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GENERALIZATION OF THE S-NOETHERIAN CONCEPT

ABDELAMIR DABBABI AND ALI BENHISSI

ABSTRACT. Let A be a commutative ring and S a multiplicative system of
ideals. We say that A is S-Noetherian, if for each ideal Q of A, there exist
I € § and a finitely generated ideal F' C @ such that IQ) C F. In this paper,
we study the transfer of this property to the polynomial ring and Nagata’s
idealization.

1. INTRODUCTION

In this paper a ring means a commutative ring with unit element. Let A be an
integral domain with quotient field K. E. Hamann, E. Houston and J. Johnson in
[3] defined an ideal I of A[X] to be almost principal, if there exist an s € A\ {0}
and an f € I such that sI C fA[X], and they called the polynomial ring A[X]
an almost principal ideal domain if each ideal of A[X] that extends to a proper
ideal of K[X] is almost principal. In [I], D.D. Anderson and T. Dumitrescu have
defined the concept of S-Noetherian rings as follows. Let A be a ring and S C A a
multiplicative set. The ring A is called S-Noetherian, if for each ideal I of A, there
exist s € S and a finitely generated ideal F' C I of A such that sI C F'. They have

shown that if A is S-Noetherian, then so is A[X], provided ( ﬂ s"A) ﬂ S # 0 for

each s € S. These results have been extended in [I], [4] and [5] We extend this
definition using an arbitrary multiplicative system of ideals.

Let S be a multiplicative system of ideals of a ring A. We shall call A to be
S-Noetherian, if for each ideal @ of A, there exist an ideal I € S and a finitely
generated ideal F' C @ of A such that IQ C F. In the case when S consists of
principal ideals, the notions S-Noetherian and S-Noetherian are equivalent, where
S={se A|sAec S} Butin general we can not present a multiplicative system of
ideals by a multiplicative set. In this paper, we investigate some properties of the
S-Noetherian concept. For instance, we give a Cohen-type theorem for S-Noetherian
rings. Also, we study the transfer of this property from A to the polynomial ring
A[X] and Nagata idealization A(4+)M, where M is an A-module. In fact, we show
that the ring A(+)M is S;-Noetherian if and only if the ring A is S-Noetherian
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and the A-module M is S-finite, where Sy = {I(+)IM, I € S}. We give examples
of S-Noetherian rings A with S a multiplicative system of nonprincipal ideals of A.

2. MAINS RESULTS
We introduce the main concept of this paper as follows.

Definition 2.1. Let A C B be a rings extension, M an A-module and S a
multiplicative system of ideals of A.

(1) An A-submodule N of M is said to be S-finite, if there exist a1, -+ ,a, € N
and I € S such that IN C (aq,- -+ ,an).

(2) We say that M is S-Noetherian, if each submodule of M is S-finite.

(3) An ideal @ of B is called S-finite, if there exist ay,...,a, € Q and I € S
such that IQ C {a1,...,a,)B.

(4) We say that B is an S-Noetherian ring, if each ideal of B is S-finite.

With the same notations of the previous definition, clearly B is S-Noetherian if
and only if it is §’-Noetherian, where 8’ = {IB | I € S}. It is clear that if IM =0
for some I € S, then M is an S-Noetherian A-module.

Obviously a Noetherian ring A is S-Noetherian for every multiplicative system of
ideals S of A.

oo
Example 2.2. Let A = HZ/piZ where p is a prime number, a1, ..., a, € A some
i=1
finite support nonzero elements (i.e, if a; = (a; ;) en, then a; ; = 0 except for a
finite number of indices j), I = {(ai,...,a,) and S = {I"™, n > 1}. For each ideal
Q of A, the ideal IQ has a finite cardinality. Hence IQ C (I1Q) C @, thus @Q is
S-finite.

So A is an example of an S-Noetherian ring which is not Noetherian.

Proposition 2.3. Let A be a ring, M an A-module, N a submodule of M and S
a multiplicative system of ideals of A. The following assertions are equivalent:

(1) The A-module M is S-Noetherian.
(2) The A-modules N and M/N are S-Noetherian.

Proof. (1) = (2) Trivial.

