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METRIC ENRICHMENT, FINITE GENERATION,
AND THE PATH COREFLECTION

Alexandru Chirvasitu

Abstract. We prove a number of results involving categories enriched over
CMet, the category of complete metric spaces with possibly infinite distances.
The category CPMet of path complete metric spaces is locally ℵ1-presentable,
closed monoidal, and coreflective in CMet. We also prove that the category
CCMet of convex complete metric spaces is not closed monoidal and cha-
racterize the isometry-ℵ0-generated objects in CMet, CPMet and CCMet,
answering questions by Di Liberti and Rosický. Other results include the
automatic completeness of a colimit of a diagram of bi-Lipschitz morphisms
between complete metric spaces and a characterization of those pairs (metric
space, unital C∗-algebra) that have a tensor product in the CMet-enriched
category of unital C∗-algebras.

Introduction

Denote by CMet the category of complete metric spaces with contractive maps
as morphisms, and distance functions allowed infinite values (see Convention 1.1).
[3, Example 2.3 (2)] notes that CMet is symmetric monoidal closed [17, §§1.1, 1.4,
1.5], so it is a good candidate category for enriching over in the sense of [17].

Many categories of interest in functional analysis are CMet-enriched or CMet-
-categories in the sense of [17, §1.2]: for every two objects x, y ∈ C in the category
of interest there is a morphism object [x, y] ∈ CMet, there is an associative
composition

[y, z]⊗ [x, y]→ [x, z]
for an appropriate monoidal structure on CMet, etc. Natural examples are in rich
supply:
• CMet is self-enriched, the space of contractions between two complete metric

spaces being metrized with the supremum distance;
• Ban, consisting of Banach spaces and linear maps of norm ≤ 1;
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• the category BanAlg1 of (complex) unital Banach algebras or its variations
BanAlg∗1 (unital complex Banach ∗-algebras), BanAlgc,1 (commutative
unital Banach algebras), etc.;

• C∗1 , the category of unital C∗-algebras, or C∗c,1, that of commutative unital
C∗-algebras.

Such metric-flavored category-theoretic considerations are by now pervasive in
the literature: in discussing universal (Gurarii) Banach spaces [19, 20], or universal
operators thereon [12], or more general issues of approximate embeddability [25, 3];
these are only a handful of examples, each with its own extensive cited literature.

The initial motivation for the present paper were a number of questions arising
naturally in [10], in studying local generation in this enriched setting. Roughly
speaking, an object x in a category C is κ-generated for a cardinal κ if homC(x,−)
preserves “sufficiently directed” colimits. Suppose, now, that V is what we will refer
to as an enriching category: symmetric monoidal closed, complete and cocomplete
(the assumptions of [17, §2.5 onward], for instance, or [10, §4]). When the category
is V-enriched one can instead consider

[x,−] : C → V ,

leading to the notion studied in [10]. Formally, aggregating, say, [2, Definition 1.13]
and [10, Definitions 2.1 and 4.1]:

Definition 0.1. Let κ be a regular cardinal.
• A poset (I,≤) is κ-directed if every subset of I of cardinality < κ has an upper

bound.
• A κ-directed colimit in a category is a colimit of a functor defined on a
κ-directed poset (regarded as a category, with an arrow i→ j when i ≤ j).

• An object x ∈ C in a category isM-κ-generated for a class of morphismsM if

hom(x,−) : C → Set

preserves κ-directed colimits of morphisms in M.
• Similarly, if C is V-enriched, x is M-κ-generated in the enriched sense (or

enriched M-κ-generated) if the above colimit-preservation condition holds for
the enriched-hom functor

[x,−] : C → V

instead, where now the colimits in question are the conical ones of [17, §3.8]
(cf. [10, §4, first paragraph] and [16, §1.1]).

Being κ-generated is a kind of smallness condition: in, say, categories of modules
over rings, it literally means being generated by fewer than κ elements [2, Proposi-
tion 3.10]. For that reason, it is also customary to refer to ℵ0-generated objects as
finitely generated; this is the finite generation of the paper’s title.

