
ARCHIVUM MATHEMATICUM (BRNO)
Tomus 59 (2023), 307–314

GENERALIZATION OF THE S-NOETHERIAN CONCEPT

Abdelamir Dabbabi and Ali Benhissi

Abstract. Let A be a commutative ring and S a multiplicative system of
ideals. We say that A is S-Noetherian, if for each ideal Q of A, there exist
I ∈ S and a finitely generated ideal F ⊆ Q such that IQ ⊆ F . In this paper,
we study the transfer of this property to the polynomial ring and Nagata’s
idealization.

1. Introduction

In this paper a ring means a commutative ring with unit element. Let A be an
integral domain with quotient field K. E. Hamann, E. Houston and J. Johnson in
[3] defined an ideal I of A[X] to be almost principal, if there exist an s ∈ A \ {0}
and an f ∈ I such that sI ⊆ fA[X], and they called the polynomial ring A[X]
an almost principal ideal domain if each ideal of A[X] that extends to a proper
ideal of K[X] is almost principal. In [1], D.D. Anderson and T. Dumitrescu have
defined the concept of S-Noetherian rings as follows. Let A be a ring and S ⊆ A a
multiplicative set. The ring A is called S-Noetherian, if for each ideal I of A, there
exist s ∈ S and a finitely generated ideal F ⊆ I of A such that sI ⊆ F . They have

shown that if A is S-Noetherian, then so is A[X], provided (
∞⋂
n=1

snA)
⋂
S 6= ∅ for

each s ∈ S. These results have been extended in [1], [4] and [5]. We extend this
definition using an arbitrary multiplicative system of ideals.
Let S be a multiplicative system of ideals of a ring A. We shall call A to be
S-Noetherian, if for each ideal Q of A, there exist an ideal I ∈ S and a finitely
generated ideal F ⊆ Q of A such that IQ ⊆ F . In the case when S consists of
principal ideals, the notions S-Noetherian and S-Noetherian are equivalent, where
S = {s ∈ A | sA ∈ S}. But in general we can not present a multiplicative system of
ideals by a multiplicative set. In this paper, we investigate some properties of the
S-Noetherian concept. For instance, we give a Cohen-type theorem for S-Noetherian
rings. Also, we study the transfer of this property from A to the polynomial ring
A[X] and Nagata idealization A(+)M , where M is an A-module. In fact, we show
that the ring A(+)M is S1-Noetherian if and only if the ring A is S-Noetherian

2020 Mathematics Subject Classification: primary 13B25; secondary 13E05, 13A15.
Key words and phrases: S-Noetherian, Nagata’s idealization, multiplicative system of ideals.
Received August 23, 2021, revised June 2023. Editor J. Trlifaj.
DOI: 10.5817/AM2023-4-307

http://www.emis.de/journals/AM/
http://dx.doi.org/10.5817/AM2023-4-307


308 A. DABBABI AND A. BENHISSI

and the A-module M is S-finite, where S1 = {I(+)IM, I ∈ S}. We give examples
of S-Noetherian rings A with S a multiplicative system of nonprincipal ideals of A.

2. Mains results

We introduce the main concept of this paper as follows.

Definition 2.1. Let A ⊆ B be a rings extension, M an A-module and S a
multiplicative system of ideals of A.

(1) An A-submodule N of M is said to be S-finite, if there exist a1, · · · , an ∈ N
and I ∈ S such that IN ⊆ 〈a1, · · · , an〉.

(2) We say that M is S-Noetherian, if each submodule of M is S-finite.
(3) An ideal Q of B is called S-finite, if there exist a1, . . . , an ∈ Q and I ∈ S

such that IQ ⊆ 〈a1, . . . , an〉B.
(4) We say that B is an S-Noetherian ring, if each ideal of B is S-finite.

With the same notations of the previous definition, clearly B is S-Noetherian if
and only if it is S ′-Noetherian, where S ′ = {IB | I ∈ S}. It is clear that if IM = 0
for some I ∈ S, then M is an S-Noetherian A-module.
Obviously a Noetherian ring A is S-Noetherian for every multiplicative system of
ideals S of A.