(2) = (1) Let L be a submodule of M. Denote L = {Z € M/N | x € L}. Tt is
easy to check that L is a submodule of M /N, then it is S-finite. Therefore, there
exist 21,...,2, € L and I € S such that IL C (21,...,2,).

Let T'= L[ N. It is clear that T is a submodule of N, so it is S-finite. Hence there
exist y1,...,yx € T and J € S such that JT C {(y1,...,yx). For x € L fixed, we have

aZ € (x1,...,T,) for each a € I. Let a € I, write az = Z%‘fi with a; € A, i =
i=1
1,...,n. Then ax—Zaixi € NﬂL =T. Thus J(afoaizi) C{yr,---,yk)- It

=1 i=1
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yields that Jax C (y1,..., Yk, T1,...,Tn). Hence (JI)L C (Y1, ., Yk T1,y .-, Tn)
with y1,..., Yk, 21,...,2, € L and IJ € S. (]

Corollary 2.4. A finite direct sum of modules is S-Noetherian if and only if so is
every term. In particular, A™ is S-Noetherian for each n > 1 provided that A is an
S-Noetherian ring.

Corollary 2.5. Let A be a ring, M an A-module and S a multiplicative system of
ideals of A. If A is S-Noetherian and M a finitely generated A-module, then M is
an S-Noetherian A-module.

Proof. The A-module M is an epimorphic image of some A™. By Corollary
the A-module M is S-Noetherian. (]

Corollary 2.6. Let A be a ring, S a multiplicative system of ideals of A and M
an S-finite A-module. If A is an S-Noetherian ring, so is the A-module M .

Proof. There exist a finitely generated submodule N of M and I € S such that
IM C N. By Corollary N is a S-Noetherian A-module. Thus IM is an
S-Noetherian A-module. Hence, the A-module M is S-Noetherian by the exact
sequence 0 — IM — M — M/IM — 0. O

Theorem 2.7. Let A be a ring and S a multiplicative system of ideals of A such

that for each I € S, ﬂ I" contains some ideal of S. If A is S-Noetherian, so is
n=1

A[X].

Proof. Let L be an ideal of A[X] and L the set of leading coefficients of polyno-
mials of L. It is easy to check that Lg is an ideal of A. Since A is S-Noetherian,
there exist ay,...,a, and I € S such that I'Ly C (a1,...,a,)A. For 1 <i < n,
let f; € L such that a; is the leading coefficient of f;. We can assume that
d = deg(f1) = --- = deg(f,) (it suffices to multiply by some X' 1 < i < n).
Let M = A+ AX + -+ + AX? Let f € L of degree r + d. Let ay,...,a, be
arbitrary elements of I. Substracting repeatedly from f suitable combinations of
fi,--., fn we get that a ...a,f belongs to (fi,..., fn) + L M. It follows that
I"f € (fi,--., fa) + LOM, thus JL C (fi,..., fu) + LM where J is some

ideal of S contained in ﬂ I*. Since M is a finitely generated A-module, it is

S-Noetherian, by Corollgr;/ Consequentely, L N M is S-finite. Then there
exist g1,...,9m € L(\M and J' € S such that J(LO\M) C (g1,...,9m)A C
(915> 9m)A[X]. Tt yields that (J'J)f C {(f1,... fn,91---,9m)A[X]. Therefore,
(JIJ)L g <f13"'7.fnagla"'agm> with J'J € § and fla'-'vfnaglv'- -y 9m € L.
Hence A[X] is an S-Noetherian ring. O

Corollary 2.8. Let A be a ming and S a multiplicative system of ideals of A such
(oo}
that for every I € S, m I" contains some ideal of S. If A is S-Noetherian, so is

n=1

AlX1,...,X,] for each n > 1.
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Proof. By induction using Theorem O

oo

Let A = (Ap)n>0 be an increasing sequence of rings, A = U A, and X an

n=0
indeterminate over A. Recall from [4] that A[X] = {f = > I ja; X" € A[X] | n >0,
a; € A, ’L'Zo,l,...,n}.

Theorem 2.9. Let A = (A,)n>0 be an increasing sequence of rings and S a

o0
multiplicative system of ideals of Ay such that for every I € S, ﬂ 1" contains

n=1
some ideal of S. The following conditions are equivalent :

(1) The ring A[X] is S-Noetherian.

