starting in Marseille in 1970 and with the last meeting
in Leiden in 2019.

The last Equadiff was held in Brno in summer 2022 as the 15th conference
within the Czechoslovak Equadiff series, and hence it bears the name Equadiff 15.
The conference was rescheduled to the year 2022 from the original date in July
2021 due to an unstable pandemic situation in the world. The proceedings from
all previous Czechoslovak Equadiff conferences are available via the Czech Digital
Mathematics Library at

https://dml.cz/handle/10338.dmlcz/700001.

The conference Equadiff 15 was organized by joint efforts of the Faculty of
Science of Masaryk University (and its Department of Mathematics and Statistics)
with the Faculty of Civil Engineering of Brno University of Technology, the Institute
of Mathematics of the Czech Academy of Sciences, and the Brno branch of The
Union of Czech Mathematicians and Physicists. The conference took place at the
campus of the Faculty of Economics and Administration of Masaryk University
from July 11 till July 15, 2022. More than 250 participants from 37 countries from
all over the world attended the 241 talks of the conference, including 6 plenary
talks, 17 invited talks, 124 talks in 33 organized minisymposia, 75 contributed
talks, and 19 posters.

The proceedings of Equadiff 15 cover the theory of differential equations in
a broad sense, including their theoretical aspects, numerical methods, and appli-
cations. The proceedings contain 29 scientific articles written by participants of
Equadiff 15. The papers are divided into three sections according to the program
of the conference:

– ordinary differential equations (15 papers),
– partial differential equations (9 papers),
– numerical analysis and applications (5 papers).

Each manuscript underwent a rigorous refereeing process to ensure its scientific
quality. This issue contains the contributions from section Numerical analysis and
applications.
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We would like to take this opportunity to express our special thanks to all
the participants for their active contributions to the success of the Equadiff 15
conference. Our gratitude and appreciation belong to the members of the Scientific
Committee who ensured the high standards of the scientific activities of the
conference, to the organizers and supporting PhD students for their efforts towards
the realization of the conference, to the administration of the Faculty of Economics
and Administration of Masaryk University for providing the venue for the conference
and for their organizational support, to the management and employees of the
Accommodation and Catering Services of Masaryk University for their help with the
organization and realization of the catering during the conference, to the workers of
the Botanical Garden of the Faculty of Science of Masaryk University for providing
the flower decoration, and to the director of the Department of Mathematics and
Statistics of the Faculty of Science of Masaryk University for financial support. We
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for her extensive editorial work on these proceedings.
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DEEP LEARNING FOR GRADIENT FLOWS USING
THE BREZIS–EKELAND PRINCIPLE

Laura Carini, Max Jensen, and Robert Nürnberg

Abstract. We propose a deep learning method for the numerical solution of
partial differential equations that arise as gradient flows. The method relies
on the Brezis–Ekeland principle, which naturally defines an objective function
to be minimized, and so is ideally suited for a machine learning approach
using deep neural networks. We describe our approach in a general framework
and illustrate the method with the help of an example implementation for the
heat equation in space dimensions two to seven.

1. Introduction

In this paper we advocate a deep learning approach for solving parabolic partial
differential equations (PDEs)

ut + ∂φ(u) = f ,

that arise as evolution equations for gradient flows. We exploit the variational
principle of the seminal papers by Brezis and Ekeland, [2,3], now commonly known
as the Brezis–Ekeland principle, [17, 19]. We also refer to [21] for related work, as
well as to [7] for alternative variational formulations for large classes of PDEs.

Using neural networks for the numerical solution of PDEs has become increasingly
popular over the last decade. An advantage of neural network-based approaches
is their suitability for high-dimensional problems. For a comprehensive review
of current developments we refer to [1, 12]. Among currently popular techniques
are methods based on residual minimization, e.g. see [15, 16, 18], and on the
reformulation as a backward stochastic differential equation, e.g. [8, 9, 10,14].

Most relevant for this work are variational approaches. For an elliptic problem, E
and Yu, [6], proposed a deep learning method based on a variational principle that
leads to a natural optimization framework. An approach connecting variational
principles with convex duality for stationary equations was taken in [11], which
mirrors some aspects of our work for gradient flows.

The aim of our approach is three-fold:

2020 Mathematics Subject Classification: primary 35K15; secondary 35A15, 68T07.
Key words and phrases: machine learning, deep neural networks, gradient flows, Brezis–Ekeland

principle, adversarial networks, differential equations.
Received September 28,2022, accepted December 1, 2022. Editor J. Chleboun.
DOI: 10.5817/AM2023-3-249
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(1) Machine learning approaches have been criticized for their less developed
methodology to bound, or at least estimate, the approximation error. It is
therefore interesting that the minimum of the Brezis–Ekeland functional,
which is minimized during the learning process, is guaranteed to be zero
for the exact solution, thus providing an error measure that is known at
the point of computing the neural net approximation.

(2) Adversarial networks have very successfully been applied across multiple
problem classes of machine learning. We were intrigued by the question
whether duality can be a context in which the concept of adversarial
networks is translated to partial differential equations as well as to convex
analysis, by introducing a neural network for the primal and another one
for the dual problem. In a resulting min-max formulation the training
stages of the respective networks take opposing, or adversarial, roles in
finding the value of the joint loss functional.

(3) Finally, we wish to construct a method which takes advantage of the specific
structural properties of gradient flows, based on the relevance of these
properties in the literature for the construction of finite element methods
for time-dependent PDEs.

The outline of the remainder of the paper is as follows: in section 2 we introduce
gradient flows and the Brezis–Ekeland principle; in section 3 we formulate our deep
learning approach; in section 4 we discuss the computer implementation of the
method; in section 5 we present numerical experiments, followed by conclusions.

2. The Brezis–Ekeland principle for gradient flows

Let V ⊂ H ⊂ V ∗ be a Gelfand triple and T > 0 a fixed time. In addition, let
φ ∈ C1(V ) be convex, f ∈ L2(0, T ;V ∗) and u0 ∈ V . We consider the gradient flow

(2.1) ut + ∂φ(u) = f a.e. in (0, T ) , u(0) = u0 .

The Brezis–Ekeland principle asserts that solutions u ∈ Y to (2.1), with

Y := {w ∈ L2(0, T ;V ) ∩H1(0, T ;V ∗) : w(0) = u0} ,

are the global minimizers of the functional Φ : Y → [0,∞] defined by

Φ(w) = 1
2‖w(T )‖2H − 1

2‖w(0)‖2H +
∫ T

0
φ(w) + φ∗(f − wt)− 〈f, w〉 dt

=
∫ T

0
φ(w) + φ∗(f − wt) + 〈wt − f, w〉 dt ,(2.2)

using
∫ T

0 〈wt, w〉 dt = 1
2‖w(T )‖2H − 1

2‖w(0)‖2H . Here 〈·, ·〉 is the duality pairing
between V and V ∗, and φ∗(w) = supv∈V 〈w, v〉−φ(v) is the conjugate of φ. In fact,
owing to [17, Theorem 8.99], u solves (2.1) if and only if

(2.3) Φ(u) = min{Φ(w) : w ∈ Y } = 0 .
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Inspired by the work in [20], we now consider a time-discrete variant of (2.2) and
the associated minimization problem. For that purpose, we divide [0, T ] into N
sub-intervals with end points t0 = 0 < t1 < · · · < tN = T .

The parabolic nature of (2.1) ensures that u(t) only depends on u(s) if s ≤ t,
but not if s > t. Together with the Brezis–Ekeland principle (2.3) this guarantees
that minimization and summation may be interchanged:

min
w∈Y

Φ(w)(2.4)

= min
w∈Y

N∑
n=1

∫ tn

tn−1

φ(w) + φ∗(f − wt) + 〈wt − f, w〉 dt

=
N∑
n=1

min
wn∈Y

wn(tn−1)=wn−1(tn−1)

∫ tn

tn−1

φ(wn) + φ∗(f − (wn)t) + 〈(wn)t − f, wn〉 dt,

where we have defined w0(0) = u0. The representation (2.4) of the minimization
problem suggests a clear strategy for our deep learning method: we will sequentially
solve N optimization problems for the PDE (2.1) on the time intervals [tn−1, tn],
where the initial data is either given by u0 at the first step, or by the previously
computed solution at time tn−1.

The heat equation. The canonical example of a gradient flow is the heat equation.
Given a Lipschitz domain Ω ⊂ Rd, d ≥ 1, we consider the PDE:

(2.5)


ut − κ∆u = f, in (0, T )× Ω ,

u(0, ·) = u0, in Ω ,

u = 0, on (0, T )× ∂Ω ,

where κ > 0. Upon defining H = L2(Ω), V = H1
0 (Ω) and φ(u) = κ

2 ‖∇u‖
2
L2 , the

problem (2.5) is a special case of (2.1), and the Brezis–Ekeland functional (2.2) in
this case reduces to:

(2.6) Φ(w) =
∫ T

0

κ

2 ‖∇w‖
2
L2 + 1

2κ

[
sup
v 6=0

〈f − wt, v〉
‖∇v‖L2

]2

+ 〈wt − f, w〉 dt ,

where we have used that φ∗(w) = 1
2κ

[
supv∈H1

0 (Ω)\{0}
〈w,v〉
‖∇v‖L2

]2
, e.g. see [17]. We

remark that φ∗ defines a norm on H−1(Ω) = (H1
0 (Ω))∗. Combining (2.4) and (2.6)

we find that minw∈Y Φ(w) equals
N∑
n=1

min
wn(tn−1)

=wn−1(tn−1)

∫ tn

tn−1

κ

2 ‖∇wn‖
2
L2 + 1

2κ

[
sup
v 6=0

〈f − (wn)t, v〉
‖∇v‖L2

]2

+ 〈(wn)t − f, wn〉 dt ,(2.7)

with the solution u of (2.5) being a minimizer in the sense that Φ(u) = 0 and that
the choice wn = u, n ∈ {1, . . . , N}, yields a minimizer of (2.7) over Y N .
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3. The deep learning approach

In this section we discuss a deep learning algorithm to find approximations of
the solution to (2.1). For simplicity we restrict our attention to the heat equation,
so that (2.7) is our starting point.

We wish to find the approximations unh ≈ u(tn, ·), n = 1, . . . , N , where unh is
given by a neural network. More generally, in this paper we view a neural network
ûh as a function determined through its weights θ. Given θ the neural network
takes a position x ∈ Ω as input and returns ûh(x; θ) as output. The approximation
set containing the functions unh is thus given by

Uh := {ûh(·; θ) : θ ∈ Θ} ,

where Θ is the set of possible weights. In this notation unh = ûh(·; θ) is the neural
network with a choice of weights θ determined through the method described in
this section.

In order to define a discrete version of the Brezis–Ekeland functional (2.7) and
perform its minimization over Uh, we turn our attention to the interpretation of
v in φ∗(w) = 1

2κ

[
supv∈H1

0 (Ω)\{0}〈w, v〉/‖∇v‖L2

]2
. Also the v are approximated by

neural networks. Since their architecture may be different compared to ûh, we
introduce v̂h(x; η) and

Vh := {v̂h(·; η) : η ∈ H} ,

where H is the set of possible weights in v̂h.
While we assume Uh,Vh ⊂ H1(Ω) throughout, elements of Uh and Vh will in

general not belong to H1
0 (Ω) because the Dirichlet boundary conditions may not

be satisfied homogeneously. Therefore, similarly to [6], we introduce a penalty term
into φ∗(w) to obtain the functional

(3.1) φ∗h(wh) = 1
2κ

[
sup

vh∈Vh\{0}

(wh, vh)(
‖∇vh‖2L2 + λ‖vh‖2L2(∂Ω)

) 1
2

]2

,

where λ > 0 is a penalty parameter depending on the structure of the neural net.
Then the denominator in (3.1) cannot vanish for vh 6= 0 due to a Poincaré-Friedrichs
inequality and the penalization weakly imposes homogeneous boundary conditions
on any maximising vh as λ → ∞. We note that such penalization strategies to
enforce Dirichlet boundary conditions are common in deep learning approaches,
see e.g. [6], and have a long tradition in discontinuous Galerkin approximation
methods, [5, §4.2].

It remains to discretize the time derivatives in the Brezis–Ekeland functional.
To this end we substitute (wn)t in (2.7) by backward time differences. Let ∆tn =
tn − tn−1 and let (·, ·) denote the L2-inner product over Ω. Inspired by (2.7), we
then define the solution of the deep learning method through the following sequence
of optimization problems: Given un−1

h ∈ Uh, for n = 1, . . . , N , find a minimizer
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unh ∈ Uh to

Φn(wh) = κ∆tn
2 ‖∇wh‖2L2 + ∆tnφ∗h

(
f −

wh − un−1
h

∆tn

)
+ (wh − un−1

h , wh) + λ‖wh‖2L2(∂Ω) ,(3.2)

where we have once again added a penalization term; this time to weakly impose
homogeneous Dirichlet boundary conditions on wh.

Obtaining the minimizer of (3.2) requires a maximization to evaluate
φ∗h(f − (wh − un−1

h )/∆tn), see (3.1). For the remainder of this section we fo-
cus on an algorithm for solving this min-max problem. In the subsequent text it
will be convenient to refer to

φ̃∗h(wh; vh) = 1
2κ

[
(wh, vh)

(‖∇vh‖2L2 + λ‖vh‖2L2(∂Ω))
1
2

]2

,

which is equal to φ∗h(wh) if vh is a maximizer. Similarly, we write

(3.3) Φ̃n(wh; ph) = κ∆tn
2 ‖∇wh‖2L2 + ∆tn ph + (wh − un−1

h , wh) + λ‖wh‖2L2(∂Ω) ,

which equals Φn(wh) upon choosing ph = φ∗h
(
f − wh−un−1

h

∆tn

)
.

Algorithm 1
1: Compute an approximation u0

h ∈ Uh to u0
2: for n = 1, . . . , N do
3: un,0h ← un−1

h , k ← 0
4: while termination_criterion(un,kh , k) = FALSE do
5: k ← k + 1
6: pn,kh = maxvh∈Vh\{0} φ̃

∗
h(f − (un,k−1

h − un−1
h )/∆tn; vh)

7: un,kh ∈ arg minwh∈Uh Φ̃n(wh; pn,kh )
8: end while
9: unh ← un,kh

10: end for

We shall base the minimization of (3.2) on Algorithm 1. The approximation of
the initial conditions in line 1 of the algorithm is a supervised learning problem.
Lines 2 and 10 frame the iteration over the time steps. Lines 4 and 8 implement a
loop where the optimization of φ̃∗h (line 6) and Φ̃n (line 7) are alternated.

