GENERALIZATION OF THE S-NOETHERIAN CONCEPT

ABDELAMIR DABBABI AND ALI BENHISSI

ABSTRACT. Let A be a commutative ring and S a multiplicative system of ideals. We say that A is S-Noetherian, if for each ideal Q of A, there exist $I \in S$ and a finitely generated ideal $F \subseteq Q$ such that $IQ \subseteq F$. In this paper, we study the transfer of this property to the polynomial ring and Nagata's idealization.

1. INTRODUCTION

In this paper a ring means a commutative ring with unit element. Let A be an integral domain with quotient field K. E. Hamann, E. Houston and J. Johnson in [3] defined an ideal I of A[X] to be almost principal, if there exist an $s \in A \setminus \{0\}$ and an $f \in I$ such that $sI \subseteq fA[X]$, and they called the polynomial ring A[X] an almost principal ideal domain if each ideal of A[X] that extends to a proper ideal of K[X] is almost principal. In [1], D.D. Anderson and T. Dumitrescu have defined the concept of S-Noetherian rings as follows. Let A be a ring and $S \subseteq A$ a multiplicative set. The ring A is called S-Noetherian, if for each ideal I of A, there exist $s \in S$ and a finitely generated ideal $F \subseteq I$ of A such that $sI \subseteq F$. They have shown that if A is S-Noetherian, then so is A[X], provided $(\bigcap_{n=1}^{\infty} s^n A) \bigcap S \neq \emptyset$ for each $s \in S$. These results have been extended in [1], [4] and [5]. We extend this definition using an arbitrary multiplicative system of ideals. Let S be a multiplicative system of ideals of a ring A. We shall call A to be

Let S be a multiplicative system of ideals of a ring A. We shall call A to be S-Noetherian, if for each ideal Q of A, there exist an ideal $I \in S$ and a finitely generated ideal $F \subseteq Q$ of A such that $IQ \subseteq F$. In the case when S consists of principal ideals, the notions S-Noetherian and S-Noetherian are equivalent, where $S = \{s \in A \mid sA \in S\}$. But in general we can not present a multiplicative system of ideals by a multiplicative set. In this paper, we investigate some properties of the S-Noetherian concept. For instance, we give a Cohen-type theorem for S-Noetherian rings. Also, we study the transfer of this property from A to the polynomial ring A[X] and Nagata idealization A(+)M, where M is an A-module. In fact, we show that the ring A(+)M is S₁-Noetherian if and only if the ring A is S-Noetherian

²⁰²⁰ Mathematics Subject Classification: primary 13B25; secondary 13E05, 13A15.

Key words and phrases: S-Noetherian, Nagata's idealization, multiplicative system of ideals. Received August 23, 2021, revised June 2023. Editor J. Trlifaj.

DOI: 10.5817/AM2023-4-307

and the A-module M is S-finite, where $S_1 = \{I(+)IM, I \in S\}$. We give examples of S-Noetherian rings A with S a multiplicative system of nonprincipal ideals of A.

2. Mains results

We introduce the main concept of this paper as follows.

Definition 2.1. Let $A \subseteq B$ be a rings extension, M an A-module and S a multiplicative system of ideals of A.

- (1) An A-submodule N of M is said to be S-finite, if there exist $a_1, \dots, a_n \in N$ and $I \in S$ such that $IN \subseteq \langle a_1, \dots, a_n \rangle$.
- (2) We say that M is S-Noetherian, if each submodule of M is S-finite.
- (3) An ideal Q of B is called S-finite, if there exist $a_1, \ldots, a_n \in Q$ and $I \in S$ such that $IQ \subseteq \langle a_1, \ldots, a_n \rangle B$.
- (4) We say that B is an S-Noetherian ring, if each ideal of B is S-finite.

With the same notations of the previous definition, clearly B is S-Noetherian if and only if it is S'-Noetherian, where $S' = \{IB \mid I \in S\}$. It is clear that if IM = 0for some $I \in S$, then M is an S-Noetherian A-module.

Obviously a Noetherian ring A is S-Noetherian for every multiplicative system of ideals S of A.

