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PADOVAN AND PERRIN NUMBERS AS PRODUCTS
OF TWO GENERALIZED LUCAS NUMBERS

Kouèssi Norbert Adédji, Japhet Odjoumani, and Alain Togbé

Abstract. Let Pm and Em be the m-th Padovan and Perrin numbers
respectively. Let r, s be non-zero integers with r ≥ 1 and s ∈ {−1, 1}, let
{Un}n≥0 be the generalized Lucas sequence given by Un+2 = rUn+1 + sUn,
with U0 = 0 and U1 = 1. In this paper, we give effective bounds for the
solutions of the following Diophantine equations

Pm = UnUk and Em = UnUk ,
where m, n and k are non-negative integers. Then, we explicitly solve the
above Diophantine equations for the Fibonacci, Pell and balancing sequences.

1. Introduction

Let (un) and (vn) be two linear recurrent sequences. The problem of finding the
common terms of (un) and (vn) was treated in [6], [8], [10]. The authors proved,
under some assumption, that the Diophantine equation

un = vm

has only finitely many integer solutions (n,m). The aim of this paper is to study
the common terms of Padovan, Perrin, and the product of two generalized Lucas
sequences.

The Padovan sequence {Pn}n≥0 is defined by P0 = P1 = P2 = 1, and
Pn+3 = Pn+1 + Pn , for n ≥ 0 .

See the sequence A000931 in the OEIS. The first few terms of Padovan sequence
are

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, . . . .
The Perrin sequence {En}n≥0 is given by E0 = 3, E1 = 0, E2 = 2, and

En+3 = En+1 + En , for n ≥ 0 .
Its first few terms are

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209, 277, . . .
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(sequence A001608 in the OEIS). We recall some facts and properties of the Padovan
and the Perrin sequences which will be used later. The characteristic equation of
the two sequences is

x3 − x− 1 = 0
with roots α, β, λ = β, where

α = r1 + r2

6 , β = −r1 − r2 + i
√

3(r1 − r2)
12

by

r1 = 3
√

108 + 12
√

69 and r2 = 3
√

108− 12
√

69 .

Let

a = (1− β)(1− λ)
(α− β)(α− λ) = 1 + α

−α2 + 3α+ 1

b = (1− α)(1− λ)
(β − α)(β − λ) = 1 + β

−β2 + 3β + 1

c = (1− α)(1− β)
(λ− α)(λ− β) = 1 + λ

−λ2 + 3λ+ 1 = b .

The Binet’s formulas for Pn and En respectively are

Pn = aαn + bβn + cλn , for n ≥ 0 ,(1.1)

and

En = αn + βn + λn , for n ≥ 0 .(1.2)

The minimal polynomial of a over the integers is

(1.3) 23x3 − 23x2 + 6x− 1 ,

whose roots are a, b, c with |a|, |b|, |c| < 1 (see [3]). Numerically, the following
estimates hold:

1.32 < α < 1.33 ,
0.86 < |λ| = |β| = α−

1
2 < 0.87 ,

0.72 < a < 0.73 ,
0.24 < |b| = |c| < 0.25 .

It is easy to see that the contribution of the complex conjugate roots β and λ, in
the right-hand side of (1.1), is very small. In particular, setting

(1.4) e1(m) := Pm − aαm = λβm + cγm , then |e1(m)| < 1
αm/2

,

for m ≥ 1. Furthermore, by induction, one can prove that

(1.5) αm−3 ≤ Pm ≤ αm−1, for m ≥ 1.
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Also, it follows that the difference between the right hand side of equation (1.2)
and αm becomes quite small as m increases. More specifically, letting

(1.6) e2(m) := Em − αm = βm + λm, then |e2(m)| < 2
αm/2

, for m ≥ 1 .

Similarly, one has
(1.7) αm−2 ≤ Em ≤ αm+1 , for m ≥ 2 .
Recall that the generalized Lucas sequence {Un}n≥0 and its companion sequence
{Vn}n≥0 are defined with initial values U0 = 0, U1 = 1, V0 = 2, V1 = r, by

Un+1 = rUn + sUn−1 and Vn+1 = rVn + sVn−1 , for n ≥ 0 ,
where r and s are integers such that ∆ = r2 + 4s > 0. The Binet’s formulas for
these sequences are given by

Un = δn − γn

δ − γ
and Vn = δn + γn ,(1.8)

where δ = r +
√

∆
2 and γ = r −

√
∆

2 . For more details on the generalized Lucas
sequence see [9]. The aim in this paper is the study of the two Diophantine equations
(1.9) Pm = UnUk ,

and
(1.10) Em = UnUk ,

where m, n and k are non-negative integers such that n ≤ k. Note that if n = 0,
then equation (1.10) has infinitely many solutions of the form (m,n, k) = (1, 0, k).
So, for the Diophantine equation (1.10) it remains to see what happen for n ≥ 1.
Here are our main results.

Theorem 1.1. If (k,m, n) is a positive integer solution of equation (1.9), then

(1.11) m <
log δ
logα (n+ k) + 3

and
(1.12) k log δ − log(1 +

√
∆) < 2.5 · 1013(1 + logB)(log δ)× ρ1 ,

where ρ1 is given by
ρ1 = log

(
232(∆2 + 3∆)3)+ 1.5 · 1014(1 + logB) log δ log(23 ·∆3)

with
B = log δ

logα (n+ k) + 3 .

Theorem 1.2. If (k,m, n) is a positive integer solution of equation (1.10), then

(1.13) m <
log δ
logα (n+ k) + 2

and
(1.14) k log δ − log(1 +

√
∆) < 2.5 · 1013(1 + logB)(log δ)× ρ2 ,
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where ρ2 is given by
ρ2 = log

(
(∆2 + 3∆)3)+ 4.5 · 1014(1 + logB) · log δ · log ∆

with
B = log δ

logα (n+ k) + 2 .