Remark 3.1. Alternatively to the above, one could use φ∗(w) = 1
2κ‖∇∆−1w‖2L2

for the formulation of the method, see [17, Example 8.104]. In this scenario we
envisage ∆−1u being approximated by a neural net, using an existing methodology
for solving the Laplace problem.



254 L. CARINI, M. JENSEN AND R. NÜRNBERG

4. BENNO: Brezis–Ekeland Neural Network Optimizer

We make a full Python implementation [4] of our deep learning approach available
on Github, which is called Brezis–Ekeland Neural Network Optimizer, in short
BENNO.

Neural Network Structure. We describe the internal structure of the neural
networks ûh and v̂h, which were introduced in the previous section. Both these
neural networks use five densely-connected layers with a linear activation function
for the input and output layers and a (leaky) rectified linear unit activation function
σ(s) = max{0, s}+ µmin{0, s}, µ ≥ 0, for the inner layers. Each layer is made of
m nodes, except for the output layer that presents a single node. This means that
the neural network ûh has the following architecture:
S1(x) = W 1x+ b1, S2(x) = σ(W 2S1(x) + b2) , S3(x) = σ(W 3S2(x) + b3) ,
S4(x) = σ(W 4S3(x) + b4) , S5(x) = W 5S4(x) + b5, and ûh(x; θ) = S5(x) ,

where the set of parameters of the neural network ûh(·; θ) are given by
θ = {W 1, b1,W 2, b2,W 3, b3,W 4, b4,W 5, b5} ,

with W 1 ∈ Rm×d, W i ∈ Rm×m for i = 2, 3, 4, W 5 ∈ R1×m, bj ∈ Rm for j = 1, . . . , 4
and b5 ∈ R. With a slight abuse of notation, the application of the activation
function is understood elementwise: σ(z) is the vector (σ(z1), . . . , σ(zm)) for z =
(z1, . . . , zm) ∈ Rm. By default, we set µ = 0.03 in the definition of σ.

Also the network v̂h has an architecture of this type; however, generally with a
different parameter m. As indicated in the previous section, we denote the weights
of v̂h by η.

Adam Optimizer, Loss Functions and Algorithm. We implemented the neu-
ral networks with the help of the Tensorflow Sequential API. Both neural networks
were trained with the Adam Optimizer, a variant of the stochastic gradient descent
method based on an adaptive estimation of first-order and second-order moments
that improves the speed of convergence [13]. For the optimization parameters, we
use the standard values β1 = 0.9, β2 = 0.999 and ε = 10−8 in the notation of [13].

There are three distinct optimization scenarios with their respective loss func-
tions:

(1) The approximation of u0 by u0
h ∈ Uh in line 1 of Algorithm 1: It is a

supervised learning problem with the loss function L = ‖u0 − wh‖2L2 . We
use the constant learning rate α = 10−3.

(2) The maximization of φ̃∗h in line 6 of Algorithm 1: We use the constant
learning rate α = 10−5. By default the training extends over 500 epochs.

(3) The minimization of Φ̃n in line 7 of Algorithm 1: We employ the k-dependent
decaying learning rate

α(k) = 10−51{k≤5} + 10−61{5<k≤50} + 10−71{50<k≤120}

+ 10−81{120<k≤140} + 10−91{140<k≤180} + 10−101{180<k}.

By default the training extends over 50 epochs.
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The integrals appearing in these loss functions are evaluated with the help of a
Monte-Carlo integration method, using the sampling points {xi : i = 1, . . . , Ns} ⊂
Ω. Here Ns = Ni +Nb, with Ni points drawn from a uniform distribution in Ω and
Nb points drawn from a uniform distribution on ∂Ω.

Finally, the default termination criterion in line 4 of Algorithm 1 is

termination_criterion(un,kh , k) =
{

TRUE : k > 200 ,
FALSE : k ≤ 200 ,

which is employed in all numerical experiments of the forthcoming section.

5. Numerical results

We consider problem (2.5), with f = 0, on the domain Ω = (0, π)d, for d =
2, 3, 5, 7. Given the initial condition u0(x) =

∏d
i=1 sin(aixi), for a ∈ Nd and x ∈ Ω,

the exact solution to (2.7) with κ = [
∑d
i=1 a

2
i ]−1 is u(t, x) = e−t

∏d
i=1 sin(aixi).

We investigate the following types of approximation errors:

MSE = 1
Ns

Ns∑
i=1

(u(tn, xi)− unh(xi))2,

εabs,L∞ = max
i=1,...,Ns

|u(tn, xi)− unh(xi)|, εrel,L2 =
[∑Ns

i=1(u(tn, xi)− unh(xi))2∑Ns
i=1(u(tn, xi))2

] 1
2

,

εrel,H1=
[∑Ns

i=1(u(tn, xi)− unh(xi))2 + |∇u(tn, xi)−∇unh(xi)|2∑Ns
i=1(u(tn, xi))2 + |∇u(tn, xi)|2

] 1
2

,

where MSE stands for mean square error, and the other quantities define ap-
proximations of the L∞-norm error and of the relative L2- and H1-norm errors,
respectively.

In addition the Brezis–Ekeland functional itself represents a measure of the
accuracy of the deep learning algorithm since we look for u such that Φ(u) =
min Φ = 0. It follows that values of the loss function Φ̃n give us information about
the quality of the training and the approximate solution unh.

Unless otherwise stated, we use the layer width m = mvh = 30 for the neural
networks v̂h, while the the layer width m = muh will be varied for ûh depending on
the dimension d. For the time discretization we use uniform time steps ∆tn = ∆t,
n = 1, . . . , N , where we always choose ∆t = 10−4. Finally, for the boundary value
penalty parameter we always use λ = 100.

Energy landscapes for a 5D problem. Let d = 5 and a = (2, 2, 1, 2, 3)ᵀ. We
choose Ni = 105 inner and Nb = 103 boundary sampling points. The optimization
to obtain the initial value approximation u0

h is done over 5 · 104 epochs. We use
muh = 60 for ûh.

We are interested in the shape of the graphs of the two objective functions Φ̃n
and φ̃∗h as functions of the neural network weights θ and η, respectively. This will
allow us to gain insight into how challenging the training of the neural nets is.
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Fig. 1. Plots of Φ̃n(ûh(θ); p1,200
h ) against different components of

θ: b160 (left), W 3
46,60 (middle) and W 3

7,45 (right).

Fig. 2. Plots of −φ̃∗h((u1,199
h − u0

h)/∆t; v̂h(η)) against different
components of η: b230 (left), W 3

2,1 (middle) and W 4
21,3 (right).

Having computed u1
h = u1,K

h = ûh(θ̂), in Figure 1 we plot the loss function
Φ̃n(ûh(θ); pn,Kh ), for n = 1 and K = 200, against selected entries of θ. In particular,
for each plot we keep all the weights in θ = θ̂ fixed, apart from a single entry of
θ, that we continuously vary from −1 to 1. In this way it is possible to visualize
how the Brezis–Ekeland functional varies depending on certain parameters of the
neural network ûh. While generally smooth, we note that the right plot in Figure 1
shows that Φ̃n has a nearly vanishing gradient when the parameter W 3

7,45 varies in
[−1, 0], which may require attention during the optimization process.

Similarly, in Figure 2 we show the loss function −φ̃∗h((un,k−1
h − un−1

h )/∆t; v̂h(η))
plotted against selected entries of the neural network weights η. Once again we ob-
serve nearly flat parts in the graph, but now in addition we see also some non-convex
and non-smooth regions, which may pose challenges during the optimization.

Error quantities for a 5D problem. We use the previous example to compute
error quantities for the trained neural networks. Table 1 shows values of the
Brezis–Ekeland loss function (Φ̃n), the mean square error (MSE), the absolute
error (εabs,L∞) and the relative errors (εrel,L2 , εrel,H1) for the neural networks unh
for every tn, n = 0, . . . , N . The reported values of Φ̃n are large, possibly caused
by the fact that the measure of Ω is considerable with |Ω| = π5 ≈ 306, as is the
scaling of the boundary term λ‖ · ‖2L2(∂Ω) with λ = 100 and |∂Ω| = 2 · 5 · π4 ≈ 974.
We observe that all the other error quantities slowly increase with time, which is
typical for approximations of parabolic PDEs.
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Φ̃n MSE εabs,L∞ εrel,L2 εrel,H1

t0 — 5.894e-04 0.142 0.138 0.420
t1 112.762 6.195e-04 0.134 0.142 0.438
t2 67.164 6.516e-04 0.146 0.140 0.439
t3 72.938 6.785e-04 0.145 0.149 0.439
t4 62.323 7.214e-04 0.150 0.153 0.441
t5 51.332 7.466e-04 0.150 0.156 0.442
t6 85.143 7.804e-04 0.158 0.160 0.444
t7 45.920 8.211e-04 0.161 0.164 0.445
t8 48.652 8.196e-04 0.162 0.164 0.446
t9 58.798 8.686e-04 0.167 0.169 0.447
t10 37.395 8.780e-04 0.166 0.170 0.448

Tab. 1. Error quantities at times tn, n = 0, . . . , N , for the 5D
test problem.

Apart from the global error properties, we are also interested in how these
quantities change during the training process. In Figure 3 we plot the loss function
Φ̃n(un,kh ; pn,kh ) and the four contributions to it against k, for k = 1, . . . ,K = 200,
during the training for the time t4 = 4 · 10−4, i.e. n = 4. We observe a significant
decrease of the Brezis–Ekeland functional Φ̃n during the training, from about 400
for k = 1 to about 60 for k = 200, when the weights seem to have converged.
Observe also that the decrease is non-monotone, with a global maximum of about
1000, and that the graph is rather oscillatory. In addition, we note that after an
initial increase, the functional decays rapidly at first and then slower as the iteration
proceeds. The plot of the four contributions reveals that the term λ‖un,kh ‖2L2(∂Ω) is
the dominant contribution in the Brezis–Ekeland functional (3.3) once the iterative
scheme settles down.

The analogous plot for the mean square error (MSE) is shown on the left of
Figure 4, where we again notice an oscillatory decrease until convergence is reached.
In addition, on the right of Figure 4 we show the concatenated plots of the MSE
against k, for every time tn, n = 1, . . . , N . To help differentiate the different time
steps, we indicate the start of the training for a new time step with vertical lines.
The figure demonstrates that overall the MSE increases in time, but that each
training procedure decreases the MSE until convergence can be observed.

Dependence on the dimension d. Here we let d = 2, 3 or 5, and set a = (2, 2)ᵀ,
a = (2, 2, 3)ᵀ and a = (2, 2, 1, 2, 3)ᵀ, respectively. The number of sampling points
in Ω is Ni = 104 for d = 2 and Ni = 105 for d = 3, 5, while Nb = 400, 600, 1000 for
d = 2, 3, 5, respectively. Moreover, for the training of the initial conditions u0

h we
use 5 · 103 epochs in the cases d = 2, 3, and 5 · 104 for d = 5. We set muh = 60
throughout.

Table 2 shows the values of the Brezis–Ekeland loss function Φ̃n, the MSE, the
absolute error εabs,L∞ , the relative error εrel,L2 and the GPU time used for the
training of the neural networks ûh and v̂h, for the tenth time step, t10 = 0.001, for
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Fig. 3. Plots of Φ̃n(un,kh ; pn,kh ) (left) and of the 4 terms contribu-
ting to it (right) against k, for n = 4, for the 5D test problem.
For the right plot the chosen colours are red for κ∆t

2 ‖∇u
n,k
h ‖2L2 ,

blue for ∆t pn,kh , magenta for (un,kh − un−1
h , un,kh ) and green for

λ‖un,kh ‖2L2(∂Ω).

Fig. 4. Plots of the MSE against k at time t4 = 4 · 10−4 (left),
and of the MSE against (n− 1)K + k, for n = 1, . . . , N . (right)

the three problems d = 2, 3, 5. It can be observed that an increase in the dimension
leads to a decrease in the accuracy of the algorithm. Indeed, reading the table
from left to right, we notice that all the measures increase monotonically with the
dimension, with the only exception being the absolute error εabs,L∞ , which actually
reduces slightly going from the 3D to the 5D problem. While a growth of the error
is to be expected with an increase of the dimension, the figures here indicate that
further improvements of the neural net architecture and the training methodology
should be investigated.

Effect of the number of nodes m for a 7D problem. Let d = 7 and a =
(2, 2, 1, 3, 2, 2, 3)ᵀ. We choose Ni = 105 and Nb = 1400 sample points. The initial
conditions are training over 5 · 104 epochs. The layer width muh of the networks
ûh varies between 60 and 100.
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2D 3D 5D
Φ̃n 4.54e-02 3.97 39.93

MSE 1.74e-04 1.00e-03 7.67e-03
εabs,L∞ 6.25e-03 0.14 0.13
εrel,L2 2.71e-02 8.98e-02 0.15

GPU time [s] 58195 73595 100641
Tab. 2. Comparison of error quantities and the GPU time for the
three test problems with d = 2, 3, 5.

muh 60 100
Φ̃n 469.11 60.44

MSE 3.80e-03 1.21e-03
εabs,L∞ 0.59 0.31
εrel,L2 0.70 0.38

GPU time [s] 119972 117657
Tab. 3. Comparison of error quantities and the GPU time for the
7D test problem with either 60 or 100 nodes per layer.

From the error quantities reported in Table 3 we can immediately see that using
more nodes in the network architecture is beneficial in higher dimensions. In fact,
all the reported quantities are lower when considering the case with muh = 100.

Finally, in Figure 5 we present plots of the MSE against k = 1, . . . ,K = 200 for
the training of the third time step, n = 3, comparing the performance of the two
different network structures. We note that the MSE is on average increasing for
the network with 60 nodes per layer, possibly indicating that the neural network
does not have enough expressivity to make the learning effective. In contrast, when
training with wider layers one is able to decrease the MSE after the typical initial
increase. These results strongly indicate that for higher dimensional problems, more
elaborate networks perform better in practice. Unfortunately, memory and GPU
time limitations mean that at present we are not able to investigate this trend for
even higher dimensional problems.