(2) The ring Ag is S-Noetherian and the Ag-module A = U A, is S-finite.

n=0

Proof. (1) = (2) Let @ be an ideal of Ag. Then QA[X] is an S-finite ideal
of A[X]. Hence, there exist a1,...,a, € Q and I € S such that I(QA[X]) C
(a1, ...,an)A[X]. Thus IQ C {ay,...,a,)Aq. Hence Ay is S-Noetherian.

Let n > 1 be an integer. The ideal X" A, A[X] of A[X] is S-finite. Then there
exist ai,...,ar € A, and I € S such that [(X"A, A[X]) C (a1 X",...,apX™). Let
a € A, and b € I. There exist fi(X),..., fr(X) € A[X] such that b(aX") =

k k
Zfi(aiX"). Identifying coefficients of X™, we obtain ba = Zfi(O)ai with
i=1 i=1

f1(0), ..., fx(0) € Ag. Therefore, A,, is an S-finite Ap-module.

The ideal Q of A[X] generated by {aX®, i € N*, a € A;} is S-finite, then there

exist I € S, a1 X, ...,a, X%, a; € Ay, o; > 1 such that,
IQ C {ap X%, 1 <k <ryA[X].
Let m = max(ay,...,a,). Then ay,...,a, € A,. For a fixed i > m. Let b € T and

y € A;. By definition of @, yX* € Q. Thus
byX' € (ap X, 1 <k <r)A[X].

r n
It yields that byX® = Zaankgk with g, = Zg;w'Xj € A[X]. By identification,
k=1 j=0

.
we get by = Zakgk_j,ak with g i—qa, € Ai—a, € Ai—1. Hence
k=1
bA, CaAi1+ - +ar A1 CTA.

It follows that TA; C A;_;. Iterating we get I™*A; C A,,. It follows that JA; C

A, for some ideal J of S contained in ﬂ I". Consequentely, JA,, C A,, for every
n=0
o0 oo +oo
n > m. It yields that JA = J(| J4,) = J(|J 4n) = | JAn C A Thus A is

n=0 n=m
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an S-finite Ag-module.

(2) = (1) Since the Ap-module A is S-finite, there exist ai,...,a, € A and
C € S such that CA C {(ay,...,a,)A. Thus CA[X] C (ay,...,a,)Ao[X]. Hence
the Ag[X]-module A[X] is S-finite. On the other hand, A¢ is S-Noetherian and for

each I € S, ﬂ I* contains some ideal of S. By Theorem [2.7} the ring Ay[X] is

k=1
S-Noetherian. By Corollary the Ag[X]-module A[X] is S-Noetherian, and so
is the submodule A[X]. Thus the ring A[X] is S-Noetherian. O

Lemma 2.10. Let A be a ring, S a multiplicative system of ideals of A and M
an S-finite A-module. If N is a submodule of M maximal among the non-S-finite
submodules of M, then [N : M] is a prime ideal of A.

Proof. Denote P = [N : M]. Assume that P is not a prime ideal. Let a, b € A\ P
such that ab € P. By maximality of N, N 4+ aM is S-finite. Consequently, there
exist ny,...,ng € N, my,...,mi € M and I € S such that I(N + aM) C
(n1 + amy,...,nk + amy). Since aN C N and bxr € [N : a] for each x € M
(N # M), N C [N : a]. Then [N : a] is S-finite. It yields that there exist

G1y---,q € [N :a] and J € § such that J[N :a] C{q1,...,q:). Let x € N,a €[
k k

and 3 € J. We have ar = Zai(ni +am;) with aq, ..., € A. Thus az a;m; =

i=1 i=1

k k t
ar — Zami € N. Hence y = Zaimi € [N : a]. Therefore, Sy = Zﬂjqj

i=1 i=1 j=1

k k t
with 81, , B € A. Thus fax = Z(ﬂai)ni + Pay = Z(ﬁai)ni + Zﬂj(aq]‘) €
i=1 i=1 j=1

(n1,...,ng,aq1,...,aq;). Hence JIN C (nq,...,ng,aq, - ,aq) C N with JI €
S, so N is S-finite, contradiction. Therefore, P is a prime ideal of A. O

Let A be a ring, S a multiplicative system of finitely generated ideals of A, P
a prime ideal of A and M an S-finite A-module. It is clear that P and PM are
S-finite when P contains some ideal in S.