The proofs of our main theorems are mainly based on linear forms in logarithms
of algebraic numbers and a reduction algorithm originally introduced by Baker
and Davenport in [1]. We organize this paper as follows. In Section 2, we recall
some important results for the proofs of the main theorems. Sections 3 and 4 are
devoted to the proofs of our main results and we finish with Section 5, where we
give some applications.

2. Useful tools

In this section, we gather the tools we need to prove Theorems 1.1 and 1.2 and
other results.

2.1. Linear forms in logarithms. Here we recall a result from the theory of
lower bounds for nonzero linear forms in logarithms of algebraic numbers. Let η be
an algebraic number of degree d, let a > 0 be the leading coefficient of its minimal
polynomial over Z and let η = η(1), . . . , η(d) denote its conjugates. The logarithmic
height of η is defined by

h(η) = 1
d

(
log a+

d∑
j=1

log max
(

1,
∣∣∣η(j)

∣∣∣) ) .
This height has the following basic properties. For η1, η2 algebraic numbers and
m ∈ Z we have

h(η1 ± η2) ≤ h(η1) + h(η2) + log 2 ,(2.1)

h(η1η
±1
2 ) ≤ h(η1) + h(η2) ,(2.2)

h(ηm1 ) = |m|h(η1) .(2.3)
Now let L be a real number field of degree dL, η1, . . . , ηt ∈ L and b1, . . . , bt ∈

Z \ {0}. Let B ≥ max{|b1|, . . . , |bt|} and

Λ = ηb11 · · · η
bt
t − 1 .

Let A1, . . . , At be real numbers with
Ai ≥ max{dLh(ηi), | log ηi|, 0.16} , i = 1, 2, . . . , t .

The first tool we need is the following result due to Matveev [7]. Here we use the
version of Bugeaud, Mignotte and Siksek [2, Theorem 9.4].

Theorem 2.1. Assume that Λ 6= 0. Then
log |Λ| > −1.4 · 30t+3 · t4.5 · d2

L · (1 + log dL) · (1 + logB) ·A1 . . . At .

Also, we need the following lemma due to Guzmán and Luca.
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Lemma 2.2 (Lemma 7 of [5]). If l ≥ 1, H >
(
4l2
)l and H > L/(logL)l, then

L < 2lH(logH)l .

The following lemma plays an important role for solving the Diophantine equa-
tions (1.9) and (1.10).

Lemma 2.3. The n-th term of the generalized Lucas sequence {Un}, with s ∈
{−1, 1}, satisfies the inequalities

(2.4) δn−2 ≤ Un < δn ,

for n ≥ 2.

Proof. We will prove Lemma 2.3 in two cases according to s ∈ {−1, 1}.
Case 1: s = 1. We split into two parts which we prove independently as follows.

First, we will prove inequality Un < δn, for all n ≥ 1. If n = 1, then U1 = 1 <
r +
√
r2 + 4
2 = δ1. Thus U1 < δ1. If n = 2, then U2 = rU1 + U0 = r < δr + 1 = δ2,

since δ is a root of equation x2 = rx + 1. Thus, U2 < δ2. Now by induction, we
will prove that the inequality Un < δn still holds, for all n ≥ 3. Assuming that it
holds until n = k, then we will prove that it holds for n = k + 1.

Uk+1 = rUk + Uk−1 < rδk + δk−1 = δk−1(rδ + 1) = δk−1δ2 = δk+1 .

Thus, we obtain Uk+1 < δk+1.
Next, we will prove the inequality Un ≥ δn−2, for all n ≥ 1. If n = 1, U1 = 1

and δ−1 = 2
r +
√
r2 + 4

< 1. Thus, we get U1 > δ−1. If n = 2, U2 = r ≥ 1 and

δ0 = 1. Then, U2 ≥ δ0. Now by induction, we will prove that inequality Un ≥ δn−2

still holds, for all n ≥ 3. Assuming that it holds until n = k, then we will prove
that it holds for n = k + 1.

Uk+1 = rUk + Uk−1 > rδk−2 + δk−3 = δk−3(rδ + 1) = δk−3δ2 = δk−1 .

It follows that Uk+1 > δk−1.

Case 2: s = −1. Note that in this case γ = r −
√
r2 − 4
2 > 0. We have

Un = δn − γn√
∆

<
δn√
∆
< δn ,

which is the required upper bound of (2.4). As

γ

δ
= r −

√
r2 − 4

r +
√
r2 − 4

< 1 ,

we have
Un
Un−1

= δ

(
1− (γ/δ)n

1− (γ/δ)n−1

)
> δ

for all n ≥ 2, and thus Un > δUn−1. By iterating recursively this inequality, we
obtain Un > δn−1U1 = δn−1 > δn−2. This completes the proof. �
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2.2. Dujella and Pethő Lemma. Our next tool is a version of the reduction
method of Baker and Davenport [1]. We use a slight variant of the version given by
Dujella and Pethő [4]. For a real number x, we write ‖x‖ for the distance from x
to the nearest integer.

Lemma 2.4. Let M be a positive integer, p/q be a convergent of the continued
fraction expansion of the irrational number τ such that q > 6M , and A, B, µ be
some real numbers with A > 0 and B > 1. Furthermore, let

ε := ‖µq‖ −M · ‖τq‖ .

If ε > 0, then there is no solution to the inequality

(2.5) 0 < |uτ − v + µ| < AB−w

in positive integers u, v and w with

u ≤M and w ≥ log(Aq/ε)
logB .

3. Proof of Theorem 1.1

First, combining the right side of (2.4) with (1.5), we obtain

αm−3 ≤ Pm = UnUk < δn+k .

Taking the logarithm of both sides, we get that

(m− 3) logα < (n+ k) log δ,

which leads to inequality (1.11) of Theorem 1.1. Next, we examine (1.9) in two
different steps.

Step 1. Using (1.4) and (1.8), we rewrite equation (1.9) as

δn − γn√
∆

· δ
k − γk√

∆
= aαm + e1(m)

to obtain

(3.1) δn+k

∆ − aαm = e1(m) + δnγk + γnδk − γn+k

∆ .