6. Conclusions

We introduced a novel deep learning approach for the numerical solution of
PDEs using the Brezis–Ekeland principle. As a proof of concept we implemented
a practical algorithm for the heat equation and presented results for experiments
up to dimension 7. Higher dimensional problems are particularly computationally
challenging, and more research into the optimal design for the employed neural
networks is needed. Similarly to other neural network based approaches, we expect
our method to be superior to classical algorithms for very high dimensional problems,
whereas in lower space dimensions classical algorithms are likely more efficient. In
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Fig. 5. Plots of the MSE against k at time t3 = 3 · 10−4 for the
7D problem with neural networks using 60 (left) and 100 (right)
nodes per layer.

addition, an extension of the implemented method to nonlinear problems is part of
future research.
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AN UNCONDITIONALLY STABLE FINITE ELEMENT SCHEME
FOR ANISOTROPIC CURVE SHORTENING FLOW

Klaus Deckelnick and Robert Nürnberg

Abstract. Based on a recent novel formulation of parametric anisotropic
curve shortening flow, we analyse a fully discrete numerical method of this
geometric evolution equation. The method uses piecewise linear finite elements
in space and a backward Euler approximation in time. We establish existence
and uniqueness of a discrete solution, as well as an unconditional stability
property. Some numerical computations confirm the theoretical results and
demonstrate the practicality of our method.

1. Introduction

In this paper we study a fully discrete numerical scheme for parametric aniso-
tropic curve shortening flow. This evolution law arises as a natural gradient flow
for the energy

(1.1) E(Γ) =
∫

Γ
a(z)γ(z, ν) dH1(z) =

∫
Γ
a γ(·, ν) dH1 ,

where Γ is a closed curve with unit normal ν contained in a given convex domain
Ω ⊂ R2. Furthermore, a ∈ C1(Ω,R>0) is a weight function and γ ∈ C0(Ω ×
R2,R≥0) ∩ C2(Ω× (R2 \ {0}),R>0) denotes an anisotropy function satisfying

(1.2) γ(z, λp) = |λ|γ(z, p) for all p ∈ R2, λ ∈ R, z ∈ Ω .

In addition, we assume that γ is strictly convex in the sense that for every compact
K ⊂ Ω there exists cK > 0 such that

γpp(z, p)q · q ≥ cK |q|2 for all z ∈ K, p, q ∈ R2 with p · q = 0, |p| = 1.

Here, and in what follows, γp and γpp denote gradient and Hessian of the function
p 7→ γ(·, p). Anisotropic energies of the form (1.1) play a role in applications, such
as materials science, crystal growth, phase transitions and image processing, and in
differential geometry, and we refer to e.g. [1, 9, 10, 12, 13, 23, 24, 25, 32] for examples
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and further details. It can be shown, see [16, Appendix A], that the first variation
of E in the direction of a smooth vector field V is given by

(1.3) dE(Γ;V ) = −
∫

Γ
a γ(·, ν) κγ V · νγ dH1 ,

where

νγ = ν

γ(·, ν) and κγ = κγpp(·, ν)τ · τ −
2∑
i=1

γpizi(·, ν)− ∇a
a
· γp(·, ν) on Γ

denote the anisotropic normal and the anisotropic curvature of Γ, respectively, with
τ and κ the tangent and curvature of Γ.

In view of (1.3), a natural gradient flow for the energy E evolves a family of
closed curves (Γ(t))t∈[0,T ] according to
(1.4) Vγ = κγ on Γ(t) ,
where Vγ = 1

γ(·,ν)V and V is the normal velocity of Γ(t). We remark that solutions
of (1.4) satisfy the energy relation

d
dt

∫
Γ(t)

a γ(·, ν) dH1 +
∫

Γ(t)
|Vγ |2 a γ(·, ν) dH1 = 0 .

Note that in the isotropic case, a(z) = 1 and γ(z, p) = |p|, the flow (1.4) collapses
to the well–known curve shortening flow V = κ. The isotropic curve shortening flow
and its higher dimensional analogue, the mean curvature flow, have been studied
extensively both analytically and numerically over the last few decades, and we
refer to the works [8, 15,20,27] for more details.

In the spatially homogeneous case, a(z) = 1 and γ(z, p) = γ0(p), the flow (1.4)
reduces to the classical anisotropic curve shortening flow

(1.5) 1
γ0(ν)V = κγ0 ,

where κγ0 = κγ′′0 (ν)τ · τ denotes the usual anisotropic curvature. An example for
a nonconstant function a is given by the geodesic curvature flow in a Riemannian
manifold, see §3.2 and [16, Appendix B] for details.

In this paper we focus on a parametric description of the evolving curves, i.e.
Γ(t) = x(I, t) with x : I × [0, T ] 3 (ρ, t) 7→ x(ρ, t) ∈ R2 and I = R/Z. Hence the
evolution law (1.4) translates into

(1.6) 1
γ(x, ν)xt · ν = κγ ,

where ν = τ⊥ = ( xρ
|xρ| )

⊥ and p⊥ =
(
p1
p2

)⊥ =
(−p2
p1

)
denotes an anti-clockwise rotation

of p by π
2 . Note that here, and from now on, we think of τ , ν, κ and κγ as being

defined on I × [0, T ].
In order to obtain solutions of (1.6), frequently the partial differential equation

(PDE) given by

(1.7) 1
γ(x, ν)xt = κγν



A STABLE SCHEME FOR ANISOTROPIC CURVE SHORTENING FLOW 265

is solved, with the initial condition x(·, 0) = x0, where x0 is a parameterization
of the initial curve Γ0. Since the right hand side of (1.7) is a geometric invariant,
the above PDE appears to be a natural choice. Let us focus for a moment on the
isotropic case a(z) = 1 and γ(z, p) = |p|. Then the system (1.7) takes the form

(1.8) xt = κν = 1
|xρ|

( xρ
|xρ|

)
ρ

= 1
|xρ|2

[xρρ − (xρρ · τ) τ ] ,

so that the underlying PDE is only weakly parabolic, causing difficulties for the
numerical analysis. We refer to Dziuk’s seminal paper [18] for the details. A simple
remedy is to apply the so-called DeTurck trick, and to consider, in place of (1.8),
the strictly parabolic PDE

(1.9) xt = xρρ
|xρ|2

,

whose solutions clearly still satisfy xt · ν = κ. This formulation was proposed and
analysed for the first time in [14], see also [21] for a possible generalization.

Extending the DeTurck trick (1.9) for the isotropic flow to the anisotropic
evolution equation (1.6) is highly nontrivial. However, the main idea is the same:
derive a strictly parabolic PDE whose solutions satisfy (1.6). In this way, a uniquely
defined tangential velocity is prescribed together with the normal velocity (1.6),
yielding a unique parameterization of the evolving curve. In fact, in the recent
paper [16], the authors proved that solutions to the strictly parabolic PDE
(1.10) H(x, xρ)xt = [Φp(x, xρ)]ρ − Φz(x, xρ)
also satisfy (1.6). Here
(1.11) Φ(z, p) = 1

2a
2(z)γ2(z, p⊥) ,

with Φz denoting the gradient of z 7→ Φ(z, ·), and the matrix

H(z, p) = a2(z)γ(z, p⊥)
|γp(z, p⊥)|2

(
γ(z, p⊥) γp(z, p⊥) · p

−γp(z, p⊥) · p γ(z, p⊥)

)
∀ z ∈ Ω, p ∈ R2 \ {0}

is positive definite in Ω× (R2 \ {0}) with

(1.12) H(z, p)ξ · ξ = a2(z)γ2(z, p⊥)
|γp(z, p⊥)|2 |ξ|

2 ∀ z ∈ Ω, p ∈ R2 \ {0}, ξ ∈ R2 .

The weak formulation of (1.10) is obtained by multiplying it with a test function,
integrating over I and performing one integration by parts. It reads as follows.
Given x0 : I → Ω, find x : I × [0, T ]→ Ω such that x(·, 0) = x0 and, for t ∈ (0, T ],
(1.13)∫
I

H(x, xρ)xt ·η dρ+
∫
I

Φp(x, xρ) ·ηρ dρ+
∫
I

Φz(x, xρ) ·η dρ = 0 ∀ η ∈ [H1(I)]2 .

For a continuous-in-time semidiscrete finite element approximation of (1.13) using
piecewise linear elements the authors were then able to prove an optimal H1–error
bound, see [16, Theorem 4.1].

In this paper we propose and analyse a fully discrete finite element approximation
of (1.13). The scheme, which will be introduced in Section 2, is nonlinear and
uses both explicit and implicit approximations in Φp(x, xρ) and Φz(x, xρ) that are
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chosen in such a way as to yield unconditional stability. Here the discrete stability
bound will mimic the natural estimate

d
dt

∫
I

Φ(x, xρ) dρ = −
∫
I

H(x, xρ)xt · xt dρ ≤ 0 ,

which follows from choosing η = xt in (1.13). Furthermore, we prove the existence
of a unique solution under a suitable CFL condition. Then in Section 3 we present
some numerical simulations, demonstrating the practicality of the method, as well
as the good properties with respect to stability and the distribution of vertices.
Let us finally mention that alternative numerical approximations of anisotropic
variants of curve shortening flow, which are based on a parametric description of
the moving curve, have also been considered in [3, 4, 5, 7, 11,19,26,28,29,30,31].

2. Finite element approximation

Let [0, 1] =
⋃J
j=1 Ij , J ≥ 3, be a decomposition of [0, 1] into the intervals

Ij = [qj−1, qj ], where, for simplicity, qj = jh, j = 0, . . . , J , with h = 1
J . Within

I we identify qJ = 1 with q0 = 0 and define the finite element space V h = {χ ∈
C0(I,R2) : χ |Ij is affine, j = 1, . . . , J}. For two piecewise continuous functions,
with possible jumps at the nodes {qj}Jj=1, we define the mass lumped L2–inner
product

(2.1) (u, v)h = 1
2

J∑
j=1

hj
[
(u · v)(q−j ) + (u · v)(q+

j−1)
]
,

where (u · v)(q±j ) = lim
δ↘0

(u · v)(qj ± δ). We define the associated norm on V h via

‖u‖2h = (u, u)h.
In order to discretize in time, let tm = m∆t, m = 0, . . . ,M , with the uniform

time step ∆t = T
M > 0. On recalling (1.11), we assume that there exists a splitting

Φ = Φ+ + Φ− such that Φ± ∈ C1(Ω× R2) and z 7→ ±Φ±(z, p) are convex in Ω for
all p ∈ R2. Furthermore, we assume that for every compact set K ⊂ Ω there exists
LK ≥ 0 such that
(2.2) |Φ±z (z, p)− Φ±z (z, q)| ≤ LK(|p|+ |q|)|p− q| for all z ∈ K, p, q ∈ R2 .

Then our finite element scheme is defined as follows. Given xmh ∈ V h with
Γmh := xmh (I) ⊂ Ω, for m = 0, . . . ,M − 1, find xm+1

h ∈ V h such that Γm+1
h ⊂ Ω and

1
∆t
(
H(xmh , xmh,ρ)(xm+1

h − xmh ), ηh
)h +

(
Φp(xmh , xm+1

h,ρ ), ηh,ρ
)h

+
(

Φ+
z (xm+1

h , xm+1
h,ρ ) + Φ−z (xmh , xm+1

h,ρ ), ηh
)h

= 0 ∀ ηh ∈ V h .(2.3)

The convex/concave splitting employed for the implicit/explicit approximation
of Φz(·, xm+1

h,ρ ) in (2.3), is by now standard practice in the numerical analysis
community. This technique goes back to [22], see also [2, 6, 7, 16] for subsequent
applications of such splittings. It leads to an unconditionally stable approximation,
as we show in our first result.
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Theorem 2.1. Any solution of (2.3) satisfies the energy estimate(
Φ(xm+1

h , xm+1
h,ρ ), 1

)h
+ 1

∆t
(
H(xmh , xmh,ρ)(xm+1

h − xmh ), xm+1
h − xmh

)h
≤
(
Φ(xmh , xmh,ρ), 1

)h
.(2.4)

Proof. From the convexity properties of Φ and ±Φ± we infer that(
Φp(xmh , xmh,ρ + ηh,ρ), ηh,ρ

)h ≥ (Φ(xmh , xmh,ρ + ηh,ρ), 1
)h − (Φ(xmh , xmh,ρ), 1

)h
,(

Φ+
z (xmh + ηh, x

m
h,ρ + ηh,ρ), ηh

)h ≥ (Φ+(xmh + ηh, x
m
h,ρ + ηh,ρ), 1

)h
−
(
Φ+(xmh , xmh,ρ + ηh,ρ), 1

)h
,(

Φ−z (xmh , xmh,ρ + ηh,ρ), ηh
)h ≥ (Φ−(xmh + ηh, x

m
h,ρ + ηh,ρ), 1

)h
−
(
Φ−(xmh , xmh,ρ + ηh,ρ), 1

)h
,(2.5)

for all ηh ∈ V h. Choosing ηh = xm+1
h − xmh in (2.3) and applying (2.5) yields the

bound (2.4). �
We note that the fully discrete finite element approximation (2.3) can be seen as

a generalization of two fully discrete schemes introduced by the authors in [16]. In
particular, in the special case of a spatially homogeneous anisotropy, recall (1.5), the
scheme (2.3) reduces to [16, (5.4)]. Similarly, in the case when (1.6) models geodesic
flow in a Riemannian manifold, the approximation [16, (5.10)] is a special case of
the scheme (2.3). Moreover, we remark that the nonlinear systems of equations
arising from (2.3) can be solved with a Newton method or with a Picard-type
iteration. In our experience, in general, in practice these solution methods converge
within a few iterations.

Let us next address the existence and uniqueness for the nonlinear system (2.3).
We assume that xmh ∈ V

h is given with xmh,ρ 6= 0 in I and Γmh ⊂ Ω. There exists
R > 0 such that K0 := {z ∈ R2 : dist(z,Γmh ) ≤ R} ⊂ Ω. Before we present our
main theorem, we collect the following auxiliary results.