Example 2.2. Let A =
∞∏
i=1

Z/piZ where p is a prime number, a1, . . . , an ∈ A some

finite support nonzero elements (i.e, if ai = (ai,j)j∈N, then ai,j = 0 except for a
finite number of indices j), I = 〈a1, . . . , an〉 and S = {In, n ≥ 1}. For each ideal
Q of A, the ideal IQ has a finite cardinality. Hence IQ ⊆ 〈IQ〉 ⊆ Q, thus Q is
S-finite.

So A is an example of an S-Noetherian ring which is not Noetherian.

Proposition 2.3. Let A be a ring, M an A-module, N a submodule of M and S
a multiplicative system of ideals of A. The following assertions are equivalent:

(1) The A-module M is S-Noetherian.
(2) The A-modules N and M/N are S-Noetherian.

Proof. (1) =⇒ (2) Trivial.
(2) =⇒ (1) Let L be a submodule of M . Denote L̄ = {x̄ ∈ M/N | x ∈ L}. It is
easy to check that L̄ is a submodule of M/N , then it is S-finite. Therefore, there
exist x1, . . . , xn ∈ L and I ∈ S such that IL̄ ⊆ 〈x̄1, . . . , x̄n〉.
Let T = L

⋂
N . It is clear that T is a submodule of N , so it is S-finite. Hence there

exist y1, . . . , yk ∈ T and J ∈ S such that JT ⊆ 〈y1, . . . , yk〉. For x ∈ L fixed, we have

ax̄ ∈ 〈x̄1, . . . , x̄n〉 for each a ∈ I. Let a ∈ I, write ax̄ =
n∑
i=1

αix̄i with αi ∈ A, i =

1, . . . , n. Then ax−
n∑
i=1

αixi ∈ N
⋂
L = T . Thus J(ax−

n∑
i=1

αixi) ⊆ 〈y1, . . . , yk〉. It
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yields that Jax ⊆ 〈y1, . . . , yk, x1, . . . , xn〉. Hence (JI)L ⊆ 〈y1, . . . , yk, x1, . . . , xn〉
with y1, . . . , yk, x1, . . . , xn ∈ L and IJ ∈ S. �

Corollary 2.4. A finite direct sum of modules is S-Noetherian if and only if so is
every term. In particular, An is S-Noetherian for each n ≥ 1 provided that A is an
S-Noetherian ring.

Corollary 2.5. Let A be a ring, M an A-module and S a multiplicative system of
ideals of A. If A is S-Noetherian and M a finitely generated A-module, then M is
an S-Noetherian A-module.

Proof. The A-module M is an epimorphic image of some An. By Corollary 2.4,
the A-module M is S-Noetherian. �

Corollary 2.6. Let A be a ring, S a multiplicative system of ideals of A and M
an S-finite A-module. If A is an S-Noetherian ring, so is the A-module M .

Proof. There exist a finitely generated submodule N of M and I ∈ S such that
IM ⊆ N . By Corollary 2.5, N is a S-Noetherian A-module. Thus IM is an
S-Noetherian A-module. Hence, the A-module M is S-Noetherian by the exact
sequence 0 −→ IM −→M −→M/IM −→ 0. �

Theorem 2.7. Let A be a ring and S a multiplicative system of ideals of A such

that for each I ∈ S,
∞⋂
n=1

In contains some ideal of S. If A is S-Noetherian, so is

A[X].

Proof. Let L be an ideal of A[X] and L0 the set of leading coefficients of polyno-
mials of L. It is easy to check that L0 is an ideal of A. Since A is S-Noetherian,
there exist a1, . . . , an and I ∈ S such that IL0 ⊆ 〈a1, . . . , an〉A. For 1 ≤ i ≤ n,
let fi ∈ L such that ai is the leading coefficient of fi. We can assume that
d = deg(f1) = · · · = deg(fn) (it suffices to multiply by some X li , 1 ≤ i ≤ n).
Let M = A + AX + · · · + AXd. Let f ∈ L of degree r + d. Let a1, . . . , ar be
arbitrary elements of I. Substracting repeatedly from f suitable combinations of
f1, . . . , fn we get that a1 . . . arf belongs to 〈f1, . . . , fn〉 + L