Theorem 2.11. Let A be a ring, S a multiplicative system of finitely generated
ideals of A and M an S-finite A-module. Then M is an S-Noetherian A-module if
and only if for each prime ideal P of A not containing any ideal in S, the submodule
PM is S-finite.

Proof. — Trivial.
<= Assume that M is not S-Noetherian. Let F be the set of submodules of M
which are not S-finite. We order F by inclusion. Let (Hy)aea be a totally ordered

family of F and H = U H,,. Assume that H ¢ F. Then there exist ai,...,a, € H

aEA
and I € S such that IH C (aq,...,ay,). Since the family (H,)qca is totally ordered,

there exists a € A such that ay,...,a, € H,. Hence IH, C IH C (ay,...,ay).
Therefore, H, is S-finite, absurd. Thus H € F. Therefore F is inductively ordered.
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By Zorn’s lemma, F has a maximal element N. By Lemma m P=[N:M]isa
prime ideal of A. Let mq,...,mp € M and J € S such that JM C (mq,...,mg).
If there exists I € S such that IM C N, then IJN C I{ams,...,am;) C N,
contradiction (since I is finitely generated, so is the submodule I{mq,...,mg)).
Therefore, for each I € S, IM ¢ N. Thus P =[N : M] C [N : (mq,...,my)] C [N :
JM])=P:J=P.Hence, P=[N:{my,....,mp)]=[N:mi]Nn---N[N:my] =
[N :my,] for some 1 < iy < k. Since P # A, so m;, ¢ N, hence N+ Am;, is S-finite
by the maximality of N. There exist then ny,...,n; € N, a1,...,a; € Aand [ € S
such that I(N+Am;,) C (ny+a1m;g,...,ne+agm;,). Letx € N, b€ Aand a € 1.
t

There exist ag,...,a; € A such that a(x + bm,,) = Z(aini + aja;m;, ). Hence
i=1

t t t
(abfZaiai)m,-O = Z a;n; —ax € N. Thus ozbfZaiai € P. It yields that ax =

i=1 i=1
Z a;n; + Z aa; —ab)ym;, € (ny,...,ny) + PM. Since PM is S-finite, there

i=1

exist ﬁl,...7ﬁr € PM and L € S such that L(PM) C (f4,...,5,) € PM C N.
Consequently, (LI)N C (ni,...,n¢,81,...,5r) € N. Hence N is S-finite, absurd.
Therefore, M is an S-Noetherian A-module. (I

Corollary 2.12. Let A be a ring and S a multiplicative system of finitely generated
ideals of A. Then the ring A is S-Noetherian, if and only if, each prime ideal of A
not containing any ideal in S is S-finite.

The next example shows that for each n > 1, there exists an n-dimensional
S-Noetherian ring which is not Noetherian.

Example 2.13. Let A be a finite dimensional valuation domain, P its height one
prime ideal, I C P a finitely generated ideal and S = {I™, n > 1}. Then A is
S-Noetherian. Indeed, let @ be a nonzero prime ideal of A. Thus IQ C I C P C Q.
Hence @ is S-finite.

Example 2.14. The hypothesis that S consists of finitely generated ideals is
necessary. Indeed, let X7, X, ... be a countably family of indeterminates over a field
K, A=K[X,, n>1]/(X", n>1), M =(X,, n>1)Aand S = {M", n > 1}.
The only prime ideal of A is M. Assume that A is S- Noetherlan Then M is S-finite.
Hence there exist k, m € N* such that M*M C (X1,...,X,,). Then M' = 0 for

some [ > 1, absurd. Hence the ring A is not S-Noetherian.

Corollary 2.15. Let A C B be a rings extension and S a multiplicative system of
finitely generated ideals of A such that B is an S-finite A-module. Then the ring A
is S-Noetherian if and only if B is S-Noetherian.

Proof. = The A-module B is S-finite. By Corollary the A-module B is
S-Noetherian. Hence, the ring B is S-Noetherian.