Lemma 2.2. There exists a constant C0 > 0 depending on xmh such that

Φ(z, p) ≥ C0|p|2 ∀ p ∈ R2, z ∈ K0 ,(2.6a) (
Φp(z, q)− Φp(z, p)

)
· (q − p) ≥ C0|q − p|2 ∀ p, q ∈ R2, z ∈ K0 ,(2.6b)

H(xmh , xmh,ρ)ξ · ξ ≥ C0|ξ|2 ∀ ξ ∈ R2 in I .(2.6c)

Proof. The bound (2.6a) follows from (1.2) and Φ(z, p) > 0 for z ∈ K0 and |p| = 1.
Similarly, we have from (1.12) and minI |xmh,ρ| > 0 that (2.6c) holds.

It remains to show (2.6b). Since a ≥ a0 > 0 in K0, it is sufficient to carry out
the proof for Φ(z, p) = 1

2γ
2(z, p). Note that in this case Φ ∈ C1(Ω × R2,R≥0) ∩

C2(Ω× (R2 \ {0},R>0). Furthermore, according to [24, Remark 1.7.5], γ2
pp(z, p) :=

[γ2]pp(z, p) is positive definite for p 6= 0. In particular, there exists c0 > 0 such that

γ2
pp(z, p)q · q ≥ c0|q|2 for all z ∈ K0, p, q ∈ R2, |p| = 1 .
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Observing that Φpp(z, p) = Aγ2
pp(z, p⊥)AT with A =

(0 −1
1 0

)
, we infer that

(2.7) Φpp(z, p)q · q = γ2
pp(z, p⊥)AT q ·AT q ≥ c0|AT q|2 = c0|q|2

for all z ∈ K0, p, q ∈ R2, |p| = 1. Let us fix z ∈ K0 and p, q ∈ R2. We distinguish
two cases:
Case 1: sq + (1− s)p 6= 0 for all s ∈ [0, 1]. Then(
Φp(z, q)−Φp(z, p)

)
·(q−p) =

∫ 1

0
Φpp(z, sq+(1−s)p)(q−p)·(q−p) ds ≥ c0|q−p|2 ,

using the fact that p 7→ Φpp(z, p) is 0-homogeneous and (2.7).
Case 2: There exists s ∈ [0, 1] with sq+(1−s)p = 0. We may assume that s ∈ [0, 1),
so that p = − s

1−sq. As Φ(z, λq) = λ2Φ(z, q) for λ ∈ R, recall (1.2), we have that
Φp(z, λq) = λΦp(z, q) and Φp(z, q) · q = 2Φ(z, q). Hence we obtain that(

Φp(z, q)− Φp(z, p)
)
· (q − p) =

(
Φp(z, q)− Φp(z,− s

1−sq
)
·
(
q + s

1−sq
)

=
(
1 + s

1−s
)2Φp(z, q) · q = 2

(
1 + s

1−s
)2Φ(z, q)

≥ 2C0
(
1 + s

1−s
)2|q|2 = 2C0|q − p|2,

on noting (2.6a). �
We are now in a position to prove our main result.

Theorem 2.3. There exists δ > 0 such that for ∆t ≤ δh there is a unique element
xm+1
h ∈ V h with Γm+1

h ⊂ K0 which solves (2.3). The constant δ depends on R, C0,
LK0 and Φ(xmh , xmh,ρ).

Proof. We denote by {ϕj}2Jj=1 the basis of V h satisfying ϕj(qk) = δjke1 and
ϕj+J(qk) = δjke2 for 1 ≤ j, k ≤ J , and associate with every α ∈ R2J the element
vα =

∑2J
j=1 αjϕj ∈ V

h, so that vα(qj) =
(
αj
αj+J

)
. We have for |α| ≤ R and ρ ∈ I

that
dist((xmh + vα)(ρ),Γmh ) ≤ ‖vα‖∞ ≤ |α| ≤ R ,

so that (xmh + vα)(ρ) ∈ K0. Let us next define the continuous map F : BR(0) ×
[0, 1]→ R2J via

[F (α, λ)]i = 1
∆t
(
H(xmh , xmh,ρ)vα, ϕi

)h + λ
(
Φp(xmh , xmh,ρ + vα,ρ), ϕi,ρ

)h
+ λ

(
Φ+
z (xmh + vα, x

m
h,ρ + vα,ρ) + Φ−z (xmh , xmh,ρ + vα,ρ), ϕi

)h
.

In what follows we make use of standard results for the Brouwer degree
d(f,BR(0), 0) of a continuous function f : BR(0) → R2J , if 0 6∈ f(∂BR(0)), see
[17, Chapter 1]. Clearly, the mapping F (·, 0) =: A is linear with

[Aα]i = 1
∆t

2J∑
j=1

αj
(
H(xmh , xmh,ρ)ϕj , ϕi

)h
, i = 1, . . . , 2J ,

and invertible in view of (2.6c). Hence it follows from [17, Theorem 1.1] that
(2.8) d(F (·, 0), BR(0), 0) = d(A,BR(0), 0) = sgn detA 6= 0 .
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Next, it holds for λ ∈ [0, 1] that

F (α, λ) · α = 1
∆t
(
H(xmh , xmh,ρ)vα, vα

)h + λ
(
Φp(xmh , xmh,ρ + vα,ρ), vα,ρ

)h
+ λ

(
Φ+
z (xmh + vα, x

m
h,ρ + vα,ρ) + Φ−z (xmh , xmh,ρ + vα,ρ), vα

)h
.(2.9)

Inserting (2.5) with ηh = vα into (2.9) yields

F (α, λ) · α ≥ 1
∆t
(
H(xmh , xmh,ρ)vα, vα

)h
+ λ
(
Φ(xmh + vα, x

m
h,ρ + vα,ρ), 1

)h − λ(Φ(xmh , xmh,ρ), 1
)h
.

If we combine this estimate with (2.6c) we finally obtain for |α| = R that

F (α, λ) · α ≥ C0
∆t‖vα‖

2
h −

(
Φ(xmh , xmh,ρ), 1

)h
= C0

∆th|α|
2 −

(
Φ(xmh , xmh,ρ), 1

)h ≥ C0R
2

δ
−
(
Φ(xmh , xmh,ρ), 1

)h
using (2.1) and the relation ∆t ≤ δh. By choosing δ sufficiently small we obtain
F (α, λ) · α > 0 and therefore F (α, λ) 6= 0 for all (α, λ) ∈ ∂BR(0) × [0, 1]. Using
the homotopy invariance of the Brouwer degree together with (2.8) we deduce
that d(F (·, 1), BR(0), 0) = d(F (·, 0), BR(0), 0) 6= 0, so that the existence property
of the degree shows that there is α ∈ BR(0) such that F (α, 1) = 0. Clearly,
xm+1
h := xmh + vα is then a solution of (2.3).

In order to prove uniqueness, suppose that xm+1
h , x̃m+1

h ∈ V h are two solutions
of (2.3) with Γm+1

h , Γ̃m+1
h ⊂ K0. To begin, we infer from (2.4) and (2.6a) that

(2.10) C0‖xm+1
h,ρ ‖

2
h ≤

(
Φ(xmh , xmh,ρ), 1

)h
, C0‖x̃m+1

h,ρ ‖
2
h ≤

(
Φ(xmh , xmh,ρ), 1

)h
.

We have that
1

∆t
(
H(xmh , xmh,ρ)(xm+1

h − x̃m+1
h ), ηh

)h +
(

Φp(xmh , xm+1
h,ρ )− Φp(xmh , x̃m+1

h,ρ ), ηh,ρ
)h

+
(

Φ+
z (xm+1

h , xm+1
h,ρ )− Φ+

z (x̃m+1
h , xm+1

h,ρ ), ηh
)h

=
(

Φ+
z (x̃m+1

h , x̃m+1
h,ρ )− Φ+

z (x̃m+1
h , xm+1

h,ρ ), ηh
)h

+
(

Φ−z (xmh , x̃m+1
h,ρ )− Φ−z (xmh , xm+1

h,ρ ), ηh
)h

for all ηh ∈ V h. Choosing η = xm+1
h − x̃m+1

h we deduce with the help of (2.6c),
(2.6b), (2.2), (2.10) and the convexity of z 7→ Φ+(z, p) that
C0
∆t‖x

m+1
h − x̃m+1

h ‖2h + C0‖xm+1
h,ρ − x̃

m+1
h,ρ ‖

2
h

≤ 2L
(
‖xm+1

h,ρ ‖h + ‖x̃m+1
h,ρ ‖h

)
‖xm+1

h,ρ − x̃
m+1
h,ρ ‖h‖x

m+1
h − x̃m+1

h ‖∞

≤ 4LC−
1
2

0 h−
1
2

√(
Φ(xmh , xmh,ρ), 1

)h‖xm+1
h,ρ − x̃

m+1
h,ρ ‖h‖x

m+1
h − x̃m+1

h ‖h

≤ C0‖xm+1
h,ρ − x̃

m+1
h,ρ ‖

2
h + 4L2(Φ(xmh , xmh,ρ), 1

)h
C−2

0 h−1‖xm+1
h − x̃m+1

h ‖2h ,
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with L = LK0 . By choosing δ > 0 so small that 4L2(Φ(xmh , xmh,ρ), 1
)h
δ < C3

0 we
deduce that xm+1

h = x̃m+1
h . �

3. Numerical results

For all our numerical simulations we use J = 256 and ∆t = 10−4. On recalling
(1.1), for χh ∈ V h we define the discrete energy

Eh(χh) =
(
γ(χh, χ⊥h,ρ), a(χh)

)h
.

We also consider the ratio

rm = maxj=1,...,J |xmh (qj)− xmh (qj−1)|
minj=1,...,J |xmh (qj)− xmh (qj−1)|

between the longest and shortest element of Γmh = xmh (I), and are often interested in
the evolution of this ratio over time. We stress that no redistribution of vertices was
necessary during any of our numerical simulations. We remark that a convergence
experiment for (2.3), for an anisotropy of the form γ(z, p) =

√
p2

1 + δ2p2
2 with

δ > 0, which confirms the theoretically obtained optimal H1–error bound, can be
found in [16, §6.1].

3.1. The spatially homogeneous case. In the case that
γ(z, p) = γ0(p) and a(z) = 1 ∀ z ∈ Ω = R2 ,

for an anisotropy function γ0 ∈ C2(R2\{0},R>0), the flow (1.6) reduces to classical
anisotropic curvature flow, (1.5). Most existing approaches for the numerical
approximation of anisotropic curve shortening flow deal with this simpler case, see
e.g. [3, 5, 19,31].

For our first experiment we choose the anisotropy from [19, (7.1)], with

(3.1) γ0(p) = |p|(1 + δ cos(kθ(p))), p = |p|
(

cos θ(p)
sin θ(p)

)
, k = 6, δ = 0.028 ,

and as initial curve use the one given in [28, p. 1494], i.e. we let

(3.2) x(ρ, 0) =
(

cosu(ρ)
1
2 sin u(ρ) + sin (cosu(ρ)) + sin u(ρ) [ 1

5 + sin u(ρ) sin2 u(3ρ)]

)
,

where u(ρ) = 2πρ. The evolution is shown in Figure 1, where we can observe
that the shrinking curve becomes convex, with its form soon approaching a scaled
Wulff shape of the six-fold symmetric anisotropy (3.1). In addition, we once again
note that the discrete energy Eh is monotonically decreasing, while the tangential
motion induced by (1.10) leads to only a moderate initial increase in rm, before it
decreases towards the end.
With our next experiment we would like to demonstrate that our scheme can

easily be extended to situations where a forcing term appears in the flow, e.g.
(3.3) Vγ = κγ + f(·, ν) on Γ(t) ,
in place of (1.4), where f : Ω × R2 → R. This leads to the additional term∫
I
f(x, ν)H(x, xρ)ν · η dρ on the right hand side of (1.13), and analogously to
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Fig. 1: Solution at times t = 0, 0.05, . . . , 0.35. We also show
a plot of the discrete energy Eh(xmh ) (middle) and of the ratio rm

over time (right).

the additional term (f(xmh ,
(xmh,ρ)⊥

|xm
h,ρ
| )H(xmρ , xmh,ρ)

(xmh,ρ)⊥

|xm
h,ρ
| , ηh)h on the right hand side

of (2.3). In our numerical experiments we choose
f(z, ν) = f0 ∈ R ,

so that (3.3) overall reduces to 1
γ0(ν)V = κγ0 + f0, compare with (1.5). Starting

this flow from the same initial data (3.2), but now with the forcing f0 = 1.15,
leads to an expanding curve that, upon an appropriate rescaling, approaches the
boundary of the Wulff shape, see Figure 2. What is particularly interesting in the
observed evolution is that the ratio rm appears to tend towards unity, indicating
an asymptotic equidistribution of the vertices on the polygonal curve.
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Fig. 2: Solution at times t = 0, 0.5, . . . , 4. We also show a plot of
the ratio rm over time.

3.2. Geodesic curvature flow in Riemannian manifolds. Let (M, g) be a
two-dimensional Riemannian manifold, with local parameterization F : Ω→M
and corresponding basis {∂1, ∂2} of the tangent space. We define

γ(z, p) =
√
G−1(z)p · p and a(z) =

√
detG(z).
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Here, G(z) = (gij(z))2
i,j=1, with gij(z) = gF (z)(∂i, ∂j), z ∈ Ω. Then (1.1) reduces

to E(Γ) =
∫

Γ
√
Gτ · τ dH1, the Riemannian length of the curve Γ̃ = F (Γ) ⊂ M,

and it can be shown that (1.4) is now equivalent to geodesic curvature flow in M,
see [16, Appendix B] for details. Furthermore, in [16, §5.2] a possible construction
of the splitting Φ±z is given, with the help of which the scheme (2.3) reduces to
(5.10) in [16].

As an example we consider the case when (M, g) is a hypersurface in the
Euclidean space R3. Assuming that M can be written as a graph, we let

F (z) = (z1, z2, ϕ(z))T , ϕ ∈ C3(Ω).
The induced matrix G is then given by G(z) = Id + ∇ϕ(z) ⊗ ∇ϕ(z), and we
have that Φ(z, p) = 1

2G(z)p · p. For the splitting Φ = Φ+ + Φ− it is natural to
let Φ+(z, p) = 1

2G+(z)p · p, where G+(z) = G(z) + cϕ|z|2Id and cϕ ∈ R≥0 is
chosen sufficiently large. In our computation we observe a monotonically decreasing
discrete energy when choosing cϕ = 0, and so we let Φ+ = Φ.
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Fig. 3: Geodesic curvature flow on the graph defined by (3.4). We
show the evolution of F (xmh ) on M at times t = 0, 1, 2, 4. Below
we show a plot of the discrete energy Eh(xmh ) (left) and of the
ratio rm over time (right).