Taking absolute values on both sides of (3.1), we get

(3.2)
∣∣∣δn+k

∆ − aαm
∣∣∣ ≤ |e1(m)|+ δn|γ|k

∆ + |γ|
nδk

∆ + |γ|
n+k

∆ .

Dividing both sides of (3.2) by δn+k

∆ and using the fact that |γ| = 1/δ and n ≤ k,
we obtain ∣∣∣1− ∆aαm

δn+k

∣∣∣ ≤ ∆|e1(m)|
δn+k + 1

δ2k + 1
δ2n + 1

δ2(n+k)

<
∆
δ2n + 1

δ2n + 1
δ2n + 1

δ4n <
3 + ∆
δ2n .
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From this, it follows that

(3.3)
∣∣∣1− ∆aαm

δn+k

∣∣∣ < 3 + ∆
δ2n .

Now, let us apply Theorem 2.1 to
Λ1 := 1− αmδ−(n+k)∆a

with t = 3,
(η1, b1) := (α,m) , (η2, b2) := (δ,−n− k) , and (η3, b3) := (∆a, 1) .

Note that the numbers η1, η2 and η3 are positive real numbers and elements of
the field L = Q(α, δ). It is obvious that the degree of the field L over Q is 6. So
dL = [L : Q] = 6. Now, we show that Λ1 6= 0. Indeed, if Λ1 = 0, then

∆a · αm · 2n+k = (r +
√

∆)n+k = x+ y
√

∆
for some positive integers x and y, which is impossible. Thus Λ1 6= 0. Moreover,

h(η1) = h(α) = 1
3 logα, h(η2) = h(δ) = 1

2 log δ

and

h(η3) = h(∆a) ≤ h(∆) + h(a) = log ∆ + 1
3 log 23 .

Now we choose
max

{
6h(η1), | log η1|, 0.16

}
= 2 logα = A1 .

Note that for the generalized Lucas sequences, if s ∈ {−1, 1} and r ≥ 1, then
δ ≥ (1 +

√
5)/2. So we can choose

max{6h(η2), | log η2|, 0.16} = 3 log δ = A2 .

Furthermore, we have
max

{
6h(η3), | log η3|, 0.16

}
= 2 log

(
23δ3) = A3 .

Also, we have max{| − (n + k)|, |m|, |1|} ≤ log δ
logα (n + k) + 3. So we can take

B := log δ
logα (n+ k) + 3. Using Theorem 2.1, we get

log |Λ1| > −1.4 · 306 · 34.5 · 62 · (1 + log 6) · (1 + logB)
× 2 logα · 3 log δ · log

(
232∆6)

> −5× 1013 · (1 + logB) · log δ · log
(
23∆3) .(3.4)

Combining this with (3.3), we get
(3.5) 2n log δ − log(3 + ∆) < 5× 1013 · (1 + logB) · log δ · log

(
23∆3) .

Step 2. Rearranging equation (1.9) as

(3.6) δk√
∆
− aαm

Un
= γk√

∆
+ e1(m)

Un
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and taking absolute values on both sides of (3.6), we get∣∣∣ δk√
∆
− aαm

Un

∣∣∣ ≤ |γ|k√
∆

+ |e1(m)|
Un

which leads to ∣∣∣ δk√
∆
− aαm

Un

∣∣∣ ≤ 1√
∆δk

+ 1
Un

.(3.7)

Dividing both sides of (3.7) by δk√
∆

, for n ≥ 1, we obtain

∣∣∣1− √∆
δk
· aα

m

Un

∣∣∣ ≤ 1
δ2k +

√
∆

δkUn

≤ 1
δk

+
√

∆
δk

= 1 +
√

∆
δk

.(3.8)

From this, it follows that

(3.9)
∣∣∣1− a

√
∆

Un
· δ−kαm

∣∣∣ ≤ 1 +
√

∆
δk

.

Taking t = 3,

(η1, b1) := (α,m) , (η2, b2) := (δ,−k) and (η3, b3) :=
(a√∆
Un

, 1
)
,

we can apply Theorem 2.1 to

Λ2 := 1− a
√

∆
Un

· δ−kαm .

The numbers η1, η2 and η3 are positive real numbers and elements of the field
L = Q(α, δ) and so dL = 6. Now, we show that Λ2 6= 0. Indeed, if Λ2 = 0, then

2k · a∆ · αm = (r +
√

∆)k ·
√

∆ · Un = x+ y
√

∆ ,

for some positive integers x and y, which is impossible. So Λ2 6= 0. Note that
h(η1) = 1

3 logα, h(η2) = 1
2 log δ and from (2.4) and (2.2), we get

h(η3) = h
(a√∆
Un

)
≤ h(a) + h(

√
∆) + h(Un) = 1

3 log 23 + 1
2 log ∆ + logUn

≤ 1
3 log 23 + 1

2 log ∆ + n log δ .

Here we take A1 := 2 logα, A2 := 3 log δ and A3 := 2 log 23 + 3 log ∆ + 6n log δ.
Since B ≥ max{|m|, | − k|, |1|}, we can take B := log δ

logα (n+ k) + 3. Thus, taking
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into account the inequality (3.9) and using Theorem 2.1, we obtain

log
(1 +

√
∆

δk

)
≥ log |Λ2| > −1.4 · 306 · 34.5 · 62 · (1 + log 6)

× (1 + logB) · 2 logα · 3 log δ · (log
(
232 ·∆3)+ 6n log δ) .

We deduce that

k log δ < 2.5 · 1013 · (1 + logB) · log δ · (log
(
232 ·∆3)+ 6n log δ)(3.10)

+ log(1 +
√

∆) .

Inserting inequality (3.5) into inequality (3.10), we get inequality (1.12) of Theo-
rem 1.1. This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

The proof of Theorem 1.2 follows essentially the same lines as that of Theorem 1.1,
and we will therefore avoid some details. First, combining the right side of (2.4)
with (1.7), we have

αm−2 ≤ Em = UnUk < δn+k .