Example 2.2. Let $A = \prod_{i=1}^{\infty} \mathbb{Z}/p^i \mathbb{Z}$ where p is a prime number, $a_1, \ldots, a_n \in A$ some

finite support nonzero elements (i.e, if $a_i = (a_{i,j})_{j \in \mathbb{N}}$, then $a_{i,j} = 0$ except for a finite number of indices j), $I = \langle a_1, \ldots, a_n \rangle$ and $S = \{I^n, n \ge 1\}$. For each ideal Q of A, the ideal IQ has a finite cardinality. Hence $IQ \subseteq \langle IQ \rangle \subseteq Q$, thus Q is S-finite.

So A is an example of an S-Noetherian ring which is not Noetherian.

Proposition 2.3. Let A be a ring, M an A-module, N a submodule of M and S a multiplicative system of ideals of A. The following assertions are equivalent:

- (1) The A-module M is S-Noetherian.
- (2) The A-modules N and M/N are S-Noetherian.

Proof. $(1) \Longrightarrow (2)$ Trivial.

(2) \Longrightarrow (1) Let L be a submodule of M. Denote $L = \{\bar{x} \in M/N \mid x \in L\}$. It is easy to check that \bar{L} is a submodule of M/N, then it is \mathcal{S} -finite. Therefore, there exist $x_1, \ldots, x_n \in L$ and $I \in \mathcal{S}$ such that $I\bar{L} \subseteq \langle \bar{x_1}, \ldots, \bar{x_n} \rangle$.

Let $T = L \cap N$. It is clear that T is a submodule of N, so it is S-finite. Hence there exist $y_1, \ldots, y_k \in T$ and $J \in S$ such that $JT \subseteq \langle y_1, \ldots, y_k \rangle$. For $x \in L$ fixed, we have $a\bar{x} \in \langle \bar{x_1}, \ldots, \bar{x_n} \rangle$ for each $a \in I$. Let $a \in I$, write $a\bar{x} = \sum_{i=1}^n \alpha_i \bar{x_i}$ with $\alpha_i \in A$, $i = 1, \ldots, n$. Then $ax - \sum_{i=1}^n \alpha_i x_i \in N \cap L = T$. Thus $J(ax - \sum_{i=1}^n \alpha_i x_i) \subseteq \langle y_1, \ldots, y_k \rangle$. It

yields that $Jax \subseteq \langle y_1, \ldots, y_k, x_1, \ldots, x_n \rangle$. Hence $(JI)L \subseteq \langle y_1, \ldots, y_k, x_1, \ldots, x_n \rangle$ with $y_1, \ldots, y_k, x_1, \ldots, x_n \in L$ and $IJ \in S$.

Corollary 2.4. A finite direct sum of modules is S-Noetherian if and only if so is every term. In particular, A^n is S-Noetherian for each $n \ge 1$ provided that A is an S-Noetherian ring.

Corollary 2.5. Let A be a ring, M an A-module and S a multiplicative system of ideals of A. If A is S-Noetherian and M a finitely generated A-module, then M is an S-Noetherian A-module.

Proof. The A-module M is an epimorphic image of some A^n . By Corollary 2.4, the A-module M is S-Noetherian.

Corollary 2.6. Let A be a ring, S a multiplicative system of ideals of A and M an S-finite A-module. If A is an S-Noetherian ring, so is the A-module M.

Proof. There exist a finitely generated submodule N of M and $I \in S$ such that $IM \subseteq N$. By Corollary 2.5, N is a S-Noetherian A-module. Thus IM is an S-Noetherian A-module. Hence, the A-module M is S-Noetherian by the exact sequence $0 \longrightarrow IM \longrightarrow M \longrightarrow M/IM \longrightarrow 0$.

Theorem 2.7. Let A be a ring and S a multiplicative system of ideals of A such that for each $I \in S$, $\bigcap_{n=1}^{\infty} I^n$ contains some ideal of S. If A is S-Noetherian, so is A[X].