⋂
M . It follows that

Irf ⊆ 〈f1, . . . , fn〉 + L
⋂
M , thus JL ⊆ 〈f1, . . . , fn〉 + L

⋂
M where J is some

ideal of S contained in
∞⋂
k=1

Ik. Since M is a finitely generated A-module, it is

S-Noetherian, by Corollary 2.5. Consequentely, L ∩ M is S-finite. Then there
exist g1, . . . , gm ∈ L

⋂
M and J ′ ∈ S such that J ′(L

⋂
M) ⊆ 〈g1, . . . , gm〉A ⊆

〈g1, . . . , gm〉A[X]. It yields that (J ′J)f ⊆ 〈f1, . . . fn, g1 . . . , gm〉A[X]. Therefore,
(J ′J)L ⊆ 〈f1, . . . , fn, g1, . . . , gm〉 with J ′J ∈ S and f1, . . . , fn, g1, . . . , gm ∈ L.
Hence A[X] is an S-Noetherian ring. �

Corollary 2.8. Let A be a ring and S a multiplicative system of ideals of A such

that for every I ∈ S,
∞⋂
n=1

In contains some ideal of S. If A is S-Noetherian, so is

A[X1, . . . , Xn] for each n ≥ 1.
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Proof. By induction using Theorem 2.7. �

Let A = (An)n≥0 be an increasing sequence of rings, A =
∞⋃
n=0

An and X an

indeterminate over A. Recall from [4] that A[X] = {f =
∑n
i=0 aiX

i ∈ A[X] | n ≥ 0,
ai ∈ Ai, i = 0, 1, . . . , n}.

Theorem 2.9. Let A = (An)n≥0 be an increasing sequence of rings and S a

multiplicative system of ideals of A0 such that for every I ∈ S,
∞⋂
n=1

In contains

some ideal of S. The following conditions are equivalent :
(1) The ring A[X] is S-Noetherian.

(2) The ring A0 is S-Noetherian and the A0-module A =
∞⋃
n=0

An is S-finite.

Proof. (1) =⇒ (2) Let Q be an ideal of A0. Then QA[X] is an S-finite ideal
of A[X]. Hence, there exist a1, . . . , an ∈ Q and I ∈ S such that I(QA[X]) ⊆
〈a1, . . . , an〉A[X]. Thus IQ ⊆ 〈a1, . . . , an〉A0. Hence A0 is S-Noetherian.
Let n ≥ 1 be an integer. The ideal XnAnA[X] of A[X] is S-finite. Then there
exist a1, . . . , ak ∈ An and I ∈ S such that I(XnAnA[X]) ⊆ 〈a1X

n, . . . , akX
n〉. Let

a ∈ An and b ∈ I. There exist f1(X), . . . , fk(X) ∈ A[X] such that b(aXn) =
k∑
i=1

fi(aiXn). Identifying coefficients of Xn, we obtain ba =
k∑
i=1

fi(0)ai with

f1(0), . . . , fk(0) ∈ A0. Therefore, An is an S-finite A0-module.
The ideal Q of A[X] generated by {aXi, i ∈ N∗, a ∈ Ai} is S-finite, then there
exist I ∈ S, a1X

α1 , . . . , arX
αr , ai ∈ Aαi , αi ≥ 1 such that,

IQ ⊆ 〈akXαk , 1 ≤ k ≤ r〉A[X] .
Let m = max(α1, . . . , αr). Then a1, . . . , ar ∈ Am. For a fixed i > m. Let b ∈ I and
y ∈ Ai. By definition of Q, yXi ∈ Q. Thus

byXi ∈ 〈akXαk , 1 ≤ k ≤ r〉A[X] .

It yields that byXi =
r∑

k=1
akX

αkgk with gk =
nk∑
j=0

gk,jX
j ∈ A[X]. By identification,

we get by =
r∑

k=1
akgk,i−αk with gk,i−αk ∈ Ai−αk ⊆ Ai−1. Hence

bAi ⊆ a1Ai−1 + · · ·+ arAi−1 ⊆ Ai−1 .