[10, Remark 6.9] briefly considers CCMet as another candidate to enrich over:
this is the category of complete convex metric spaces, i.e. those for which pairs of
points a finite distance apart can be connected by curves that realize that distance
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(this differs slightly from the definition adopted in [10]; see Definition 2.1 and
surrounding discussion).

Given that the finite segments [0, `] ∈ CCMet are in a sense the basic building
blocks of CCMet, it is natural to ask, as [10, Remark 6.9] does, whether they are
enriched-finitely-generated in the sense of Definition 0.1, with respect to the class of
isometries. It turns out that not only is the answer negative, but finite generation
is rather difficult to come by in any of the categories of interest. Summarizing
Theorems 4.3 and 4.8 and Corollary 4.9:

Theorem. In any of the categories
• CMet of complete metric spaces;
• CPMet of complete path metric spaces;
• or CCMet of complete convex metric spaces

the isometry-ℵ0-generated objects are precisely the finite discrete metric spaces, i.e.
those with all pairwise distances infinite.

This also generalizes [3, Proposition 5.19], which proves that in CMet, the only
isometry-ℵ0-generated finite spaces are the discrete ones (i.e. in that statement
finiteness is assumed).

Path or intrinsic metric spaces are recalled in Definition 2.3: they are those
for which points a finite distance ` apart are connectable with curves of length
arbitrarily close to `; they thus intermediate between plain (complete) metric spaces
and convex ones.

The appearance of CPMet in the discussion is at least in part motivated by
another question asked in [10] (immediately preceding [10, Remark 6.10]): whether
CCMet is monoidal closed. It is not (Example 2.25), but essentially because the
right adjoint to the inclusion functor

ι : CPMet ⊂ CMet

fails, in general, to produce convex spaces: see Proposition 2.9 and Corollary
2.10. CPMet, on the other hand, is much better behaved; coalescing Lemma 3.2,
Corollary 3.3, and Theorems 3.4 and 3.5:

Theorem. The full subcategory

CPMet ⊂ CMet

of complete path metric spaces is
• coreflective;
• locally ℵ1-presentable (so in particular complete and cocomplete);
• and closed monoidal.

We highlight a number of pathologies in otherwise well-behaved metric-enriched
categories:
• the failure of CCMet to be monoidal closed in Example 2.25;
• the paucity of ℵ0-generated objects in CPMet or CCMet (Theorem 4.8 and

Corollary 4.9).
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All of this requires piecing together metric spaces by the gluing process of [8, §3.1.2]
(see §2.1 below). Gluing, say, metric spaces Xi, i = 1, 2 along a common subspace
is nothing but a pushout in the category Met of (perhaps incomplete) metric
spaces, and our examples need such colimits to have various desired properties
(completeness, convexity, etc.). This is ensured by a number of auxiliary results I
have not been able to locate in the literature.

To state a joint summary of Theorems 2.21 and 2.31, recall (e.g. [8, Definition
1.4.6]) that a map

f : (X, dX)→ (Y, dY )
in Met is bi-Lipschitz if there are both bounds to how much it can scale distances,
either up or down: for some C,C ′ > 0 we have

CdX(x, x′) ≤ dY (fx, fx′) ≤ C ′dX(x, x′) , ∀x, x′ ∈ X .

For added precision, we incorporate the constants into the term and call such maps
(C,C ′)-bi-Lipschitz. The two aforementioned theorems then amalgamate to

Theorem. Let Γ be an oriented forest (in the graph-theoretic sense) of finite
diameter D and

F : Γ→ CMet
a functor consisting of (C, 1)-bi-Lipschitz morphisms.

(a) The colimit (X, d) := lim−→F of F in Met is then automatically complete,
and hence also a colimit in CMet.

(b) And the canonical morphisms
F (v)→ X, v a vertex of Γ

are (C ′, 1)-bi-Lipschitz with C ′ depending only on C and the diameter D.