Proof. Let L be an ideal of A[X] and L_0 the set of leading coefficients of polynomials of L. It is easy to check that L_0 is an ideal of A. Since A is S-Noetherian, there exist a_1, \ldots, a_n and $I \in S$ such that $IL_0 \subseteq \langle a_1, \ldots, a_n \rangle A$. For $1 \leq i \leq n$, let $f_i \in L$ such that a_i is the leading coefficient of f_i . We can assume that $d = deg(f_1) = \cdots = deg(f_n)$ (it suffices to multiply by some X^{l_i} , $1 \leq i \leq n$). Let $M = A + AX + \cdots + AX^d$. Let $f \in L$ of degree r + d. Let a_1, \ldots, a_r be arbitrary elements of I. Substracting repeatedly from f suitable combinations of f_1, \ldots, f_n we get that $a_1 \ldots a_r f$ belongs to $\langle f_1, \ldots, f_n \rangle + L \cap M$. It follows that $I^r f \subseteq \langle f_1, \ldots, f_n \rangle + L \cap M$, thus $JL \subseteq \langle f_1, \ldots, f_n \rangle + L \cap M$ where J is some ideal of S contained in $\bigcap_{k=1}^{\infty} I^k$. Since M is a finitely generated A-module, it is S-Noetherian, by Corollary 2.5. Consequentely, $L \cap M$ is S-finite. Then there exist $g_1, \ldots, g_m \in L \cap M$ and $J' \in S$ such that $J'(L \cap M) \subseteq \langle g_1, \ldots, g_m \rangle A \subseteq \langle g_1, \ldots, g_m \rangle A[X]$. It yields that $(J'J)f \subseteq \langle f_1, \ldots, f_n, g_1 \ldots, g_m \rangle A[X]$. Therefore, $(J'J)L \subseteq \langle f_1, \ldots, f_n, g_1, \ldots, g_m \rangle$ with $J'J \in S$ and $f_1, \ldots, f_n, g_1, \ldots, g_m \in L$. Hence A[X] is an S-Noetherian ring.

Corollary 2.8. Let A be a ring and S a multiplicative system of ideals of A such that for every $I \in S$, $\bigcap_{n=1}^{\infty} I^n$ contains some ideal of S. If A is S-Noetherian, so is $A[X_1, \ldots, X_n]$ for each $n \ge 1$.

Proof. By induction using Theorem 2.7.

Let $\mathcal{A} = (A_n)_{n \ge 0}$ be an increasing sequence of rings, $A = \bigcup_{n \ge 0}^{\infty} A_n$ and X and indeterminate over A. Recall from [4] that $\mathcal{A}[X] = \{f = \sum_{i=0}^{n} a_i X^i \in A[X] \mid n \ge 0, a_i \in A, i = 0, 1, \dots, n\}$ $a_i \in A_i, i = 0, 1, \dots, n\}.$

Theorem 2.9. Let $\mathcal{A} = (A_n)_{n>0}$ be an increasing sequence of rings and \mathcal{S} a multiplicative system of ideals of A_0 such that for every $I \in S$, $\bigcap_{n=1}^{\infty} I^n$ contains some ideal of S. The following conditions are equivalent :

- (1) The ring $\mathcal{A}[X]$ is S-Noetherian.
- (2) The ring A_0 is S-Noetherian and the A_0 -module $A = \bigcup_{n=1}^{\infty} A_n$ is S-finite.

Proof. (1) \Longrightarrow (2) Let Q be an ideal of A_0 . Then $Q\mathcal{A}[X]$ is an S-finite ideal of $\mathcal{A}[X]$. Hence, there exist $a_1, \ldots, a_n \in Q$ and $I \in \mathcal{S}$ such that $I(Q\mathcal{A}[X]) \subseteq$ $\langle a_1, \ldots, a_n \rangle \mathcal{A}[X]$. Thus $IQ \subseteq \langle a_1, \ldots, a_n \rangle A_0$. Hence A_0 is S-Noetherian.

Let $n \geq 1$ be an integer. The ideal $X^n A_n \mathcal{A}[X]$ of $\mathcal{A}[X]$ is S-finite. Then there exist $a_1, \ldots, a_k \in A_n$ and $I \in \mathcal{S}$ such that $I(X^n A_n \mathcal{A}[X]) \subseteq \langle a_1 X^n, \ldots, a_k X^n \rangle$. Let $a \in A_n$ and $b \in I$. There exist $f_1(X), \ldots, f_k(X) \in \mathcal{A}[X]$ such that $b(aX^n) =$ $\sum_{i=1}^{k} f_i(a_i X^n)$. Identifying coefficients of X^n , we obtain $ba = \sum_{i=1}^{k} f_i(0)a_i$ with $f_1(0), \ldots, f_k(0) \in A_0$. Therefore, A_n is an S-finite A_0 -module.