By taking the logarithm of both sides, we get that

(m− 2) logα < (n+ k) log δ .

This proves inequality (1.13) of Theorem 1.2. Next, we examine (1.10) in two
different steps.

Step a. We need to rewrite equation (1.10) into the form
δn − γn√

∆
· δ
k − γk√

∆
= αm + e2(m)

to obtain

(4.1) δn+k

∆ − αm = e2(m) + δnγk + γnδk − γn+k

∆ .

Taking absolute values on both sides of (4.1), we get

(4.2)
∣∣∣δn+k

∆ − αm
∣∣∣ ≤ |e2(m)|+ δn|γ|k

∆ + |γ|
nδk

∆ + |γ|
n+k

∆ .

Dividing both sides of (4.2) by δn+k

∆ and using the fact that |γ| = 1/δ and
n ≤ k, we easily get

(4.3)
∣∣∣1− ∆αm

δn+k

∣∣∣ < 3 + ∆
δ2n .

Put
Λ3 := 1− αmδ−(n+k)∆ .

Now, let us apply Theorem 2.1 to Λ3, with t = 3,

(η1, b1) := (α,m) , (η2, b2) := (δ,−n− k) and (η3, b3) := (∆, 1) .
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Also, the numbers η1, η2 and η3 are positive real numbers and elements of the
field L = Q(α, δ). It is obvious that the degree of the field L over Q is 6, i.e.
dL = [L : Q] = 6. Now, let us show that Λ3 6= 0. On the contrary, assume that
Λ3 = 0. Then

∆ · αm · 2n+k = (r +
√

∆)n+k = x+ y
√

∆
for some positive integers x and y, which is not possible. Thus Λ3 6= 0. Moreover,

h(η1) = h(α) = 1
3 logα, h(η2) = h(δ) = 1

2 log δ

and
h(η3) = h(∆) = log ∆ .

Now we can choose
A1 := 2 logα, A2 := 3 log δ and A3 := 6 log ∆ .

Also, we have max{| − (n + k)|, |m|, |1|} ≤ log δ
logα (n + k) + 2. So we can take

B := log δ
logα (n+ k) + 2. Using Theorem 2.1, we get

log |Λ3| > −1.4 · 306 · 34.5 · 62 · (1 + log 6) · (1 + logB)
× 2 logα · 3 log δ · 6 log ∆

> −1.5× 1014 · (1 + logB) · log δ · log ∆ .(4.4)

Combining this with (4.3), we get

(4.5) 2n log δ − log(3 + ∆) < 1.5× 1014 · (1 + logB) · log δ · log ∆ .

Step b. Rearranging equation (1.10) as

(4.6) δk√
∆
− αm

Un
= γk√

∆
+ e2(m)

Un

and taking the absolute value on both sides of (4.6), we get∣∣∣ δk√
∆
− αm

Un

∣∣∣ ≤ |γ|k√
∆

+ |e2(m)|
Un

which leads to ∣∣∣ δk√
∆
− αm

Un

∣∣∣ ≤ 1√
∆δk

+ 1
Un

.(4.7)

Dividing both sides of (4.7) by δk√
∆
, we obtain for n ≥ 1

∣∣∣1− √∆
δk
· α
m

Un

∣∣∣ ≤ 1
δ2k +

√
∆

δkUn

≤ 1
δk

+
√

∆
δk

= 1 +
√

∆
δk

.(4.8)
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From this, it follows that

(4.9)
∣∣∣1− √∆

Un
· δ−kαm

∣∣∣ ≤ 1 +
√

∆
δk

.

Put

Λ4 := 1−
√

∆
Un
· δ−kαm .

Now, we have everything ready to apply Theorem 2.1 to Λ4 with the following
data: t = 3,

(η1, b1) := (α,m) , (η2, b2) := (δ,−k) and (η3, b3) :=
(√∆
Un

, 1
)
.

The numbers η1, η2 and η3 are positive real numbers and elements of the field
L = Q(α, δ) and so dL = 6. Now, we show that Λ4 6= 0. On the contrary, assume
that Λ4 = 0. We have

2k ·∆ · αm = (r +
√

∆)k ·
√

∆ · Un = x+ y
√

∆ ,

for some positive integers x and y, which is impossible. Hence, Λ4 6= 0. Again,
h(η1) = 1

3 logα, h(η2) = 1
2 log δ and from (2.4) and (2.2), we get

h(η3) = h
(√∆
Un

)
≤ h(

√
∆) + h(Un) = 1

2 log ∆ + logUn

≤ 1
2 log ∆ + n log δ .

So, we take A1 := 2 logα, A2 := 3 log δ and A3 := 3 log ∆ + 6n log δ. Since
B ≥ max{|m|, | − k|, |1|}, we can take B := log δ

logα (n + k) + 2. Thus, taking into
account inequality (4.9) and using Theorem 2.1, we obtain

log
(1 +

√
∆

δk

)
≥ log |Λ4| > −1.4 · 306 · 34.5 · 62 · (1 + log 6)

× (1 + logB) · 2 logα · 3 log δ · (3 log ∆ + 6n log δ)

or

k log δ < 2.5 · 1013 · (1 + logB) · log δ · (3 log ∆ + 6n log δ)(4.10)

+ log(1 +
√

∆) .

Inserting inequality (4.5) into inequality (4.10), we get inequality (1.14) of Theo-
rem 1.2. This completes the proof of Theorem 1.2.

5. The study of some applications

In this section, we explicitly study equations (1.9) and (1.10) with specific cases
of Lucas sequences namely the Fibonacci, Pell and balancing sequences. For the
proofs, we use the assumption k ≥ 2 according to Lemma 2.3.
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5.1. The Fibonacci sequence. The Fibonacci sequence (Fn) is a particularity
of the Lucas sequences which corresponds to r = s = 1. In this case we have ∆ = 5
and δ = (1 +

√
5)/2. The following is our main result in this case.