It follows that IAi ⊆ Ai−1. Iterating we get Im−iAi ⊆ Am. It follows that JAi ⊆

Am for some ideal J of S contained in
∞⋂
n=0

In. Consequentely, JAn ⊆ Am for every

n ≥ m. It yields that JA = J(
∞⋃
n=0

An) = J(
∞⋃
n=m

An) =
+∞⋃
n=m

JAn ⊆ Am. Thus A is
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an S-finite A0-module.
(2) =⇒ (1) Since the A0-module A is S-finite, there exist a1, . . . , an ∈ A and
C ∈ S such that CA ⊆ 〈a1, . . . , an〉A0. Thus CA[X] ⊆ 〈a1, . . . , an〉A0[X]. Hence
the A0[X]-module A[X] is S-finite. On the other hand, A0 is S-Noetherian and for

each I ∈ S,
∞⋂
k=1

Ik contains some ideal of S. By Theorem 2.7, the ring A0[X] is

S-Noetherian. By Corollary 2.6, the A0[X]-module A[X] is S-Noetherian, and so
is the submodule A[X]. Thus the ring A[X] is S-Noetherian. �

Lemma 2.10. Let A be a ring, S a multiplicative system of ideals of A and M
an S-finite A-module. If N is a submodule of M maximal among the non-S-finite
submodules of M , then [N : M ] is a prime ideal of A.

Proof. Denote P = [N : M ]. Assume that P is not a prime ideal. Let a, b ∈ A \P
such that ab ∈ P . By maximality of N , N + aM is S-finite. Consequently, there
exist n1, . . . , nk ∈ N, m1, . . . ,mk ∈ M and I ∈ S such that I(N + aM) ⊆
〈n1 + am1, . . . , nk + amk〉. Since aN ⊆ N and bx ∈ [N : a] for each x ∈ M
( N 6= M), N ⊂ [N : a]. Then [N : a] is S-finite. It yields that there exist
q1, . . . , qt ∈ [N : a] and J ∈ S such that J [N : a] ⊆ 〈q1, . . . , qt〉. Let x ∈ N , α ∈ I

and β ∈ J . We have αx =
k∑
i=1

αi(ni+ami) with α1, . . . , αk ∈ A. Thus a
k∑
i=1

αimi =

αx −
k∑
i=1

αini ∈ N . Hence y =
k∑
i=1

αimi ∈ [N : a]. Therefore, βy =
t∑

j=1
βjqj

with β1, · · · , βt ∈ A. Thus βαx =
k∑
i=1

(βαi)ni + βay =
k∑
i=1

(βαi)ni +
t∑

j=1
βj(aqj) ∈

〈n1, . . . , nk, aq1, . . . , aqt〉. Hence JIN ⊆ 〈n1, . . . , nk, aq1, · · · , aqt〉 ⊆ N with JI ∈
S, so N is S-finite, contradiction. Therefore, P is a prime ideal of A. �

Let A be a ring, S a multiplicative system of finitely generated ideals of A, P
a prime ideal of A and M an S-finite A-module. It is clear that P and PM are
S-finite when P contains some ideal in S.

Theorem 2.11. Let A be a ring, S a multiplicative system of finitely generated
ideals of A and M an S-finite A-module. Then M is an S-Noetherian A-module if
and only if for each prime ideal P of A not containing any ideal in S, the submodule
PM is S-finite.

Proof. =⇒ Trivial.
⇐= Assume that M is not S-Noetherian. Let F be the set of submodules of M
which are not S-finite. We order F by inclusion. Let (Hα)α∈Λ be a totally ordered
family of F and H =