For our numerical simulation, following [33], we define a surface with three
“mountains” via

(3.4) ϕ(z) =
3∑
i=1

λiψ(2|z − µi|2) with Ω = R2, where ψ(s) =
{
e−

1
1−s s < 1 ,

0 s ≥ 1 ,

and where µ1 = 0, µ2 =
(2

0
)
, µ3 =

( 1√
3
)

and (λ1, λ2, λ3) = (1, 3, 4). On letting the
initial polygonal curve be defined by an equidistributed approximation of a circle of
radius 2 in Ω, centred at 1

3
∑3
i=1 µi, we show the evolution for geodesic curvature

flow on the defined hypersurface in Figure 3. During the flow the curve tries to
decrease its (Euclidean) length, while remaining on the manifold. As the initial
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circle begins to shrink, the curve is able to pass over the smallest of the three
“mountains”, but then reaches a steady state solution encompassing the two taller
mountains. Here the curve cannot reduce its length further, because to rise higher
up would yield an increase in its length, since it needs to remain attached to the
flat part of the surface between the two mountains. We note that as soon as one of
the larger “mountains” is not enclosed by the initial curve, then the evolution is
going to lead to extinction in finite time. We show this in Figure 4, where the initial
circle is now centred at

(0
1
2

)
. Here the curve can continually decrease its length,

until it reaches the peak of the tallest “mountain”, where it shrinks to a point.

Fig. 4: Geodesic curvature flow on the graph defined by (3.4).
We show the evolution of F (xmh ) on M at times t = 0, 1, 2, 4.
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STRESS-CONTROLLED HYSTERESIS
AND LONG-TIME DYNAMICS OF IMPLICIT DIFFERENTIAL

EQUATIONS ARISING IN HYPOPLASTICITY

Victor A. Kovtunenko, Ján Eliaš, Pavel Krejčí, Giselle A. Monteiro,
and Judita Runcziková

Abstract. A long-time dynamic for granular materials arising in the hypo-
plastic theory of Kolymbas type is investigated. It is assumed that the granular
hardness allows exponential degradation, which leads to the densification of
material states. The governing system for a rate-independent strain under
stress control is described by implicit differential equations. Its analytical
solution for arbitrary inhomogeneous coefficients is constructed in closed form.
Under cyclic loading by periodic pressure, finite ratcheting for the void ratio
is derived in explicit form, which converges to a limiting periodic process
(attractor) when the number of cycles tends to infinity.

1. Introduction

In this paper we study long-time dynamics of the constitutive stress-strain rela-
tion for granular materials like cohesionless soils or broken rocks. The constitutive
law is based on the hypoplastic concept proposed by Kolymbas [17], the model is of
the rate type and incrementally nonlinear. Compared to hyper- and hypoelastic ma-
terial laws, the hypoplastic responses are different for loading and unloading, that
is typical for inelastic materials. In contrast to the classical elastoplastic concept,
the strain is not decomposed into elastic and plastic parts. Physical aspects of
hypoplastic models can be found in [26,27]. For other representatives of incremen-
tally nonlinear constitutive equations, see the models by Armstrong–Frederick [2],
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endochronic [30], octolinear [10], and CLoE [9]. For mathematical modelling granu-
lar and multiphase media we cite [1, 11,12,13,22,23,24], while for well-posedness
analysis we refer to [8, 16,25].

In an earlier work [7], we have considered the strain-stress law as a nonlinear diffe-
rential equation for the stress under a given proportional strain (the strain-control).
The model therein is a simplified version of the hypoplastic model by Bauer [3] and
Gudehus [14], in which the pressure and density dependent properties of granular
materials were omitted. In this way we also make a close link to barodesy models
[18]. The existence of an exact solution made it possible to describe analytically va-
rious scenarios of the behavior of stress paths obtained from monotonic compression,
extension, and isochoric deformations [7, 19,20,21].

Our ultimate goal in the current work is to study the phenomenon of ratcheting,
that is, the shift of the hysteresis loops under periodic loading and unloading
cycles. The theoretical ratcheting is infinite when the influence of the void ratio
of the granular material is neglected, which is not consistent with experimental
observations. In the present paper, we consider a stress-controlled constitutive law
within the hypoplastic theory, which allows degradation of the granular hardness.
This results in inhomogeneous material parameters, and the granular body becomes
asymptotically rigid when the number of cycles tends to infinity. Since we are in
the stress-controlled case, the strain rate is the unknown of the problem and has
to be found as a solution of an implicit system of differential equations. Like in the
strain-controlled case, the solution is found in closed form. Moreover, we prove that
the void ratio subjected to periodic loading-unloading pressure cycles converges to
an equilibrium, independently of whether the proportional stress paths are isotropic
or not.

Within the nonlinear theory of rate-independent materials we consider a consti-
tutive response between the Cauchy stress σ, linearized strain ε, and its rates σ̇
and ε̇, which is expressed by an implicit function [15,28]:

f(σ, σ̇, ε, ε̇) = 0 .

For the function f positively homogeneous of degree one with respect to rates:

(1.1) f(σ, sσ̇, ε, sε̇) = sf(σ, σ̇, ε, ε̇) for s > 0,

the constitutive relation is rate-independent. As a special case of f, the hypoelastic
law linear with respect to both rates constitutes [29]:

(1.2) σ̇ − L4(σ)ε̇ = 0 ,

where L4 is a fourth-order symmetric tensor. To extend (1.2) for an inelastic
behavior such that

f(σ, σ̇, ε,−ε̇) 6= −f(σ, σ̇, ε, ε̇) ,
the nonlinearity in ε̇ in the function f can be expressed as

(1.3) σ̇ − L4(σ)ε̇−N(σ)‖ε̇‖ = 0 ,

with a second-order symmetric tensor N and the Frobenius norm ‖ε̇‖ =
√
ε̇ : ε̇.
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The hypoplastic law (1.3) satisfying (1.1) arises in engineering by description of
granular materials. For cohesionless grains only non-positive principal stresses

σ1 ≤ 0 , σ2 ≤ 0 , σ3 ≤ 0
are physically relevant, in that case, the non-negative mechanical pressure reads

(1.4) p = −1
3tr(σ) ≥ 0 , tr(σ) = σ1 + σ2 + σ3 ≤ 0 .

A deformable granular body consists of solid particles of volume Vs assumed
constant, and empty voids of variable volume Vv characterized by a void ratio

e = Vv
Vs
∈ (ed, ei) ,

whose bounds ed and ei depend on the pressure proportionally [4]. More precisely:
(1.5) ed = eminfp , ei = emaxfp , 0 < emin < emax

by means of the unified factor

(1.6) fp(p/hs) = exp
(
−
(3p
hs

)n)
∈ (0, exp(1)], n ≥ 0 .

with hs > 0 denoting the granular hardness. According to [5], hs allows degradation:

ḣs = 1
c

(
h∞s − hs

)
, c ≥ 0 ,

which is expressed for prescribed 0 < h∞s < h0
s by an exponential function

(1.7) hs(t) = h∞s +
(
h0

s − h∞s
)

exp
( t0 − t

c

)
for t > t0 ≥ 0.

We assume that the void ratio fulfills the following equation for rates [5]:

(1.8) ė = ne
(3p
hs

)n( ḣs
hs
− ṗ

p

)
.

For prescribed p0 ≥ 0 and e0 ∈ (emin, emax)fp(p0/h
0
s ), the solution to (1.8) is

expressed in the form akin to (1.5) and (1.6):

(1.9) e(p/hs) = e0
fp(p0/h0

s ) exp
(
−
(3p
hs

)n)
∈ (ed(p/hs), ei(p/hs)).

The degradation of granular hardness hs(t) is shown in the left plot of Figure 1,
for the example parameters h0

s = 120 (MPa), h∞s = 78.5 (MPa) and c = 4 (h). In
the right plot of Figure 1, the void ratio ed < e < ei versus p/hs is drawn, for the
example parameters emin = 0.1, e0 = 0.2, emax = 0.3 and n = 0.82.

The response relation (1.3) depends on the void ratio e as described next. We
will consider the specific model (1.3) due to Bauer [3] and Gudehus [14]:

(1.10) L4(σ) = fs

(
a2tr(σ)I4 + σ ⊗ σ

tr(σ)

)
, N(σ) = fsfda

(
2σ − 1

3tr(σ)I
)

using the dyadic product of the stress tensor, where a > 0 is the yield strength,
while I and I4 stand for the second-order and the forth-order identity tensors,
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Fig. 1: The granular hardness hs(t) degradation (left plot); ad-
missible area for void ratio ed < e < ei versus p/hs (right plot).

respectively. The density fd > 0 and stiffness fs < 0 factors depend on the void
ratio as follows [4]:

(1.11) fd(e) =
( e− ed
ec − ed

)α
, fs(e) = −b

(ei
e

)β
for the parameters α ∈ (0, 0.5), β > 1, b > 0, and the critical void ratio

(1.12) ec = ecrtfp(p/hs) , emin < ecrt < emax .

Thanks to the identity (1.9) and using the definitions of ed, ei in (1.5), one can
suppress the void ratio dependence of both functions defined in (1.11), more
precisely, the density as well as the stiffness are constants given by

(1.13) fd =
( e0
fp(p0/h0

s ) − emin

ecrt − emin

)α
, fs = −b

(emaxfp(p0/h
0
s )

e0

)β
.

Inserting (1.10) into (1.3) we write explicitly the differential equation

(1.14) σ̇ = fs

{
a2tr(σ)ε̇+ ε̇ : σ

tr(σ)σ + afd

(
2σ − 1

3tr(σ)I
)
‖ε̇‖
}
.

Spatial dependence is omitted from the consideration such that (1.14) implies a
coupled system of nonlinear dynamic equations.

2. Analysis of the model

In this study we focus on a modeling setup when the strain ε is fully controlled
by the stress σ. The stress-controlled proportional loading consists in choosing a
fixed second-order symmetric tensor T such that

(2.1) σ = sT, σ̇ = ṡT ,

where a loading parameter s(t) > 0 is a strictly monotone differentiable function
with respect to time t ∈ (t0, t1) for some 0 ≤ t0 < t1. This is what we call a
proportional loading if s is increasing by the mean of ṡ > 0, and proportional
unloading if s is decreasing, i.e., ṡ < 0.
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After the substitution of (2.1) into (1.14) we get the implicit system of the
first-order ordinary differential equations with respect to the strain rate ε̇(t) as

(2.2) ṡT = sfs

{
a2tr(T)ε̇+ ε̇ : T

tr(T)T + afd

(
2T− 1

3tr(T)I
)
‖ε̇‖
}
,

which is under our study. Using for brevity the notation

(2.3) X(t) := s(t)
ṡ(t)fsε̇ , T̂ := T

tr(T) , tr(T̂) = 1 ,

equation (2.2) after division by tr(T) turns into

(2.4) T̂ = a2X + (X : T̂)T̂∓ afd

(
2T̂− 1

3I
)
‖X‖ for ±ṡ > 0 ,

with two signs ∓‖X‖ corresponding to ±ṡ > 0 due to fs < 0.
Taking the scalar product of (2.4) with X and gathering like terms we calculate

X : T̂ = ‖T̂‖2

a2 + ‖T̂‖2
± afd

2‖T̂‖2 − 1
3

a2 + ‖T̂‖2
‖X‖ for ±ṡ > 0 .

Its substitution into (2.4) yields
a2

a2 + ‖T̂‖2
T̂ = a2X∓ afd

( 2a2 + 1
3

a2 + ‖T̂‖2
T̂− 1

3I
)
‖X‖ for ±ṡ > 0 .

Or, after division by a2 and using for brevity the notation

(2.5) A := T̂
a2 + ‖T̂‖2

, B := 1
a2

[(
2a2 + 1

3

)
A− 1

3I
]
,

an equivalent equation with respect to X follows:
(2.6) X = A± afd‖X‖B for ±ṡ > 0 .

Theorem 2.1 (Analytical solution). Under a solvability condition

(2.7) f2
d ≤

1
a2
(
‖B‖2 −

(A:B
‖A‖
)2) = 3a2‖T̂‖2

‖T̂‖2 − 1
3

=: fmax ,

a solution to the nonlinear system (2.6) is given in the closed form:

(2.8) X = A + afd‖A‖B
±
√
D − afd

A:B
‖A‖

for ±ṡ > 0 ,

or, explicitly in terms of T̂:

(2.9) X =
±‖T̂‖

√
DT̂− 1

3afd
(
‖T̂‖2I− T̂

)
±‖T̂‖(a2 + ‖T̂‖2)

√
D − afd(2‖T̂‖2 − 1

3 )
, D := 1− f2

d
fmax

.

Proof. Taking the norm of the expression (2.6) we get

‖X‖2 =
∥∥A± afd‖X‖B

∥∥2 = ‖A‖2 ± 2afd(A : B)‖X‖+ a2f2
d‖B‖2‖X‖2,

which turns into the quadratic equation with respect to λ = ‖X‖:
(2.10)

(
1− a2f2

d‖B‖2)λ2 ∓ 2afd(A : B)λ− ‖A‖2 = 0 for ±ṡ > 0 ,
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where according to (2.5)

(2.11) ‖A‖ = ‖T̂‖
a2 + ‖T̂‖2

, tr(A) = 1
a2 + ‖T̂‖2

,

and the coefficients are

(2.12) A : B =
(

2 + 1
3a2

)
‖A‖2 − tr(A)

3a2 =
2‖T̂‖2 − 1

3

(a2 + ‖T̂‖2)2
,

‖B‖2 =
(

2+ 1
3a2

)(
A : B− tr(A)

3a2

)
+ 1

3a4 =
(

2+ 1
3a2

) (2− 1
3a2 )‖T̂‖2 − 2

3

(a2 + ‖T̂‖2)2
+ 1

3a4 .