Theorem 5.1.

1) The set of solutions (m,n, k) of the Diophantine equation
Pm = FnFk(5.1)

in non-negative integers m,n and k with 1 ≤ n ≤ k is
(0, 1, 1), (0, 1, 2), (0, 2, 2), (1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 1, 1),
(2, 1, 2), (2, 2, 2), (3, 1, 3), (3, 2, 3), (4, 1, 3), (4, 2, 3), (5, 1, 4),

(5, 2, 4), (6, 3, 3), (7, 1, 5), (7, 2, 5), (9, 4, 4), (11, 3, 6), (12, 1, 8),
(12, 2, 8)

 .

2) The set of solutions (m,n, k) of the Diophantine equation
Em = FnFk(5.2)

in non-negative integers m, n, k with 1 ≤ n ≤ k is (0, 1, 4), (0, 2, 4), (2, 1, 3), (2, 2, 3), (3, 1, 4), (3, 2, 4), (4, 1, 3),
(4, 2, 3), (5, 1, 5), (5, 2, 5), (6, 1, 5), (6, 2, 5), (8, 3, 5), (13, 4, 7),

(15, 3, 9)

 .

Proof. 1) From Theorem 1.1 and since n ≤ k, we get

B := log δ
logα (n+ k) + 3 < 5k , for k ≥ 2 .(5.3)

Combining (5.3) with (1.12), we get
k < 2.5 · 1013 · (1 + log 5k)(17.4 + 5.8 · 1014(1 + log 5k)) + 2.5 .(5.4)

Factoring the right side of inequality (5.4) by (log 5k)2 while using k ≥ 2, we get

k < 3× 1028 (log 5k)2
.(5.5)

Now, we apply Lemma 2.2 with l = 2, L = 5k and H = 1.5 · 1029. So, we get
k < 5.5 × 1032. Now, let us try to reduce the upper bound on k by applying
Lemma 2.4. Let

z1 := m logα− (n+ k) log δ + log 5a .
If z1 > 0, then by (3.3), we have the inequalities

|z1| = z1 < ez1 − 1 = |1− ez1 | < 8 · δ−2n

since x < ex − 1 for x > 0. If z1 < 0, then

1− ez1 = |1− ez1 | < 8 · δ−2n <
1
2 , for n ≥ 3 .

From this, we get ez1 >
1
2 and therefore, we obtain

e|z1| = e−z1 < 2 .
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Consequently, we get

|z1| < e|z1| − 1 = e|z1||1− ez1 | < 16 · δ−2n .

In both cases, the inequalities
0 < |z1| < 16 · δ−2n

hold. That is,
0 < |m logα− (n+ k) log δ + log 5a| < 16 · δ−2n.

Dividing these inequalities by log δ, we get

0 <
∣∣∣m logα

log δ − (n+ k) + log 5a
log δ

∣∣∣ < 33.3 · δ−2n .(5.6)

Now, we show that logα
log δ is irrational. On the contrary, assume that

logα
log δ = p

q

for some positive integers p and q. This shows that αq = δp, which implies
2pαq = x + y

√
5, for some positive integers x and y. This last equality is not

possible. Moreover m < 5k < 2.8 × 1033. So, we have everything ready to apply
Lemma 2.4 to inequality (5.6) with the following data

τ := logα
log δ , µ := log 5a

log δ , A := 33.3 , B := δ , M := 2.8× 1033 ,

and w := 2n. For the last part of the proof, we use Mathematica to apply Lemma 2.4.
For the computations, if the first convergent such that q > 6M does not satisfy the
condition ε > 0, then we use the next convergent until we find the one that satisfies
the conditions. Then we found that the denominator of the 65-th convergent

p65

q65
= 35320613724972060650348564250533687

60443537419079188472468542019027327
of τ exceeds 6M. Thus, we can say that inequality (5.6) has no solution for

2n = w ≥ log(Aq65/ε)
log δ ≥ log(Aq65/0.277632)

log δ ≥ 176.376 .

Therefore, we obtain
n ≤ 88 .

Substituting this upper bound for n into (3.10), we obtain
k < 6.64× 1015 · (1 + log 5k) + 2.5 ,

which implies k < 2.85× 1017. Now, let

z2 := m logα− k log δ + log
(a√5
Fn

)
.

If z2 > 0, then by (3.9), we get

|z2| = z2 < ez2 − 1 = |1− ez2 | < (1 +
√

5) · δ−k .
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If z2 < 0, then we have

1− ez2 = |1− ez2 | < (1 +
√

5) · δ−k < 1
4 , for k ≥ 6 ,

in which case we get ez2 >
3
4 and

e|z2| = e−z2 <
4
3 .

Thus it follows that

|z2| < e|z2| − 1 = e|z2||1− ez2 | < 4
3 · (1 +

√
5) · δ−k .

This means that the inequalities
0 < |z2| < 4.4 · δ−k

are always true. That is,

0 <
∣∣∣m logα− k log δ + log

(a√5
Fn

)∣∣∣ < 4.4 · δ−k .

Dividing both sides of the above inequalities by log δ, we obtain

0 <
∣∣∣m logα

log δ − k +
log
(
a
√

5/Fn
)

log δ

∣∣∣ < 9.2 · δ−k .(5.7)

Note that m < 5k < 1.43 · 1018. So considering the fact that n ≤ 88, we apply
Lemma 2.4 to inequalities (5.7) with the following data

τ := logα
log δ , µ :=

log
(
a
√

5/Fn
)

log δ , A := 9.2, B := δ, M := 1.43 · 1018 ,

and w := k. Thus, with the help of Mathematica we found that the denominator
of the 38-th convergent

p38

q38
= 289247483585778209742

494984068896025620125
of τ exceeds 6M . Therefore, we can say that inequality (5.7) has no solution for

k = w ≥ log(Aq38/ε)
log δ ≥ log(Aq38/0.00293878)

log δ ≥ 115.749 .

We conclude that
k ≤ 115 .