The ideal Q of $\mathcal{A}[X]$ generated by $\{aX^i, i \in \mathbb{N}^*, a \in A_i\}$ is S-finite, then there exist $I \in \mathcal{S}, a_1 X^{\alpha_1}, \ldots, a_r X^{\alpha_r}, a_i \in A_{\alpha_i}, \alpha_i \ge 1$ such that,

 $IQ \subset \langle a_k X^{\alpha_k}, 1 < k < r \rangle \mathcal{A}[X].$

Let $m = \max(\alpha_1, \ldots, \alpha_r)$. Then $a_1, \ldots, a_r \in A_m$. For a fixed i > m. Let $b \in I$ and $y \in A_i$. By definition of $Q, yX^i \in Q$. Thus

$$byX^i \in \langle a_k X^{\alpha_k}, \ 1 \le k \le r \rangle \mathcal{A}[X].$$

It yields that $byX^i = \sum_{k=1}^r a_k X^{\alpha_k} g_k$ with $g_k = \sum_{j=0}^{n_k} g_{k,j} X^j \in \mathcal{A}[X]$. By identification, we get $by = \sum_{k=1}^{r} a_k g_{k,i-\alpha_k}$ with $g_{k,i-\alpha_k} \in A_{i-\alpha_k} \subseteq A_{i-1}$. Hence

$$bA_i \subseteq a_1A_{i-1} + \dots + a_rA_{i-1} \subseteq A_{i-1}$$
.

It follows that $IA_i \subseteq A_{i-1}$. Iterating we get $I^{m-i}A_i \subseteq A_m$. It follows that $JA_i \subseteq \infty$ A_m for some ideal J of S contained in $\bigcap I^n$. Consequently, $JA_n \subseteq A_m$ for every

 $n \ge m$. It yields that $JA = J(\bigcup_{n=0}^{\infty} A_n) = J(\bigcup_{n=m}^{\infty} A_n) = \bigcup_{n=m}^{+\infty} JA_n \subseteq A_m$. Thus A is

an \mathcal{S} -finite A_0 -module.

(2) \implies (1) Since the A_0 -module A is S-finite, there exist $a_1, \ldots, a_n \in A$ and $C \in S$ such that $CA \subseteq \langle a_1, \ldots, a_n \rangle A_0$. Thus $CA[X] \subseteq \langle a_1, \ldots, a_n \rangle A_0[X]$. Hence the $A_0[X]$ -module A[X] is S-finite. On the other hand, A_0 is S-Noetherian and for each $I \in S$, $\bigcap_{k=1}^{\infty} I^k$ contains some ideal of S. By Theorem 2.7, the ring $A_0[X]$ is S-Noetherian. By Corollary 2.6, the $A_0[X]$ -module A[X] is S-Noetherian, and so is the submodule $\mathcal{A}[X]$. Thus the ring $\mathcal{A}[X]$ is S-Noetherian. \Box

Lemma 2.10. Let A be a ring, S a multiplicative system of ideals of A and M an S-finite A-module. If N is a submodule of M maximal among the non-S-finite submodules of M, then [N:M] is a prime ideal of A.

Proof. Denote P = [N : M]. Assume that P is not a prime ideal. Let $a, b \in A \setminus P$ such that $ab \in P$. By maximality of N, N + aM is S-finite. Consequently, there exist $n_1, \ldots, n_k \in N$, $m_1, \ldots, m_k \in M$ and $I \in S$ such that $I(N + aM) \subseteq \langle n_1 + am_1, \ldots, n_k + am_k \rangle$. Since $aN \subseteq N$ and $bx \in [N : a]$ for each $x \in M$ $(N \neq M), N \subset [N : a]$. Then [N : a] is S-finite. It yields that there exist $q_1, \ldots, q_t \in [N : a]$ and $J \in S$ such that $J[N : a] \subseteq \langle q_1, \ldots, q_t \rangle$. Let $x \in N, \alpha \in I$ and $\beta \in J$. We have $\alpha x = \sum_{i=1}^k \alpha_i (n_i + am_i)$ with $\alpha_1, \ldots, \alpha_k \in A$. Thus $a\sum_{i=1}^k \alpha_i m_i = \alpha x - \sum_{i=1}^k \alpha_i n_i \in N$. Hence $y = \sum_{i=1}^k \alpha_i m_i \in [N : a]$. Therefore, $\beta y = \sum_{j=1}^t \beta_j q_j$ with $\beta_1, \cdots, \beta_t \in A$. Thus $\beta \alpha x = \sum_{i=1}^k (\beta \alpha_i) n_i + \beta ay = \sum_{i=1}^k (\beta \alpha_i) n_i + \sum_{j=1}^t \beta_j (aq_j) \in \langle n_1, \ldots, n_k, aq_1, \ldots, aq_t \rangle$. Hence $JIN \subseteq \langle n_1, \ldots, n_k, aq_1, \cdots, aq_t \rangle \subseteq N$ with $JI \in S$.