The discriminant for this equation

(2.13) Disc = ‖A‖2
(

1− a2f2
d

[
‖B‖2 −

(A : B
‖A‖

)2])
=
‖T̂‖2 − 1

3a2 f
2
d(‖T̂‖2 − 1

3 )
(a2 + ‖T̂‖2)2

is non-negative when the solvability condition (2.7) holds, provided by the lower
bound ‖T̂‖2 ≥ 1/3 since tr(T̂) = 1. Then the roots of (2.10) are

(2.14) λ = ±afd(A : B) +
√

Disc
1− a2f2

d‖B‖2 , λ = ±afd(A : B)−
√

Disc
1− a2f2

d‖B‖2

for ±ṡ > 0. Since ‖X‖ has a sense only for positive values of λ, noting that
A : B > 0 in (2.12) and using (2.13) to write

1− a2f2
d‖B‖2 = (

√
Disc)2 − (afd(A : B))2

‖A‖2 ,

from (2.14) we deduce

(2.15) ‖X‖ = ‖A‖2
√

Disc∓ afd(A : B)
> 0 for ±ṡ > 0 .

The substitution of (2.15) into (2.6) gives the analytical formulas (2.8) and (2.9)
for the solution, where D = Disc/‖A‖2 from (2.13). This finishes the proof. �

Note that the expressions obtained in Theorem 2.1 show no dependence in time
resulting in a constant value for X implicitly related to the loading parameter. The
formulas above together with (2.3) allow us to derive the strain rate in terms of X
provided f2

d ≤ fmax, in other words, equation (2.3) gives

(2.16) ε̇ = ṡ

sfs
X ,

and from (2.9) we infer the scalar expression

(2.17) tr(ε̇) =
( ṡ

sfs

) ±‖T̂‖
√

1− f2
d

fmax
− 1

afd
(
‖T̂‖2 − 1

3
)

±‖T̂‖(a2 + ‖T̂‖2)
√

1− f2
d

fmax
− afd

(
2‖T̂‖2 − 1

3
)

for ±ṡ > 0, which we use for numerical simulation tests below.
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2.1. Isotropic loading. In particular, for the isotropic case

(2.18) T = −I , tr(T) = −3 , T̂ = 1
3I , ‖T̂‖ = 1√

3
,

then fmax =∞ and D = 1, thus (2.7) always holds. From (2.9) we have

(2.19) X = 1
3a2 + 1∓

√
3afd

I for ±ṡ > 0 ,

and from (2.17) get respectively

(2.20) tr(X) = 3
3a2 + 1∓

√
3afd

for ±ṡ > 0 .

2.2. Example of shear stress. Let us consider the shear stress matrix

(2.21) T =

−0.5 0.5 0
0.5 −0.5 0
0 0 0

 , tr(T) = −1 , T̂ = −T , ‖T̂‖ = 1

such that the principal stresses σ1 = −1, σ2 = σ3 = 0, and fmax = 4.5a2 in (2.7).
Let us consider the functions in (1.11) rescaled as follows

(2.22) fd(e/fp) =
(
e/fp − emin
ecrt − emin

)α
, fs(e/fp) = −b

(emax
e/fp

)β
.

From (2.17) and (2.22) we find

(2.23) 1
fs

tr(X) = 1
fs

±
√

1− 2f2
d

9a2 − 2
3afd

±(a2 + 1)
√

1− 2f2
d

9a2 − 5a
3 fd

for ±ṡ > 0

as a function of two variables a and e/fp ∈ [emin, emax].

e_min e_blow e_max

tr(X)/f
s
 versus e/f

p

 

 
ds>0
ds<0

a_crt a_blow

tr(X)/f
s
 versus a

 

 
ds>0
ds<0

Fig. 2: Example tr(X)/fs for ±ṡ > 0 versus parameter e/fp
entering fd and fs (left plot); versus yield strength a (right plot).
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For the parameters used in Figure 1 and α = 0.18, β = 1.05, b = 1, two graphs
of tr(X)/fs for ṡ > 0 and ṡ < 0 versus e/fp and fixed a = 0.6 are depicted in the
window |tr(X)/fs| ≤ 10 in the left plot of Figure 2. They coincide at e/fp = emin
because fd = 0 and X = A in (2.8) is unique in this case. The graph as ṡ < 0 is
continuous, whereas as ṡ > 0 it blows up when the denominator in (2.23), that is,

(2.24) ‖T̂‖(a2 + ‖T̂‖2)

√
1− f2

d
fmax

− afd

(
2‖T̂‖2 − 1

3

)
,

tends to zero at eblow ≈ 0.19.
In the right plot of Figure 2, two graphs of tr(X)/fs for ±ṡ > 0 are depicted

versus the yield strength a ≥ acrt in the window |tr(X)/fs| ≤ 10 and a ≤ 1.2 for
fixed e/fp = e0/fp(p0/h

0
s ) ≈ 0.2278 used in Figure 1. There acrt ≈ 0.4638 can be

found from the solvability condition (2.7) such that

(2.25) acrt =

√
‖T̂‖2 − 1

3√
3‖T̂‖

fd .

When (2.25) holds, the corresponding discriminant D = 0 and the solution X =
A + ‖A‖2B/(A : B) in (2.8) is unique for both ±ṡ > 0. As ṡ > 0 the denominator
in (2.24) tends to zero and causes the blow up at ablow ≈ 0.7398.

3. Hysteresis under cyclic loading

Let us consider a time discretization based on equidistant points tk = kτ for
k = 0, 1, 2, . . . and a fixed period τ > 0. For prescribed 0 < seven ≤ s(t0) < sodd,
we introduce cyclic loading by a continuous periodic function s(t) in (2.1) such
that

(3.1)
{
ṡ > 0 for t ∈ (t2j , t2j+1) ,
ṡ < 0 for t ∈ (t2j+1, t2j+2) ,

j = 0, 1, 2, . . .

where the node values for the loading parameter are set
(3.2) s(t2) = s(t4) = . . . = seven, s(t1) = s(t3) = . . . = sodd.

For example, solving the equation ṡ = s with s(t0) = seven we get

(3.3)
{
s(t) = s(t2j) exp(t− t2j) for t ∈ (t2j , t2j+1) ,
s(t) = s(t2j+1) exp(t2j+1 − t) for t ∈ (t2j+1, t2j+2) ,

which is continuous when sodd = seven exp(τ) and is illustrated in Figure 3. Having
in mind the identities in (2.1) with the cyclic loading described by (3.1) and (3.2),
the corresponding equation for the mechanical pressure (1.4) becomes

(3.4) p(t) = −s(t) tr(T)
3 for t ∈ (t2j , t2j+1) ∪ (t2j+1, t2j+2) ,

therefore, it is continuous and periodic with

(3.5) p(t2j+2) = −seven
tr(T)

3 =: peven, p(t2j+1) = −sodd
tr(T)

3 =: podd,
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t
t0

s

sodd

seven

t1 t2 t3 t4 t5

Fig. 3: Example cyclic loading s(t).

where 0 < peven ≤ p(t0) < podd because of tr(T) ≤ 0 in (1.4). The granular
hardness in (1.7) after discretization implies a monotonically decaying sequence

(3.6) hs(tk) = h∞s +
(
h0

s − h∞s
)

exp
( t0 − tk

c

)
↘ h∞s as k →∞.

For the pressure and granular hardness-dependent function fp(p/hs) defined in
(1.6), let the initial void ratio be prescribed at t = t0:

e(t0) ∈ (emin, emax)fp
(
p(t0)/hs(t0)

)
.

The void ratio in (1.9) yields a time-dependent relation as k = 0, 1, 2, . . .

(3.7) e(t) = e(tk)
fp(p(tk)/hs(tk))fp(p(t)/hs(t)) for t ∈ (tk, tk+1).

The function in (3.7) is continuous at t = tk+1. The factors in (1.13) are determined
by e0 = e(t0), p0 = p(t0), and h0

s = hs(t0).
Assuming that f2

d ≤ fmax according to (2.7) in Theorem 2.1, from (2.8) and
(2.16) we get the strain rate for j = 0, 1, 2, . . .

(3.8)


ε̇(t) = ṡ(t)

s(t)fs

(
A + afd‖A‖B√

1− f2
d

fmax
− afd

A:B
‖A‖

)
for t ∈ (t2j , t2j+1),

ε̇(t) = ṡ(t)
s(t)fs

(
−A + afd‖A‖B√

1− f2
d

fmax
+ afd

A:B
‖A‖

)
for t ∈ (t2j+1, t2j+2).

Theorem 3.1 (Attractor). Under the stress control (2.1) by cyclic loading (3.1)
and (3.2) the void ratio is found in the closed form:

(3.9) e(t) = e(t0) exp
((
−tr(T)

)n[( s(t0)
hs(t0)

)n
−
( s(t)
hs(t)

)n])
for t ≥ t0.

As t→∞ it tends exponentially to an attractor with end-points

(3.10) e∞i = e(t0) exp
((
−tr(T)

)n[( s(t0)
hs(t0)

)n
−
( si
h∞s

)n])
for i ∈ {even, odd}.
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Proof. From (3.7), the following formula can be justified by induction:

(3.11) e(tk) = e(t0)
fp(p(t0)/hs(t0))fp

(
p(tk)/hs(tk)

)
for k = 0, 1, 2, . . .

Inserting here (1.6), (3.5) and (3.6) we calculate the void ratio (3.9). Based on the
periodicity (3.2) and convergence (3.6), the assertion follows. �

3.1. Example of densification. Under the cyclic loading given by (3.3) for
seven = 1, τ = 1, and s(t0) = sodd = exp(1) ≈ 2.7183, we put tr(T) = −1
from the example stress (2.21) such that the pressure bounds peven ≈ 0.3333 and
p(t0) = podd ≈ 0.9061 in (3.5). The graph of the void ratio e(t) computed by formula
(3.9) is drawn versus p(t) in Figure 4 after 10 cycles implying j = 0, 1, . . . , 9 in
(3.1) with t0, t1, . . . , t19 time points. The consequential cycles of e(t) are visually
indistinguishable and approach the attractor according to Theorem 3.1.

p_even p_odd

e_0

void ratio versus pressure

Fig. 4: Void ratio e(t) versus pressure p(t) under cyclic loading.

4. Conclusion

We conclude with some principal findings of our theoretical and numerical study.
• An implicit system of 1st-order ordinary differential equations is studied to mo-

del a granular media within the hypoplastic theory, which allows degradation
of

• Under stress control, an analytical formula for the strain rate is constructed
for arbitrary inhomogeneous coefficients in the governing equations.

• Under loading-unloading cycles, the void ratio exhibits ratcheting of hysteresis
loops towards densification of the granular media.

• The ratcheting phenomenon is finite, pressure-void ratio states generate an
attractor with respect to time.
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ON EULER METHODS FOR CAPUTO
FRACTIONAL DIFFERENTIAL EQUATIONS

Petr Tomášek

Abstract. Numerical methods for fractional differential equations have
specific properties with respect to the ones for ordinary differential equations.
The paper discusses Euler methods for Caputo differential equation initial value
problem. The common properties of the methods are stated and demonstrated
by several numerical experiments. Python codes are available to researchers
for numerical simulations.

1. Introduction

Fractional differential equations have become an area of mathematics being
widely investigated in recent years. Several approaches to fractional derivative were
formulated, e.g. Grünwald–Letnikov, Riemann–Liouville, Atangana–Baleanu, Riesz,
Caputo and others. The Caputo approach has become popular in connection with
formulation of fractional differential equations initial value problems. It was due to
the form of initial conditions where integer order derivatives are employed. Thence
physical meaning of such conditions is more clear and understandable. For basics of
fractional calculus and its applications we refer to [1], [7]. The numerical analysis
of these tasks has been developed following the fractional calculus advancement.
A survey of some numerical approaches can be found in monograph [6] and the
references therein. In the paper we introduce the basic Euler numerical schemes
to the Caputo type differential equations. We restrict our discussions to a scalar
problem with fractional order derivative α ∈ (0, 1) but it is possible to generalize the
following considerations to α > 1 and also to a vector counterpart of the problem.
The aim of the paper is to introduce the methods, to mention their properties and
mainly demonstrate them by numerical experiments. Moreover, we present the
Python codes of the methods to be utilized by researchers.

We consider the initial value problem

(1.1)
{
Dαy(t) = f

(
t, y(t)

)
,

y(0) = y0 ,
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where α ∈ (0, 1) and t ∈ [0, tf ]. Caputo differential operator is introduced as

Dαf(t) = 1
Γ(1− α)

∫ t

0
(t− s)−αf ′(s) ds , α ∈ (0, 1) .

First of all we mention conditions, which locally ensure existence and uniqueness
of a solution of initial value problem (1.1) (see [6, p. 97]).

Theorem 1.1. Let M := [0, χ?] × [y0 − δ, y0 + δ] with χ? > 0 and δ > 0. Let
f : M → R be a bounded function on M satisfying the Lipschitz condition with
respect to the second variable |f(t, u)− f(t, v)| ≤ L|u− v| with L > 0 independent
of t, u, v. Let χ = min{χ?, (δΓ(1 +α)/|f |)1/α}. Then there exists a unique solution
y : [0, χ]→ R of (1.1).

We often need to employ numerical methods to obtain approximation of the
solution since an analytical form of the solution can be found in a very narrow
class of initial value problems.

2. Numerical methods

There are two common approaches to obtain a numerical formula for problem
(1.1): direct discretization of the Caputo derivative and transformation of a frac-
tional differential equation to a fractional integral equation with a subsequent
discretization of the fractional integral. The transformation is based on application
of α Caputo integral to (1.1), which gives

(2.1) y(t) = y0 +D−αf
(
t, y(t)

)
= y0 + 1

Γ(α)

∫ t

0
(t− s)α−1f

(
s, y(s)

)
ds .

We use the second approach. In the following, we consider an equidistant mesh
with stepsize h > 0 (h = tf/N), i.e. t0 = 0, tn = nh, n = 0, 1, 2, . . . , N . Then yn
denotes a numerical approximation of the exact solution value y(tn).

2.1. Fractional forward Euler method. The fractional forward Euler formula
(FFEM) solving (1.1) is introduced as follows:

yn+1 = y0 + hα
n∑
j=0

bj,n+1f(tj , yj) , n = 0, 1, . . . , N − 1 ,

where

(2.2) bj,n+1 = (n− j + 1)α − (n− j)α
Γ(1 + α) , n = 0, 1, . . . , N − 1 , j = 0, 1, . . . , n .