Thus, it remains to check that (5.1) holds for 1 ≤ n ≤ 88, 1 ≤ k ≤ 115 and
0 ≤ m ≤ 575. A quick inspection using Mathematica reveals that Diophantine
equation (5.1) has only the solutions listed in part 1) of Theorem 5.1.

2) Referring to Theorem 1.2 and using the fact that n ≤ k, we obtain

B := log δ
logα (n+ k) + 2 < 5k .(5.8)

By combining (5.8) with (1.14), we get
k < 2.5 · 1013 · (1 + log 5k)(11.1 + 3.5 · 1014(1 + log 5k)) + 2.5 .(5.9)
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Factoring the right side of inequality (5.9) by (log 5k)2 while using k ≥ 2, we obtain

k < 1.26× 1028 (log 5k)2
.(5.10)

A judicious application of Lemma 2.2 with l = 2, L = 5k and H = 6.3 · 1028 allows
us to find that k ≤ 2.22 · 1032. Now, let us try to reduce the upper bound on k by
applying Lemma 2.4. From (4.3) we can put

z3 := m logα− (n+ k) log δ + log ∆ .

If z3 > 0, it is easy to see that
|z3| = z3 < ez3 − 1 = |1− ez3 | < 8 · δ−2n

whereas if z3 < 0 we get
0 < |z3| < 16 · δ−2n .

So, we obtain that inequalities

0 <
∣∣∣m logα

log δ − (n+ k) + log 5
log δ

∣∣∣ < 33.3 · δ−2n(5.11)

hold for all n ≥ 3. We apply Lemma 2.4 to inequalities (5.11) with the following
data

τ := logα
log δ , µ := log 5

log δ , A := 33.3 , B := δ , M := 1.11× 1033 ,

and w := 2n. Therefore, using Mathematica we found that the denominator of the
64-th convergent

p64

q64
= 6707629987511213851542783627206240

11478647774934506182455699155379417
of τ exceeds 6M . It follows that inequalities (5.11) have no solution for

2n = w ≥ log(Aq64/ε)
log δ ≥ log(Aq64/0.175498)

log δ ≥ 173.877 .

Thus, we obtain
n ≤ 86 .

By inserting this upper bound of n in (4.10), we get
k < 6.33× 1015(1 + log 5k) + 2.5 ,

which leads to k < 2.71 · 1017. Put

z4 := m logα− k log δ + log
(√5
Fn

)
.

We easily obtain that

0 <
∣∣∣m logα

log δ − k +
log
(√

5/Fn
)

log δ

∣∣∣ < 9.2 · δ−k .(5.12)

Note that m < 5k < 1.36 · 1018. So considering the fact that n ≤ 86, we may apply
Lemma 2.4 to inequalities (5.12) with the following data

τ := logα
log δ , µ :=

log
(√

5/Fn
)

log δ , A := 9.2 , B := δ , M := 1.36 · 1018 ,
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and w := k. Thus, with the help of a Mathematica we found that the denominator
of the 38-th convergent

p38

q38
= 289247483585778209742

494984068896025620125
of τ exceeds 6M . Therefore, we can say that inequalities (5.12) have no solution for

k = w ≥ log(Aq38/ε)
log δ ≥ log(Aq38/0.00685216)

log δ ≥ 113.99 .

We conclude that
k ≤ 113 .

Thus, it remains to check that (5.1) holds for 1 ≤ n ≤ 86, 1 ≤ k ≤ 113 and
0 ≤ m ≤ 565. A quick inspection using Mathematica reveals that Diophantine
equation (5.2) has only the solutions listed in part 2) of Theorem 5.1. This completes
the proof of Theorem 5.1. �

In light of Theorem 5.1, we can deduce the following result.

Corollary 5.2.
1) The only solutions of Pm = F 2

n in non-negative integers n, m are P0 =
F 2

1 = 1, P0 = F 2
2 = 1, P1 = F 2

1 = 1, P1 = F 2
2 = 1, P2 = F 2

1 = 1,
P2 = F 2

2 = 1, P6 = F 2
3 = 4 and P9 = F 2

4 = 9.
2) The Diophantine equation Em = F 2

n has no solution in non-negative
integers n,m such that n ≥ 1.

5.2. The Pell sequence. Considering (r, s) = (2, 1) we obtain the Pell sequence
(Pn). In this case we have ∆ = 8 and δ = 1 +

√
2. The following is our main result

in this case.

Theorem 5.3.
1) The only solutions (m,n, k) of the Diophantine equation

Pm = PnPk(5.13)

in non-negative integers m, n and k with 1 ≤ n ≤ k are (0, 1, 1), (1, 1, 1),
(2, 1, 1), (3, 1, 2), (4, 1, 2), (6, 2, 2), (7, 1, 3), and (10, 1, 4).

2) The only solutions of the Diophantine equation
Em = PnPk(5.14)

in non-negative integers m, n, k with 1 ≤ n ≤ k are (2, 1, 2), (4, 1, 2),
(5, 1, 3), (6, 1, 3), (8, 2, 3), (9, 1, 4), and (12, 1, 5).

Proof. 1) Using Theorem 1.1 and since n ≤ k, we get

B := log δ
logα (n+ k) + 3 < 8k , for k ≥ 2 .(5.15)

Combining (5.15) with (1.12), we get
k < 2.5 · 1013 · (1 + log 8k)(19.71 + 1.24 · 1015(1 + log 8k)) + 1.6 .(5.16)
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By factoring the right side of inequality (5.16) by (log 8k)2 while using k ≥ 2, we
obtain

k < 5.8× 1028 (log 8k)2
.(5.17)

We apply Lemma 2.2 with l = 2, L = 8k and H = 4.64 · 1029, in which case we
obtain k < 1.1× 1033. We will now apply Lemma 2.4 to reduce this large upper
bound of k. So let

z5 := m logα− (n+ k) log δ + log 8a .
If z5 > 0, then by (3.3), we have the inequality

|z5| = z5 < ez5 − 1 = |1− ez5 | < 11 · δ−2n .