⋃
α∈Λ

Hα. Assume that H /∈ F . Then there exist a1, . . . , an ∈ H

and I ∈ S such that IH ⊆ 〈a1, . . . , an〉. Since the family (Hα)α∈Λ is totally ordered,
there exists α ∈ Λ such that a1, . . . , an ∈ Hα. Hence IHα ⊆ IH ⊆ 〈a1, . . . , an〉.
Therefore, Hα is S-finite, absurd. Thus H ∈ F . Therefore F is inductively ordered.
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By Zorn’s lemma, F has a maximal element N . By Lemma 2.10, P = [N : M ] is a
prime ideal of A. Let m1, . . . ,mk ∈M and J ∈ S such that JM ⊆ 〈m1, . . . ,mk〉.
If there exists I ∈ S such that IM ⊆ N , then IJN ⊆ I〈am1, . . . , amk〉 ⊆ N ,
contradiction (since I is finitely generated, so is the submodule I〈m1, . . . ,mk〉).
Therefore, for each I ∈ S, IM * N . Thus P = [N : M ] ⊆ [N : 〈m1, . . . ,mk〉] ⊆ [N :
JM ] = P : J = P . Hence, P = [N : 〈m1, . . . ,mk〉] = [N : m1] ∩ · · · ∩ [N : mk] =
[N : mi0 ] for some 1 ≤ i0 ≤ k. Since P 6= A, so mi0 /∈ N , hence N+Ami0 is S-finite
by the maximality of N . There exist then n1, . . . , nt ∈ N , a1, . . . , at ∈ A and I ∈ S
such that I(N+Ami0) ⊆ 〈n1 +a1mi0 , . . . , nt+atmi0〉. Let x ∈ N, b ∈ A and α ∈ I.

There exist α1, . . . , αt ∈ A such that α(x + bmi0) =
t∑
i=1

(αini + αiaimi0). Hence

(αb−
t∑
i=1

αiai)mi0 =
t∑
i=1

αini−αx ∈ N . Thus αb−
t∑
i=1

αiai ∈ P . It yields that αx =

t∑
i=1

αini + (
t∑
i=1

αiai − αb)mi0 ∈ 〈n1, . . . , nt〉 + PM . Since PM is S-finite, there

exist β1, . . . , βr ∈ PM and L ∈ S such that L(PM) ⊆ 〈β1, . . . , βr〉 ⊆ PM ⊆ N .
Consequently, (LI)N ⊆ 〈n1, . . . , nt, β1, . . . , βr〉 ⊆ N . Hence N is S-finite, absurd.
Therefore, M is an S-Noetherian A-module. �

Corollary 2.12. Let A be a ring and S a multiplicative system of finitely generated
ideals of A. Then the ring A is S-Noetherian, if and only if, each prime ideal of A
not containing any ideal in S is S-finite.

The next example shows that for each n ≥ 1, there exists an n-dimensional
S-Noetherian ring which is not Noetherian.
Example 2.13. Let A be a finite dimensional valuation domain, P its height one
prime ideal, I ⊆ P a finitely generated ideal and S = {In, n ≥ 1}. Then A is
S-Noetherian. Indeed, let Q be a nonzero prime ideal of A. Thus IQ ⊆ I ⊆ P ⊆ Q.
Hence Q is S-finite.

Example 2.14. The hypothesis that S consists of finitely generated ideals is
necessary. Indeed, let X1, X2, . . . be a countably family of indeterminates over a field
K, A = K[Xn, n ≥ 1]/〈Xn

n , n ≥ 1〉, M = 〈X̄n, n ≥ 1〉A and S = {Mn, n ≥ 1}.
The only prime ideal of A is M . Assume that A is S-Noetherian. Then M is S-finite.
Hence there exist k, m ∈ N∗ such that MkM ⊆ 〈X̄1, . . . , X̄m〉. Then M l = 0 for
some l ≥ 1, absurd. Hence the ring A is not S-Noetherian.
Corollary 2.15. Let A ⊆ B be a rings extension and S a multiplicative system of
finitely generated ideals of A such that B is an S-finite A-module. Then the ring A
is S-Noetherian if and only if B is S-Noetherian.
Proof. =⇒ The A-module B is S-finite. By Corollary 2.5, the A-module B is
S-Noetherian. Hence, the ring B is S-Noetherian.
⇐= By Theorem 2.11, the A-module B is S-Noetherian. Therefore, the ring A is
S-Noetherian (as an A-submodule of B). �
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Let A be a ring and M an A-module. Recall that Nagata introduced the
extension ring of A called the idealization of M in A, denoted here by A(+)M ,
whose underlying abelian group is A×M and multiplication defined by:

(a, x)(a′, x′) = (aa′, ax′ + a′x), for every (a, x), (a′, x′) ∈ A(+)M .