 \mathcal{S} , so N is \mathcal{S} -finite, contradiction. Therefore, P is a prime ideal of A.

Let A be a ring, S a multiplicative system of finitely generated ideals of A, P a prime ideal of A and M an S-finite A-module. It is clear that P and PM are S-finite when P contains some ideal in S.

Theorem 2.11. Let A be a ring, S a multiplicative system of finitely generated ideals of A and M an S-finite A-module. Then M is an S-Noetherian A-module if and only if for each prime ideal P of A not containing any ideal in S, the submodule PM is S-finite.

Proof. \Longrightarrow Trivial.

and $I \in \mathcal{S}$ such that $IH \subseteq \langle a_1, \ldots, a_n \rangle$. Since the family $(H_\alpha)_{\alpha \in \Lambda}$ is totally ordered, there exists $\alpha \in \Lambda$ such that $a_1, \ldots, a_n \in H_\alpha$. Hence $IH_\alpha \subseteq IH \subseteq \langle a_1, \ldots, a_n \rangle$. Therefore, H_α is \mathcal{S} -finite, absurd. Thus $H \in \mathcal{F}$. Therefore \mathcal{F} is inductively ordered. By Zorn's lemma, \mathcal{F} has a maximal element N. By Lemma 2.10, P = [N : M] is a prime ideal of A. Let $m_1, \ldots, m_k \in M$ and $J \in S$ such that $JM \subseteq \langle m_1, \ldots, m_k \rangle$. If there exists $I \in S$ such that $IM \subseteq N$, then $IJN \subseteq I\langle am_1, \ldots, am_k \rangle \subseteq N$, contradiction (since I is finitely generated, so is the submodule $I\langle m_1, \ldots, m_k \rangle$). Therefore, for each $I \in S$, $IM \nsubseteq N$. Thus $P = [N : M] \subseteq [N : \langle m_1, \ldots, m_k \rangle] \subseteq [N : JM] = P : J = P$. Hence, $P = [N : \langle m_1, \ldots, m_k \rangle] = [N : m_1] \cap \cdots \cap [N : m_k] = [N : m_{i_0}]$ for some $1 \le i_0 \le k$. Since $P \ne A$, so $m_{i_0} \notin N$, hence $N + Am_{i_0}$ is S-finite by the maximality of N. There exist then $n_1, \ldots, n_t \in N$, $a_1, \ldots, a_t \in A$ and $I \in S$ such that $I(N + Am_{i_0}) \subseteq \langle n_1 + a_1m_{i_0}, \ldots, n_t + a_tm_{i_0} \rangle$. Let $x \in N$, $b \in A$ and $\alpha \in I$.

There exist $\alpha_1, \ldots, \alpha_t \in A$ such that $\alpha(x + bm_{i_0}) = \sum_{i=1}^{l} (\alpha_i n_i + \alpha_i a_i m_{i_0})$. Hence

$$(\alpha b - \sum_{i=1}^{t} \alpha_i a_i) m_{i_0} = \sum_{i=1}^{t} \alpha_i n_i - \alpha x \in N.$$
 Thus $\alpha b - \sum_{i=1}^{t} \alpha_i a_i \in P.$ It yields that $\alpha x = \sum_{i=1}^{t} \alpha_i a_i = 0$.

 $\sum_{i=1}^{n} \alpha_i n_i + (\sum_{i=1}^{n} \alpha_i a_i - \alpha b) m_{i_0} \in \langle n_1, \dots, n_t \rangle + PM.$ Since PM is \mathcal{S} -finite, there exist $\beta_1, \dots, \beta_r \in PM$ and $L \in \mathcal{S}$ such that $L(PM) \subseteq \langle \beta_1, \dots, \beta_r \rangle \subseteq PM \subseteq N.$

Exist $\beta_1, \ldots, \beta_r \in PM$ and $L \in S$ such that $L(PM) \subseteq \langle \beta_1, \ldots, \beta_r \rangle \subseteq PM \subseteq N$. Consequently, $(LI)N \subseteq \langle n_1, \ldots, n_t, \beta_1, \ldots, \beta_r \rangle \subseteq N$. Hence N is S-finite, absurd. Therefore, M is an S-Noetherian A-module.