If z5 < 0, then

1− ez5 = |1− ez5 | < 11 · δ−2n <
2
5 , for n ≥ 2 .

From this, we deduce that ez5 >
3
5 and therefore, we see that

e|z5| = e−z5 <
5
3 .

Consequently, we get
|z5| < e|z5| − 1 = e|z5||1− ez5 | < 18.4 · δ−2n.

In both cases, the inequalities
0 < |z5| < 18.4 · δ−2n

hold. That is,
0 < |m logα− (n+ k) log δ + log 8a| < 18.4 · δ−2n.

Dividing these inequalities by log δ, we get

0 <
∣∣∣m logα

log δ − (n+ k) + log 8a
log δ

∣∣∣ < 20.9 · δ−2n .(5.18)

Moreover, m < 8k < 8.8 × 1033. Hence, since the conditions of Lemma 2.4 are
satisfied, we may now apply it to inequalities (5.18) with the following data

τ := logα
log δ , µ := log 8a

log δ , A := 20.9 , B := δ , M := 8.8× 1033 ,

and w := 2n. We use Mathematica to apply Lemma 2.4 and we found that the
denominator of the 62-th convergent

p62

q62
= 20304120557289492007401869564752501

63639909875191417264367379093577116
of τ exceeds 6M . Thus, we can say that inequalities (5.18) have no solution for

2n = w ≥ log(Aq62/ε)
log δ ≥ log(Aq62/0.239005)

log δ ≥ 95.9974 .

So
n ≤ 47 .



332 K.N. ADÉDJI, J. ODJOUMANI AND A. TOGBÉ

Substituting this upper bound for n into (3.10), we obtain
k < 6.53× 1015 · (1 + log 8k) + 1.6 ,

which implies k < 2.83× 1017. We now set

z6 := m logα− k log δ + log
(a√8
Pn

)
.

If z6 > 0, then by (3.9), we get the inequality

|z6| = z2 < ez6 − 1 = |1− ez6 | < (1 +
√

8) · δ−k .
If z6 < 0, then

1− ez6 = |1− ez6 | < (1 +
√

8) · δ−k < 2
7 , for k ≥ 3 .

So, we obtain ez6 >
5
7 and

e|z6| = e−z6 <
7
5 .

Thus it follows that

|z6| < e|z6| − 1 = e|z6||1− ez6 | < 7
5 · (1 +

√
8) · δ−k .

This means that the inequalities
0 < |z6| < 5.36 · δ−k

always hold. That is,

0 <
∣∣∣m logα− k log δ + log

(a√8
Pn

)∣∣∣ < 5.36 · δ−k .

Dividing both sides of the above inequalities by log δ, we obtain

0 <
∣∣∣m logα

log δ − k +
log
(
a
√

8/Pn
)

log δ

∣∣∣ < 6.1 · δ−k .(5.19)

Note that m < 8k < 2.27 · 1018. We can apply Lemma 2.4 to (5.19) with the
following data

τ := logα
log δ , µ :=

log
(
a
√

8/Pn
)

log δ , A := 6.1, B := δ , M := 2.27 · 1018 ,

and w := k by considering n ≤ 47. Thus, with the help of Mathematica we found
that the denominator of the 32-nd convergent

p32

q32
= 12462267145343571957

39060916513593576926
of τ exceeds 6M . Therefore, we can say that inequalities (5.19) have no solution for

k = w ≥ log(Aq32/ε)
log δ ≥ log(Aq32/0.000971797)

log δ ≥ 61.105 .

We conclude that
k ≤ 61 .
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Thus, it remains to check that (5.13) holds for 1 ≤ n ≤ 47, 1 ≤ k ≤ 61, and
0 ≤ m ≤ 488. A quick inspection using Mathematica reveals that Diophantine
equation (5.13) has only the solutions listed in part 1) of Theorem 5.3.

2) Theorem 1.2 with n ≤ k leads to

B := log δ
logα (n+ k) + 2 < 8k .(5.20)

By combining (5.20) with (1.14), we see that

k < 3.82× 1028 (log 8k)2
, for k ≥ 2 .(5.21)

Applying Lemma 2.2 with l = 2, L = 8k andH = 3.06·1029, we obtain k ≤ 7.06·1032.
Now, let us try to reduce the upper bound of k by applying Lemma 2.4. From
(4.3), we can put

z7 := m logα− (n+ k) log δ + log ∆ .

If z7 > 0, it is easy to see that

|z7| = z7 < ez7 − 1 = |1− ez7 | < 11 · δ−2n

and if z7 < 0, we get
0 < |z7| < 18.4 · δ−2n .

So, we obtain the following inequalities which are true in all cases for n ≥ 2

0 <
∣∣∣∣m logα

log δ − (n+ k) + log 8
log δ

∣∣∣∣ < 20.9 · δ−2n .(5.22)

We apply Lemma 2.4 to inequalities (5.22) with the following data

τ := logα
log δ , µ := log 8

log δ , A := 20.9 , B := δ , M := 5.7× 1033 ,

and w := 2n. Therefore, using Mathematica we found that the denominator of the
61-th convergent

p61

q61
= 14747925179851483005284059440650665

46224933832697238695140965315329641
of τ exceeds 6M . It follows that inequalities (5.22) have no solution for

2n = w ≥ log(Aq61/ε)
log δ ≥ log(Aq61/0.293383)

log δ ≥ 95.4021 .

Thus, we have
n ≤ 47 .