It is well known that A(+)M is a commutative ring with identity element (1, 0).
(It is also called the trivial extension of A by M .) For more details see [2] and [4].

Let A be an ideal of A. Note that I(+)IM is the extension of I in A(+)M , so
S1 = {I(+)IM, I ∈ S} is clearly a multiplicative system of ideals of A(+)M . As
A ⊆ A(+)M , we get A(+)M is S-Noetherian if and only if A(+)M is S1-Noetherian.

Proposition 2.16. Let A be a ring, S a multiplicative system of finitely generated
ideals of A and M an A-module. Denote S1 = {I(+)IM, I ∈ S}. Then the ring
A(+)M is S1-Noetherian if and only if the ring A is S-Noetherian and the A-module
M is S-finite.

Proof. =⇒ The map φ : A(+)M −→ A defined by φ(a, x) = a for every (a, x) ∈
A(+)M is a surjective homomorphism of rings. Since A(+)M is S1-Noetherian,
the ring A is φ(S1) = S-Noetherian.
The ideal {0}(+)M of A(+)M is S1-finite. Then there exist m1, . . .mk ∈M and
I ∈ S such that (I(+)IM)({0}(+)M) ⊆ 〈(0,m1), . . . , (0,mk)〉A(+)M . Therefore,
IM ⊆ 〈m1, . . . ,mk〉A. It yields that the A-module M is S-finite.
⇐= It is clear that the extension A ⊆ A(+)M is S-finite. Then A is S-Noetherian
if and only if A(+)M is S-Noetherian by Corollary 2.15. Thus the ring A(+)M is
S1-Noetherian. �

Example 2.17. Let A be an n-dimensional nonNoetherian integral domain. As-
sume that P = ∩{Q | (0) 6= Q ∈ Spec(A)} is a nonzero ideal of A and let I ⊆ P
be a finitely generated nonprincipal ideal of A. Set S = {Ik, k ≥ 1}. Clearly A is
an S-Noetherian ring (since each nonzero prime ideal of A contains I). Then for
each S-finite A-module M , the ring A(+)M is S1-Noetherian, by Proposition 2.16,
where S1 = {I(+)IM, I ∈ S}.

Let A be a ring and P ∈ Spec(A). Denote SP = {I ideal of A such that I * P}.
SP is clearly a multiplicative system of ideals of A.

Theorem 2.18. The following assertions are equivalent for an A-module E :
(1) The module E is Noetherian.
(2) The module E is SP -Noetherian for every P ∈ Spec(A).
(3) The module E is SM -Noetherian for every M ∈ Max(A).

Proof. The implications (1) =⇒ (2) =⇒ (3) are simple.
(3) =⇒ (1) Let N be a submodule of E. For each M ∈ Max(A), there exist
IM ∈ SM and a finitely generated submodule FM ⊆ N of E such that IMN ⊆ FM .
Let Q = 〈IM , M ∈ Max(A)〉. Since IM * M for each maximal ideal M of A, we get
Q = A. Therefore there exist M1, · · · ,Mr ∈ Max(A) such that A = 〈IM1 , . . . , IMr 〉.
Hence N = AN = 〈IM1 , · · · , IMr 〉N = IM1N+ · · ·+IMrN ⊆ FM1 + · · ·+FMr ⊆ N .
Thus N = FM1 + · · ·+ FMr is finitely generated. �
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Corollary 2.19. The following assertions are equivalent for a ring A :
(1) The ring A is Noetherian.
(2) The ring A is SP -Noetherian for every P ∈ Spec(A).
(3) The ring A is SM -Noetherian for every M ∈ Max(A).

Questions. We end this paper by posing two questions.
(1) Let A be an integral domain with quotient field K and S a multiplicative

system of ideals of A such that A is S-Noetherian. Does it follow that
the generalized fraction ring AS = {x ∈ K; xH ⊆ A for some H ∈ S} is
Noetherian?

(2) Under the hypothesis of Theorem 2.7, is the power series ring A[[X]] S-Noe-
therian?

Acknowledgement. The authors would like to thank the refree for his/her va-
luable comments which really helped us improve the results and the presentation
of our paper.
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