2.2. Fractional backward Euler method. The fractional backward Euler for-
mula (FBEM) solving (1.1) is introduced as follows:

yn+1 = y0 + hα
n∑
j=0

bj,n+1f(tj+1, yj+1), n = 0, 1, . . . , N − 1,

where bj,n+1 is given by (2.2).
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As we can see, the integral (2.1) is approximated by the left-point and right-point
rule in the case of FFEM and FBEM, respectively. In the following we mention
some crucial properties of these methods.

2.3. Properties of FFEM and FBEM. First we introduce an assertion which
classifies FFEM and FBEM as first order methods (see [6, p. 103]).

Theorem 2.1. Let y(t) be a solution of (1.1), f(t, y) satisfy the Lipschitz condition
with respect to the second argument and f(t, y(t)), y(t) ∈ C1[0, tf ]. Let yn, n =
0, 1, 2, . . . , N be the approximations of y(tn) by FFEM (resp. FBEM). Then

|y(tn)− yn)| ≤ Kh, n = 0, 1, 2, . . . , N,

where K > 0 is a constant independent of h and n.

Both the methods are convergent and stable considering the assumptions of
Theorem 2.1 are fulfilled. The stability means that small perturbations in the initial
conditions would not lead to large errors in the numerical solution (see [6, p. 102]).

3. Numerical experiments

Example 3.1. Consider the following initial value problem

(3.1)
{
Dαy(t) = −y(t) , t ∈ [0, 10]
y(0) = 1 ,

which may serve as a test initial value problem for A-stability. Its analytical solution
is well known: y(t) = Eα(−tα), where Eα(z) =

∞∑
k=0

zk

Γ(αk+1) is the Mittag-Leffler

function. The numerical solution obtained by both the Euler’s schemes are shown
in Figures 1-5 with fractional derivative order α equal to 0.05, 0.25, 0.5, 0.75, 0.95,
in sequence. For these values of α there are shown solutions considered on meshes
with various stepsizes h (0.01, 0.5, 1 and 2). We can observe that, in analogy with
Euler’s methods for ordinary differential equations, the backward fractional Euler
method has much better asymptotic stability behavior then the forward one. All
the presented parameter settings lead to a positive decreasing solution in the case
of FBEM. On the contrary, in the case of FFEM, larger stepsizes cause a more
prominent oscillation of the numerical solution.

Example 3.2. Consider the following initial value problem

(3.2)
{
D1/3y(t) = 9t5/3

10Γ(2/3) , t ∈ [0, 10].
y(0) = 1.

The exact solution of this problem is y(t) = t2/2 + 1. The numerical solution for
various stepsizes h (0.01, 0.5, 1 and 2) is shown in Figure 6. Propagation of absolute
error by FFEM and FBEM is shown in Table 1 and 2, respectively. The computed
absolute errors coincide with the estimate introduced in Theorem 2.1.
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Fig. 1: Numerical solution of (3.1) with α = 0.05 and h = 0.01, 0.5, 1, 2.
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Fig. 2: Numerical solution of (3.1) with α = 0.25 and h = 0.01, 0.5, 1, 2.

Remark 3.3. One can easily check, that y(t) = t2/2 + 1 is also the solution of
the problem

(3.3)
{
D1/3y(t) = 9t(2y(t)−2)2/3

10Γ(2/3) , t ∈ [0, 10].
y(0) = 1.
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Fig. 3: Numerical solution of (3.1) with α = 0.5 and h = 0.01, 0.5, 1, 2.
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Fig. 4: Numerical solution of (3.1) with α = 0.75 and h = 0.01, 0.5, 1, 2.

Nevertheless, both the fractional Euler’s methods give the constant numerical
solution yn = 1, n = 0, 1, 2, . . . , which corresponds to the trivial constant solution
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Fig. 5: Numerical solution of (3.1) with α = 0.95 and h = 0.01, 0.5, 1, 2.
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Fig. 6: Numerical solution of (3.2) for h = 0.01, 0.5, 1, 2.

y(t) = 1 of (3.3). The uniqueness of solution is not ensured for this initial value
problem.
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t h = 0.1 h = 0.01 h = 0.001
0 0.0000e-00 0.0000e-00 0.0000e-00
1 6.3616e-02 5.7214e-03 5.3422e-04
2 1.2314e-01 1.1157e-02 1.0544e-03
3 1.8108e-01 1.6523e-02 1.5714e-03
4 2.3814e-01 2.1849e-02 2.0865e-03
5 2.9463e-01 2.7149e-02 2.6004e-03
6 3.5069e-01 3.2429e-02 3.1134e-03
7 4.0641e-01 3.7694e-02 3.6257e-03
8 4.6187e-01 4.2947e-02 4.1374e-03
9 5.1710e-01 4.8189e-02 4.6487e-03
10 5.7214e-01 5.3422e-02 5.1595e-03

Tab. 1: Absolute errors of FFEM for (3.2).

t h = 0.1 h = 0.01 h = 0.001
0 0.0000e-00 0.0000e-00 0.0000e-00
1 3.5315e-02 4.2737e-03 4.6575e-04
2 7.6014e-02 8.8387e-03 9.4555e-04
3 1.1818e-01 1.3474e-02 1.4286e-03
4 1.6119e-01 1.8148e-02 1.9135e-03
5 2.0475e-01 2.2848e-02 2.3996e-03
6 2.4873e-01 2.7568e-02 2.8866e-03
7 2.9303e-01 3.2303e-02 3.3743e-03
8 3.3760e-01 3.7051e-02 3.8625e-03
9 3.8239e-01 4.1809e-02 4.3513e-03
10 4.2737e-01 4.6575e-02 4.8405e-03

Tab. 2: Absolute errors of FBEM for (3.2).

4. Concluding remarks

In the previous sections we have introduced forward and backward fractional
Euler methods. We have compared numerical solutions obtained by these methods
under various parameter settings. The computational costs significantly increase
during the process since the computation of value yn+1 depends on approximation
of the definite integral over [0, tn] in the case of FFEM and [0, tn+1] in the case
of FBEM. The whole history of the solution must be taken into account. This
phenomenon is common for all reasonable numerical schemes due to the Caputo
fractional derivative nature. On this account there were considered parallel algo-
rithms for efficient employment of available processors to deal with the vast number
of computations to get the solution in reasonable time, see, e.g. [2], [8].
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In the literature, we can also find some simplifying numerical approaches which
neglect a part of the process’ history. However, such techniques appeared to be
unreliable in general, see [5] and references therein.

Python codes by the author related to the above discussed problems are available
at: https://math.fme.vutbr.cz/Home/kundrat/software. With respect to the above
formulated problems it is enough to modify the input part of the code to get
numerical solution of own initial value problems.

As another valuable source of numerical programs, the paper [4] may serve. It
introduces various numerical schemes and offers link to their Matlab codes. The
paper also serves as a manual to these programs.

Finally, in connection with numerical methods for fractional differential equations,
we mention recent paper [3] where open problems in fractional calculus are stated.
Particularly error analysis of numerical methods for fractional differential equations
is found unsatisfactory and it offers many research challenges.
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NUMERICAL APPROACHES TO THE MODELLING
OF QUASI-BRITTLE CRACK PROPAGATION

Jiří Vala

Abstract. Computational analysis of quasi-brittle fracture in cement-based
and similar composites, supplied by various types of rod, fibre, etc. reinforce-
ment, is crucial for the prediction of their load bearing ability and durability,
but rather difficult because of the risk of initiation of zones of microscopic
defects, followed by formation and propagation of a large number of macro-
scopic cracks. A reasonable and complete deterministic description of relevant
physical processes is rarely available. Thus, due to significance of such mate-
rials in the design and construction of buildings, semi-heuristic computational
models must be taken into consideration. These models generate mathematical
problems, whose solvability is not transparent frequently, which limits the
credibility of all results of ad hoc designed numerical simulations. In this short
paper such phenomena are demonstrated on a simple model problem, covering
both micro- and macro-cracking, with references to needful generalizations
and more realistic computational settings.

1. Introduction

Cement-based composites, supplied by various type of fibre, rod, etc. reinfor-
cement, are the most frequently used materials in building structures thorough
the world. Their load bearing ability and durability is conditioned by the mi-
nimization of the risk of initiation and propagation of fracture. Due its rather
complicated structure, the so-called quasi-brittle fracture can be expected here,
using the nomenclature of [27], unlike simple fracture models as the brittle or
ductile ones. In the rough qualitative classification, under mechanical, thermal, etc.
loads 4 deformation stages can be distinguished: i) reversible elastic deformation, ii)
initiation of zones of microscopic defects, iii) formation and propagation of systems
of macroscopic cracks, iv) destruction of material structure, from local to total one.
The development of advanced materials, structure and technologies can rarely come
from the experience with classical ones, moreover the significant size effect limits
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the replacement of the expensive results from long-time observations in situ by
those from simplified laboratory experiment, thus some deeper both physical and
mathematical analysis for the design of tools for computational modelling and simu-
lation is required. This can be based on the principles of classical thermomechanics
by [3], working with conservation of mass, (linear and angular) momentum and
energy, supplied by appropriate constitutive relations. Unfortunately, their complete
quantitative formulation, coming from exact microstructural considerations like
[20], is not available because of a complicated material structure; consequently
some semi-heuristic approach could be useful, as proposed by [13], although its
well-possedness might be doubtful and further generalizations are needed.

Such time-delayed development of mathematical theory is typical for many
algorithms needed in engineering problems: e.g. most engineering journals celebrated
70 years of the finite element method (FEM), connected with the design of wings of
Boeing YB52 prototype by [30] (tested 15th April 1952, published 1956), whereas
the history of the mathematical theory of FEM is about 15 years shorter, as evident
from [36] and its references. Moreover, very detailed deterministic models suffer
from the complicated (or quite impossible) identification of reasonable material
characteristics for constitutive relations, generating non-trivial ill-posed inverse
problems; thus all practical computational tools can be seen as certain compromises
between the general physical theory, its simplified mathematical presentation and
the design of effective and robust numerical algorithms, up to their software and
hardware implementations, limited by the amount of time and money for such
complete analysis, covering both the formal verification and the practical validation
in the sense of [29]. Thus in this contributed conference paper we shall introduce
a model problem based on a linear Neumann and Dirichlet boundary value and
Cauchy initial value problem for one partial differential equation of evolution for
i), coming from the conservation of momentum, modified by certain nonlinear
terms covering ii) and iii) (Section 2), followed by its existence and convergence
analysis (Section 3), with some references to useful generalizations (Section 4); this
approach is not able to handle later stages of both ii) and iii) tending to iv) without
substantial improvements, containing numerous open questions, not discussed here.

The principal idea for ii) is the implementation of certain damage factor D,
following [13], relying on the nonlocal approach suggested by [7].The ill-possedness
of such approach for most engineering formulations, if applied to the evaluation
of strains or stresses in general, criticized by [8], unlike the preliminary existence
analysis of [1] (valid for a pure Dirichlet boundary value problem), can be fortunately
avoided here thanks to a careful (rather complicated) choice of D. The long
tradition of an intuitive need of such regularization, motivated by micromechanical
considerations, can be documented on [2]. For iii) the model of cohesive interfaces
by [23] for activation and development of cracks for pre-defined potential crack
positions can be used, applying the classical (extrinsic) formulation of the extended
finite element method (XFEM) by [18], working with additional degrees of freedom
(i. e. with new parameters for the evaluation of unknown function(s)) for adaptive
local enrichment of standard FEM bases on all tips of macroscopic cracks and along
them; alternatively the intrinsic version of XFEM by [10], modifying such bases in
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a more complicated way without increase of degrees of freedom, can be utilized.
The method of discretization of time, based on the properties of Rothe seqences,
will be considered as the first choice for any time t from a time interval I = [0, T ]
with a prescribed finite positive time T ; for the discretization of a deformable body
Ω, including all boundary and interface conditions, in the 3-dimensional Euclidean
space R3, supplied by some fixed Cartesian coordinate system x = (x1, x2, x3),
XFEM is then available.

2. A model problem

For simplicity (to avoid technical difficulties in proofs), let a deformable body Ω
occupy a unit of a finite number of domains with Lipschitz continuous boundaries,
whose unit consists of disjoint parts Θ (for Dirichlet boundary conditions), Γ
(for Neumann boundary conditions) and Λ (for interface boundary conditions,
required by iii) only); the pair of Cauchy initial conditions will be prescribed
for t = 0. The standard notation of Lebesgue, Sobolev, Bochner–Sobolev, etc.
(abstract) function spaces by [24], Parts 1 and 7, will be utilized. For the brevity
we shall also introduce H = L2(Ω)3, M = L∞(Ω), X = L2(Γ)3, Z = L2(Λ) and
V = {v ∈W 1,2(Ω)3 : v = o on Θ} where o means the zero vector in R3, together
with the notation of scalar products (. , .) in H, 〈. , .〉 in X, 〈. , .〉∗ in Z and ((. , .))
in L2(Ω)3×3; the symbol [ . ] will be reserved for the jumps in normal components
of values from V on Λ in the sense of traces, using some predefined orientation of
unit normals n = (n1, n2, n3) to Λ, i. e. [v] = v+ − v− ∈ Z, v+ and v− understood
as v1n1 + v2n2 + v3n3 from both sides of Λ for any v ∈ V . We shall also use the
notation ε(v) ∈ L2(Ω)3×3

sym for the tensor of small strains, well-known in the linear
theory of elasticity, assuming εij(v) = (∂vi/∂xj + ∂vj/∂xi)/2 for all i, j ∈ {1, 2, 3};
all upper dots will be applied as abbreviations of ∂/∂t.