By inserting this upper bound of n in (4.10), we get

k < 6.37× 1015(1 + log 8k) + 1.6 ,

which leads to k < 2.76 · 1017. Put

z8 := m logα− k log δ + log
(√8
Pn

)
.
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One can see that

0 <
∣∣∣m logα

log δ − k +
log
(√

8/Pn
)

log δ

∣∣∣ < 6.1 · δ−k .(5.23)

Note that m < 8k < 2.21 · 1018. So considering the fact that n ≤ 47, we apply
Lemma 2.4 to inequality (5.23) with the following data

τ := logα
log δ , µ :=

log
(√

8/Pn
)

log δ , A := 6.1, B := δ , M := 2.21 · 1018 ,

and w := k. Thus, with the help of Mathematica we found that the denominator
of the 32-nd convergent

p32

q32
= 12462267145343571957

39060916513593576926
of τ exceeds 6M . Therefore, we can say that the inequalities (5.23) have no solution
for

k = w ≥ log(Aq32/ε)
log δ ≥ log(Aq32/0.0406095)

log δ ≥ 56.87 .

Therefore, k ≤ 56 holds in all cases. Thus, it remains to check that equation (5.14)
holds for 1 ≤ n ≤ 47, 1 ≤ k ≤ 56, and 0 ≤ m ≤ 448. By a fast computation with
Mathematica in these ranges, we see that the Diophantine equation (5.14) has
only the solutions listed in part 2) of Theorem 5.3. This completes the proof of
Theorem 5.3. �

From Theorem 5.3, we deduce the following result.
Corollary 5.4.

1) The only solutions of Pm = P2
n in non-negative integers n, m are P0 =

P2
1 = 1, P1 = P2

1 = 1, P2 = P2
1 = 1, and P6 = P2

2 = 4.
2) The Diophantine equation Em = P2

n has no solution in non-negative
integers n,m such that n ≥ 1.

5.3. The balancing sequence. The positive integer solutions n of the Diophan-
tine equation

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+R)
are called balancing numbers with corresponding balancers R. The sequence of
balancing numbers is denoted by (Bn)n≥0 and can be viewed as a particular Lucas
sequence with (r, s) = (6,−1). In this case we have ∆ = 32 and δ = 3 + 2

√
2. Here

is our result.

Theorem 5.5.
1) The only solutions (m,n, k) of the Diophantine equation

Pm = BnBk(5.24)

in non-negative integers m, n and k with 1 ≤ n ≤ k are (0, 1, 1), (1, 1, 1),
and (2, 1, 1).
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2) The Diophantine equation
Em = BnBk(5.25)

has no solution in non-negative integers m, n, k with 1 ≤ n ≤ k.

Proof. 1) Using Theorem 1.1 and since n ≤ k, for k ≥ 2, we get

B := log δ
logα (n+ k) + 3 < 15k .(5.26)

Combining (5.15) with (1.12), we get

k < 1.5× 1029 (log 15k)2
, for k ≥ 2 .(5.27)

We now apply Lemma 2.2 with l = 2, L = 15k and H = 2.3 · 1030 and get
k < 3× 1033, a large effective upper bound for k. So, in order to apply Lemma 2.4
for reducing this upper bound of k we put

z9 := m logα− (n+ k) log δ + log 32a .
Following the same procedure as z9 < 0 or z9 > 0 while considering the relation
(3.3), we get the inequalities

0 < |m logα− (n+ k) log δ + log 32a| < 38.89 · δ−2n for n ≥ 2.
Dividing these inequalities by log δ, we get

0 <
∣∣∣m logα

log δ − (n+ k) + log 32a
log δ

∣∣∣ < 22.1 · δ−2n .(5.28)

Note that m < 15k < 4.5× 1034. So, we choose the following data

τ := logα
log δ , µ := log 32a

log δ , A := 22.1 , B := δ , M := 4.5× 1034 ,

and w := 2n to apply Lemma 2.4 to inequalities (5.28). We use Mathematica to
apply Lemma 2.4 and we found that the denominator of the 68-th convergent

p68

q68
= 966709355460095817349921952710637983

6059981379976370256342185356268119110
of τ exceeds 6M . Therefore, the inequalities (5.28) have no solution for

2n = w ≥ log(Aq68/ε)
log δ ≥ log(Aq68/0.427688)

log δ ≥ 50.285 .

So
n ≤ 25 .

Substituting this upper bound for n into (3.10), we obtain
k < 7.1× 1015 · (1 + log 15k) + 1.08 ,

which implies k < 3.13× 1017. We put now

z10 := m logα− k log δ + log
(a√32
Bn

)
.

By (3.9), it is easy to show that
0 < |z10| < 8.33 · δ−k ,
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which leads to

0 <
∣∣∣m logα

log δ − k +
log
(
a
√

32/Bn
)

log δ

∣∣∣ < 4.73 · δ−k .(5.29)

We have m < 15k < 4.7 · 1018. We can apply Lemma 2.4 to inequalities (5.29) with

τ := logα
log δ , µ :=

log
(
a
√

32/Bn
)

log δ , A := 4.73 , B := δ , M := 4.7 · 1018 ,

and w := k by considering n ≤ 25. Thus, with the help of Mathematica we found
that the denominator of the 39-th convergent

p39

q39
= 8102922801676034924

50794544424546690157
of τ exceeds 6M . Therefore, we can say that the inequalities (5.29) have no solution
for

k = w ≥ log(Aq39/ε)
log δ ≥ log(Aq39/0.0191931)

log δ ≥ 28.8649 .

It follows that
k ≤ 28 .

Thus, it remains to check that (5.24) holds for 1 ≤ n ≤ 25, 1 ≤ k ≤ 28 and
0 ≤ m ≤ 420. A quick inspection using Mathematica in the ranges 1 ≤ n ≤ 25,
1 ≤ k ≤ 28, and 0 ≤ m ≤ 420 reveals that the Diophantine equation (5.24) has
only the solutions listed in part 1) of Theorem 5.5.

2) The proof in this case is similar to those of cases 2) of Theorems 5.1 and 5.3.
Thus, we omit the details of the calculations. But at the end we get 1 ≤ k ≤ 28,
1 ≤ n ≤ 25, and 0 ≤ m ≤ 420. Inspecting solutions of (5.25) in these ranges yields
no solution. This proves Theorem 5.5. �

Corollary 5.6. The number 1 is the only Padovan number that is both a balancing
number and a product of two balancing numbers.
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