<= By Theorem the A-module B is S-Noetherian. Therefore, the ring A is
S-Noetherian (as an A-submodule of B). O
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Let A be a ring and M an A-module. Recall that Nagata introduced the
extension ring of A called the idealization of M in A, denoted here by A(+)M,
whose underlying abelian group is A x M and multiplication defined by:

(a,2)(d’,2") = (ad',ax’ + d'x), for every (a,z),(d’,2’) € A(+)M .

It is well known that A(+4)M is a commutative ring with identity element (1,0).
(It is also called the trivial extension of A by M.) For more details see [2] and [4].

Let A be an ideal of A. Note that I(+)IM is the extension of I in A(+)M, so
S ={I(+)IM, I € 8} is clearly a multiplicative system of ideals of A(4+)M. As
A C A(+)M, we get A(+)M is S-Noetherian if and only if A(+)M is S;-Noetherian.

Proposition 2.16. Let A be a ring, S a multiplicative system of finitely generated
ideals of A and M an A-module. Denote Sy = {I(+)IM, I € S}. Then the ring
A(+)M is S1-Noetherian if and only if the ring A is S-Noetherian and the A-module
M is S-finite.

Proof. = The map ¢: A(+)M — A defined by ¢(a,z) = a for every (a,x) €
A(+)M is a surjective homomorphism of rings. Since A(+)M is S;-Noetherian,
the ring A is ¢(S1) = S-Noetherian.

The ideal {0}(+)M of A(+)M is S;-finite. Then there exist mq,...my € M and
I € 8 such that (I(+)IM)({0}(+)M) C {(0,m1),...,(0,mg))A(+) M. Therefore,
IM C (mq,...,mg)A. It yields that the A-module M is S-finite.

<= It is clear that the extension A C A(+)M is S-finite. Then A is S-Noetherian
if and only if A(+)M is S-Noetherian by Corollary Thus the ring A(+)M is
Si-Noetherian. O

Example 2.17. Let A be an n-dimensional nonNoetherian integral domain. As-
sume that P =N{Q | (0) # Q € Spec(A)} is a nonzero ideal of A and let I C P
be a finitely generated nonprincipal ideal of A. Set S = {I*, k > 1}. Clearly A is
an S-Noetherian ring (since each nonzero prime ideal of A contains I). Then for
each S-finite A-module M, the ring A(4+)M is S;-Noetherian, by Proposition
where & = {I(+)IM, I € S}.

Let A be aring and P € Spec(A). Denote Sp = {I ideal of A such that I ¢ P}.
Sp is clearly a multiplicative system of ideals of A.

Theorem 2.18. The following assertions are equivalent for an A-module E :
(1) The module E is Noetherian.
(2) The module E is Sp-Noetherian for every P € Spec(A).
(3) The module E is Spr-Noetherian for every M € Max(A).

Proof. The implications (1) = (2) = (3) are simple.

(3) = (1) Let N be a submodule of E. For each M € Max(A), there exist
Iy € Sy and a finitely generated submodule Fjy C N of E such that Iy N C F)y;.
Let @ = (Ip, M € Max(A)). Since Iy ¢ M for each maximal ideal M of A, we get
@ = A. Therefore there exist My, --- , M, € Max(A) such that A = (Ing, ..., Ia,).
Hence N = AN = (I, - ,IMT>N =Iy,N+---+Ip NC Fp,+---+Fy, CN.
Thus N = Fi, + - -- + Fy, is finitely generated. (]
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Corollary 2.19. The following assertions are equivalent for a ring A :
(1) The ring A is Noetherian.
(2) The ring A is Sp-Noetherian for every P € Spec(A).
(3) The ring A is Syr-Noetherian for every M € Max(A).

Questions. We end this paper by posing two questions.

(1) Let A be an integral domain with quotient field K and & a multiplicative
system of ideals of A such that A is S-Noetherian. Does it follow that
the generalized fraction ring As = {x € K; zH C A for some H € S} is

Noetherian?
(2) Under the hypothesis of Theorem [2.7] is the power series ring A[[X]] S-Noe-
therian?

Acknowledgement. The authors would like to thank the refree for his/her va-
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of our paper.
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