The weak formulation of the linear momentum conservation reads
(2.1) (v, ρ(ü+ αu̇)) + ((ε(v), σ)) = (v, f) + 〈v, g〉 − 〈[v], τ〉∗
for any virtual displacement v ∈ V , related to the reference configuration of Ω,
Θ, Γ and Λ; here ρ ∈ M denotes the material density, not lesser, everywhere on
Ω, than some prescribed positive constant, and α ∈ M the always non-negative
mass damping factor (forcing certain energy dissipation even for i), to respect the
reality of a physically open system), f ∈ L2(I, H) refers to the applied volume
forces and g ∈ CL(I, X) to the applied surface forces (where CL denotes the
Lipschitz continuity). Moreover (2.1) contains an unknown time-dependent actual
displacement u ∈W 2,2,2,2(I, V, V, V ∗) (using V ∗ dual to V : for more details see [24],
Part 7.1, namely u, u̇ ∈ L2(I, V ), ü ∈ L2(I, V ∗), cf. the Gelfand triple V ⊂ H ⊂
V ∗) and some still undefined stresses σ ∈ L2(I, L2(Ω)3×3

sym) and interface tractions
τ ∈ L2(I, Z), always normal to Λ, which must be evaluated from appropriate
constitutive relations.

The linearized theory of elasticity, applicable to i), works with the empiric Hooke
law σ = Cε(u) with C ∈ L∞(Ω)(3×3)×(3×3)

sym where C contains 21 different material
characteristics in general (for any Boltzmann continuum the symmetry can be
derived from the conservation of angular momentum), reducible up to the pair of
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the well-known Lamé factors (or to the Young modulus and the Poisson coefficient
in most engineering applications) in the isotropic case. In general, it is natural to
assume a·Ca ≥ ca·a everywhere on Ω for any a ∈ R3×3

sym and a positive constant c
independent of x ∈ Ω and a; the central dot denotes the standard scalar product
in R3×3 here. In addition to α, the structural damping factor β ∈M , not lesser,
everywhere on Ω, than some prescribed positive constant, is required in the Kelvin
parallel viscoelastic model, assuming σ = Cε(u + βu̇). For ii) we shall use the
seemingly slight modification of this relation in the form σ = (1−D)Cε(u+ βu̇)
where the most delicate step is the calculation of the nonlocal factor of irreversible
damage D with values in M , always between 0 (for no damage) and some positive
constant ς lesser than 1 (to avoid the total damage iv)), and depending on u
in a rather complicated way, which will be sketched later. In particular, we are
allowed to set D = 0 for t = 0, as required by (2.2) below, as well as for t < 0
formally in the difference schemes (3.1) and (3.2). For iii) the assessment of the
traction - separation law, activated by reaching sufficient level of deformation energy
on Λ locally, is needed; for all details see [16]. Here, for simplicity, we introduce
only some continuous real function T and insert τ = T([u]) into (2.1). Thus we
obtain
(2.2) (v, ρ(ü+ αu̇)) + ((ε(v), (1−D)Cε(u+ βu̇))) = (v, f) + 〈v, g〉 − 〈[v],T([u])〉∗
for any v ∈ V again.

Such approach has been applied in [32] to the quasi-static version of (2.2) and
in [33] to certain dynamical simplification of (2.2), relying on [13] in both cases; its
limitation, excluding any realistic description of iv), has been discussed by [31] in
details. However, this limitation might be not crucial for engineering applications
because most practical numerical simulations are expected to detect the risk of
material destruction in advance, whereas the detailed quantitative description of its
subsequent disintegration is less interesting. Thus the more significant step in the
upgrade of these formulations is some reasonable incorporation of different material
behaviour under tension and compression, typical just for quasi-brittle cracking in
cement-based composites. We shall adopt the access, coming from [22], modified
by [11], referred as the “Mazars’ model” in software packages, for simplicity; some
significant later improvements will be mentioned in Section ??. The final aim will
be the evaluation of D for (2.2).

As the 1st step, to preserve the objectivity of our analysis, let us evaluate (at
certain fixed time step t ∈ I in practice, as will be evident from Section 3)the
scalar principal values εi with i ∈ {1, 2, 3} of ε(u), i.e. the triple of eigenvalues
from the condition det(ε(u) − εiI) = 0, I being the unit matrix in R3. As the
2nd step, we can evaluate an equivalent strain ε̄, using some bounded conti-
nuous functions ω of 6 real non-negative (at most 3 non-zero) arguments, as
ε̃ = ω(−ε1−, ε1+,−ε2−, ε2+,−ε3−, ε3+) where εi+ and εi− refer to the positive and
negative parts of εi (for each x ∈ Ω locally); for an example of such admissible
function ω see [5]. As the 3rd step, the nonlocal form of ε̃ reads

(2.3) ε̄(x, t) =
∫

Ω
K(x, x̃) ε̃(x̃, t) dx̃ ,

∫
Ω
K(x, x̃) dx̃ = 1
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for any x ∈ Ω, still at a fixed t ∈ I, using some regularizing kernel K ∈ L2(Ω× Ω)
in the sense of [9] (the choice K(x, x̃) = δ(x− x̃), δ being the Dirac measure, forcing
ε̄ = ε̃, is not allowed intentionally), e. g. the Gaussian one, recommended by [11];
for its numerical approximation using various radial basis functions cf. [25]. As
the 4th step, we have to evaluate the trial value D?, using some non-decreasing
continuous functions $ of 1 real argument, returning values between 0 and ς,
as D? = $(ε̄); for an example of such admissible function $ see [21]. The final
5th step, forcing the irreversibility of damage, can be then written in the form
D(., t) = max 0≤ξ≤t D?(., ξ).

The practical design of ω, K and $ is typically not easy, being conditioned,
beyond the scope of this paper, by the careful design of material parameters,
by the analysis of related sensitivity and inverse problems and by the extensive
experimental research. Here we remind only the following result, derived (in 2
different ways) by [6], Part 2.2: an arbitrary operator introduced by (2.3) is compact
as an operator from L2(Ω) to itself. In particular, for each t ∈ I a sequence
{ε̃m(., t)}∞m=1 with a weak limit ε̃(., t) is converted to a sequence {ε̄m(., t)}∞m=1
with a strong limit ε̄(., t). We shall see in Section 3 that such property for the
approximation of D by a sequence of simple functions on I will be required.

3. Existence and convergence analysis

To be able to evaluate the time development of u, we need to set the Cauchy
initial conditions u(., 0) = o (no displacements occur in the reference configuration)
and u̇(., 0) = w where the initial displacement rates w ∈ V must be prescribed.
Then the existence of solution of (2.2) can be verified in the constructive way, using
the limit passage for a positive integer m→∞ from

(v, ρũm) + (v, αρu̇m) + ((ε(v), (1−D̄m
× )Cε(ūm)))

+ ((ε(v), (1−D̄m
× )βCε(u̇m))) = (v, fm) + 〈v, gm〉 − 〈[v],T([um× ])〉∗(3.1)

on I where h = T/m for brevity. The following approximations are used in
(3.1): um(t) = ums−1 + (ums − ums−1)(t− (s− 1)h)/h (linear Lagrange splines) and
ūm(t) = ums , assuming (s− 1)h < t ≤ sh (simple functions) with s ∈ {1, . . . ,m},
whereas um× (t) = um(t− h) and ūm× (t) = ūm(t− h) (retarded versions of preceding
types of functions), using um0 = o and um−1 = −hw; D̄m

× must be considered as D
evaluated for ūm× . Such functions generate 4 different types of Rothe sequences
{um}∞m=1, {ūm}∞m=1, {um×}∞m=1 and {ūm×}∞m=1; we shall need {ũm}∞m=1 defined by
ũm = (u̇m − u̇m× )/h, too. Using the values um−1, um0 and ums with s ∈ {1, . . . ,m} for
a fixed m, we can omit all upper indices m for brevity and rewrite (3.1) to its more
transparent form for step-by-step evaluations of us from formally linear elliptic
equations (whose solvability can be verified applying the Lax - Milgram theorem)
at all times t = sh

(v, ρD2us) + (v, αρDus) + ((ε(v), (1−Ds−1)Cε(us)))
+ ((ε(v), (1−Ds−1)Cε(Dus))) = (v, fs) + 〈v, gs〉 − 〈[v],T([us−1])〉∗ ,(3.2)

taking fs and gs as the mean values of f(., t), g(., t) over t between (s− 1)h and
sh (which is the Clément quasi-interpolation by [24], Part 8.2) and using the



300 J. VALA

obvious notation of the 1st and 2nd relative differences Dus = (us − us−1)/h and
D2us = (Dus −Dus−1)/h.

In particular, for v = 2hDus in (3.2) we can derive some useful a priori estimates.
Namely, using s ∈ {1, . . . , r} as the Einstein summation index for an arbitrary
fixed r ∈ {1, . . . ,m}, for the left-hand side of (3.2) we have

2h(Dus, ρD2us) = (ur − ur−1, ρ(ur − ur−1))/h2 − (w, ρw)(3.3)
+ (us − 2us−1 + us−2, ρ(us − 2us−1 + us−2))/h2 ,

2h(Dus, αρDus) = 2(us − us−1, αρ(us − us−1))/h ,
2h((ε(Dus), (1−Ds−1)βCε(Dus))) = ((ε(us−us−1), (1−Ds−1)βCε(us−us−1)))/h ,

2h((ε(Dus), (1−Ds−1)Cε(us))) = ((ε(ur), (1−Dr−1)Cε(ur)))
+ ((ε(us − us−1)(1−Ds−1)Cε(us − us−1))) − ((ε(us−1)(Ds−1−Ds−2)Cε(us−1))) .
To avoid very long formulae, for the right-hand side of (3.2) it is sufficient, applying
the Cauchy–Schwarz and Young inequalities with any positive ε, using the standard
norms in H and V , to present the estimates

2h(Dus, fs) ≤
ε

h

r∑
s=1
‖us − us−1‖2H + h

ε

r∑
s=1
‖fs‖2H ,(3.4)

2h〈Dus, gs〉 = 2〈ur, gr〉 − 2〈us−1, gs − gs−1〉

≤ γε‖ur‖2V + 1
ε
‖gr‖2X + γεh

r∑
s=1
‖us−1‖2V + 1

εh

r∑
s=1
‖gs − gs−1‖2X ,

− 2h〈[Dus],T([us−1])〉∗ ≤ 4γεh
r∑
s=1
‖us‖2V + 4γ

εh
‖us − us−1‖2V

where the positive constant γ stems from the trace theorem (duplicated on Λ,
unlike Γ). Using the upper estimates (3.4) and the similar lower ones generated by
(3.3) (all details must be left to the curious reader), the discrete Gronwall lemma,
applied to (3.2), gives

(3.5) ‖Dur‖2H + h2
r∑
s=1
‖D2us‖2H + h

r∑
s=1
‖Dus‖2V + ‖ur‖2V ≤ C

where C is some fixed positive constant (sufficiently large, depending on T ).
In terms of (3.1), the a priori estimate (3.5) can be interpreted as follows:

h{ũm}∞m=1 is bounded in L2(I,H) and {u̇m}∞m=1 is bounded in L2(I, V ), whereas
{ūm}∞m=1 and {ūm×}∞m=1 are bounded in L∞(I, V ). The Eberlein - Shmul’yan theo-
rem then guarantees that, up to subsequences, {u̇m}∞m=1 has a weak limit u′ ∈
L2(I, V ), whereas {ūm}∞m=1 and {ūm×}∞m=1 have their weak limits ū, ū× ∈ L∞(I, V ).
Finally, using these results together with (3.1), we can see that {ũm}∞m=1 has a
weak limit u′′ ∈ L2(I, V ∗). For any t ∈ I let us now define

(3.6)u(., t) =
∫ t

0
u′(., ξ) dξ , û(., t) = w+

∫ t

0
u′′(., ξ) dξ , ûm(., t) = w+

∫ t

0
ũm(., ξ) dξ ,

valid for any positive integer m in the last case. Since the Aubin - Lions lemma yields
also the strong convergence of {ūm}∞m=1 to ū and of {ūm×}∞m=1 to ū× in L2(I,H)
(in both cases), it is not difficult to identify u with both ū and ū× and u̇ with both
u′ and û: namely the square of the norm of um − ūm in L2(I,H) can be estimated,
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using (3.5), from above as the sum of all ‖us − us−1‖2H = h2‖Dus‖2H ≤ Ch2 over
s ∈ {1, . . . ,m}, lesser or equal to CTh, vanishing with h→ 0, thus u = ū, etc. Even
the (seemingly strange) 2nd left-hand-side additive term of (3.5) is required here
for the identification of û with u̇: considering {ûm}∞m=1 by the last relation of (3.6),
we obtain ûm(t)− u̇m(t) = (t− sh)D2us, thus the square of the norm of ûm − u̇m
in L2(I,H) is just the sum of all ‖(t − sh)D2us‖2H , whose upper bound is Ch/3,
tending to zero with h → 0. This enables us to perform the limit passage from
(3.1) to (2.2) where u, u̇ ∈ L2(I, V ) and ü ∈ L2(I, V ∗), which can be expressed as
u ∈W 2,2,2,2(I, V, V, V ∗).

4. Conclusions and generalizations

The formulation and analysis of a model problem, supplied by the main ideas of
proofs, in this paper was intended as the demonstration of numerical considerations
for a class of initial and boundary value problems for partial differential equations
of evolution, connected with extraordinarily significant tasks of modelling and
simulation of behaviour of advanced materials, building end structures. Some
preliminary computational results, referring namely to [32] and [33], for i), ii)
and iii) have been presented (with numerous illustrative figures) and discussed in
[34]. The much more detailed analysis is under development, including e. g. such
processes as dynamics of multiple contacts / impacts of deformable bodies with
potential micro- and macro-cracking by [26], requiring an explicit time integration
scheme like [4], as well as an appropriate parallel / distributed computing platform.

The approach of [26] demonstrates also the need of incorporation of a complete set
of conservation laws by the 1st principle of classical thermodynamics in formulations
covering several physical processes (known as “multiphysics” in the unofficial
language of scientific computing), together with the compatibility of constitutive
relations with the 2nd and 3rd ones, respecting the finite (not only linearized small)
strains and related stresses. Numerous inspirations can be found in the reviews of
crack branching [28] and of XFEM-based simulations [17], opening the possibility of
computational modelling of physically realistic development of all active interfaces
Λ. Since only the linear elastic and viscous components have been combined in
our model problem, one natural generalization could be the proper analysis of
plastic zones, observed namely on crack tips in practice, combining the intuitive
engineering approach of [12] with the deep mathematical analysis by [19]. Also
the thermodynamical study of initiation and propagation of anisotropic damage,
introduced by [14], revised by [35] and [15], taking D as matrix characteristics,
should belong to the research priorities for the next years.
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