Corollary 2.12. Let A be a ring and S a multiplicative system of finitely generated ideals of A. Then the ring A is S-Noetherian, if and only if, each prime ideal of A not containing any ideal in S is S-finite.

The next example shows that for each $n \ge 1$, there exists an *n*-dimensional S-Noetherian ring which is not Noetherian.

Example 2.13. Let A be a finite dimensional valuation domain, P its height one prime ideal, $I \subseteq P$ a finitely generated ideal and $S = \{I^n, n \ge 1\}$. Then A is S-Noetherian. Indeed, let Q be a nonzero prime ideal of A. Thus $IQ \subseteq I \subseteq P \subseteq Q$. Hence Q is S-finite.

Example 2.14. The hypothesis that S consists of finitely generated ideals is necessary. Indeed, let X_1, X_2, \ldots be a countably family of indeterminates over a field $K, A = K[X_n, n \ge 1]/\langle X_n^n, n \ge 1 \rangle, M = \langle \bar{X}_n, n \ge 1 \rangle A$ and $S = \{M^n, n \ge 1\}$. The only prime ideal of A is M. Assume that A is S-Noetherian. Then M is S-finite. Hence there exist $k, m \in \mathbb{N}^*$ such that $M^k M \subseteq \langle \bar{X}_1, \ldots, \bar{X}_m \rangle$. Then $M^l = 0$ for some $l \ge 1$, absurd. Hence the ring A is not S-Noetherian.

Corollary 2.15. Let $A \subseteq B$ be a rings extension and S a multiplicative system of finitely generated ideals of A such that B is an S-finite A-module. Then the ring A is S-Noetherian if and only if B is S-Noetherian.

Proof. \implies The A-module B is S-finite. By Corollary 2.5, the A-module B is S-Noetherian. Hence, the ring B is S-Noetherian.

 \Leftarrow By Theorem 2.11, the *A*-module *B* is *S*-Noetherian. Therefore, the ring *A* is *S*-Noetherian (as an *A*-submodule of *B*).

Let A be a ring and M an A-module. Recall that Nagata introduced the extension ring of A called the idealization of M in A, denoted here by A(+)M, whose underlying abelian group is $A \times M$ and multiplication defined by:

 $(a, x)(a', x') = (aa', ax' + a'x), \text{ for every } (a, x), (a', x') \in A(+)M.$

It is well known that A(+)M is a commutative ring with identity element (1, 0). (It is also called the trivial extension of A by M.) For more details see [2] and [4].

Let A be an ideal of A. Note that I(+)IM is the extension of I in A(+)M, so $S_1 = \{I(+)IM, I \in S\}$ is clearly a multiplicative system of ideals of A(+)M. As $A \subseteq A(+)M$, we get A(+)M is S-Noetherian if and only if A(+)M is S-Noetherian.

Proposition 2.16. Let A be a ring, S a multiplicative system of finitely generated ideals of A and M an A-module. Denote $S_1 = \{I(+)IM, I \in S\}$. Then the ring A(+)M is S_1 -Noetherian if and only if the ring A is S-Noetherian and the A-module M is S-finite.

Proof. \implies The map $\phi: A(+)M \longrightarrow A$ defined by $\phi(a, x) = a$ for every $(a, x) \in A(+)M$ is a surjective homomorphism of rings. Since A(+)M is S_1 -Noetherian, the ring A is $\phi(S_1) = S$ -Noetherian.

The ideal $\{0\}(+)M$ of A(+)M is S_1 -finite. Then there exist $m_1, \ldots, m_k \in M$ and $I \in S$ such that $(I(+)IM)(\{0\}(+)M) \subseteq \langle (0, m_1), \ldots, (0, m_k) \rangle A(+)M$. Therefore, $IM \subseteq \langle m_1, \ldots, m_k \rangle A$. It yields that the A-module M is S-finite.

 \Leftarrow It is clear that the extension $A \subseteq A(+)M$ is S-finite. Then A is S-Noetherian if and only if A(+)M is S-Noetherian by Corollary 2.15. Thus the ring A(+)M is S₁-Noetherian.

Example 2.17. Let A be an n-dimensional nonNoetherian integral domain. Assume that $P = \bigcap \{Q \mid (0) \neq Q \in \operatorname{Spec}(A)\}$ is a nonzero ideal of A and let $I \subseteq P$ be a finitely generated nonprincipal ideal of A. Set $S = \{I^k, k \geq 1\}$. Clearly A is an S-Noetherian ring (since each nonzero prime ideal of A contains I). Then for each S-finite A-module M, the ring A(+)M is S_1 -Noetherian, by Proposition 2.16, where $S_1 = \{I(+)IM, I \in S\}$.

Let A be a ring and $P \in \text{Spec}(A)$. Denote $S_P = \{I \text{ ideal of } A \text{ such that } I \notin P\}$. S_P is clearly a multiplicative system of ideals of A.

Theorem 2.18. The following assertions are equivalent for an A-module E:

- (1) The module E is Noetherian.
- (2) The module E is S_P -Noetherian for every $P \in \text{Spec}(A)$.
- (3) The module E is S_M -Noetherian for every $M \in Max(A)$.

Proof. The implications $(1) \Longrightarrow (2) \Longrightarrow (3)$ are simple.

 $\begin{array}{ll} (3) \implies (1) \text{ Let } N \text{ be a submodule of } E. \text{ For each } M \in \operatorname{Max}(A), \text{ there exist } I_M \in \mathcal{S}_M \text{ and a finitely generated submodule } F_M \subseteq N \text{ of } E \text{ such that } I_M N \subseteq F_M.\\ \text{Let } Q = \langle I_M, \ M \in \operatorname{Max}(A) \rangle. \text{ Since } I_M \nsubseteq M \text{ for each maximal ideal } M \text{ of } A, \text{ we get } Q = A.\\ \text{Therefore there exist } M_1, \cdots, M_r \in \operatorname{Max}(A) \text{ such that } A = \langle I_{M_1}, \ldots, I_{M_r} \rangle.\\ \text{Hence } N = AN = \langle I_{M_1}, \cdots, I_{M_r} \rangle N = I_{M_1} N + \cdots + I_{M_r} N \subseteq F_{M_1} + \cdots + F_{M_r} \subseteq N.\\ \text{Thus } N = F_{M_1} + \cdots + F_{M_r} \text{ is finitely generated.} \end{array}$

Corollary 2.19. The following assertions are equivalent for a ring A:

- (1) The ring A is Noetherian.
- (2) The ring A is S_P -Noetherian for every $P \in \text{Spec}(A)$.
- (3) The ring A is \mathcal{S}_M -Noetherian for every $M \in Max(A)$.

Questions. We end this paper by posing two questions.

- (1) Let A be an integral domain with quotient field K and S a multiplicative system of ideals of A such that A is S-Noetherian. Does it follow that the generalized fraction ring $A_{\mathcal{S}} = \{x \in K; xH \subseteq A \text{ for some } H \in S\}$ is Noetherian?
- (2) Under the hypothesis of Theorem 2.7, is the power series ring A[[X]] *S*-Noe-therian?

Acknowledgement. The authors would like to thank the refree for his/her valuable comments which really helped us improve the results and the presentation of our paper.

References

- Anderson, D.D., Dumitrescu, T., S-Noetherian rings, Comm. Algebra 30 (9) (2002), 4407–4416.
- [2] Anderson, D.D., Winders, M., Idealization of a module, J. Commut. Algebra 1 (2009), 3–53.
- [3] Hamann, E., Houston, E., Johnson, J., Properties of uppers to zero in R[X], Pacific J. Math. 135 (1988), 65–79.
- [4] Hamed, A., Hizem, S., S-Noetherian rings of the form A[X] and A[[X]], Comm. Algebra 43 (2015), 3848–3856.
- [5] Huckaba, J.A., Commutative rings with zero divizors, Pure Appl. Math., Marcel Dekker, 1988.
- [6] Lim, J.W., Oh, D.Y., S-Noetherian properties on amalgamated algebras along an ideal, J. Pure Appl. Algebra 218 (2014), 1075–1080.

MATHEMATICS DEPARTMENT, FACULTY OF SCIENCES OF MONASTIR, TUNISIA *E-mail*: amir.dababi.250gmail.com ali_benhissi0yahoo.fr