Gluing is also helpful in rendering a metric space convex. This produces not
quite a reflection of CMet into CCMet, but rather a weak reflection (it will not,
in general, have the requisite universality property requisite of a reflection functor).
Nevertheless, Proposition 2.36 reads

Proposition. For any complete metric space (X, d) ∈ CMet, attaching intervals
of length d(x, x′) < ∞ with endpoints x, x′ ∈ X for any point pair not already
connected by such an interval produces a complete convex metric space.

As somewhat of a side-note, but in the same general circle of ideas, we identify
in Section 4 those pairs

X ∈ CMet, C ∈ C∗1 := unital C∗-algebras
that have a tensor product X ⊗ C. This is by definition a unital C∗-algebra that
represents the functor

[X, [C,−]] : C∗1 → CMet ,
and whether or not such tensor products always exist in an enriched category is
yet another measure of how convenient it is to work with (V-enriched categories
admitting tensor products in this sense are called V-tensored [17, §3.7]). In the
context of metric enrichment, there is a discussion of the matter in [3, §4].
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The earlier [9, Proposition 3.11] says that the category C∗c,1 of commutative unital
C∗-algebras is CMet-tensored. On the other hand, Theorem 4.1 below negates the
existence of tensors in C∗1 fairly strongly: in a sense, only the “obvious” ones exist.

Theorem. For a complete metric space X ∈ CMet and a unital C∗-algebra
B ∈ C∗1 the tensor product X ⊗ B ∈ C∗1 exists if and only if one of the following
conditions holds:
• X has cardinality ≤ 1;
• or B has dimension ≤ 1.

1. Preliminaries

[10, Remark 6.9] makes a number of observations on the category CCMet of
convex complete generalized metric spaces, where
• ‘generalized’ means that distances are allowed infinite values;
• and convexity for a metric space (X, d) is as in, say, [18, §2.5]: for every
x 6= y ∈ X there is some z 6= x, y metrically between x and y in the sense that

d(x, y) = d(x, z) + d(z, y) .

Convention 1.1. It is very natural, in the context of the present discussion, to
work with possibly-infinite metrics; for that reason, we adopt the terminology of
[8, Defiition 1.1.1]: the phrase ‘metric space’ allows for infinite distances. If, on
occasion, we encounter R≥0-valued metrics and wish to emphasize the matter, we
refer to these as finite distance functions or metrics.

Keeping this possible distance infinitude in mind, we write
• Met for the category of metric spaces;
• and CMet for that of complete metric spaces (following, say, [3, Example 2.3

(2)] and [10, §6]).
In both cases the morphisms are the contractions f : (X, dX)→ (Y, dY ):
(1-1) dY (fx, fx′) ≤ dX(x, x′), ∀x, x′ ∈ X .

The contractions are also the 1-Lipschitz maps of [14, Definition 1.1]: λ-Lipschitz,
for positive λ, would mean (1-1) with the right-hand side scaled by λ.

Recalling the notion of κ-directedness from Definition 0.1, we remind the reader
of [2, Definition 1.17]:

Definition 1.2. Let κ be a regular cardinal and C a category.
• An object x ∈ C is κ-presentable if homC(x,−) preserves κ-directed colimits.
• C is locally κ-presentable if it is cocomplete and every object is a κ-directed

colimit of κ-presentable objects.
• Finally, C is locally presentable if it is locally κ-presentable for some regular

cardinal κ.

As observed in [3, Examples 2.3 (1) and (2)], Met and CMet are both locally
ℵ1-presentable.

We follow
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• [10, §6] in writing 2δ for the two-point space {x, x′} with d(x, x′) = δ ∈
R>0 ∪ {∞};

• and [3, Example 2.3 (1)] in referring to metric spaces all of whose pairwise
distances are infinite as discrete.

2. Convex metric spaces

In order to avoid some slightly bothersome corner cases (e.g. the issue of whether
or not the two-point space 2∞ is convex) we depart from [10, §6] slightly in what
is meant by ‘convex’:

Definition 2.1. A metric space (X, d) ∈ CMet is convex if for every x 6= y ∈ X
with d(x, y) <∞ there is some z ∈ X distinct from both x and y such that

d(x, y) = d(x, z) + d(z, y) .

In other words, we only require such “intermediate” points z for x, y ∈ X a
finite distance apart. This also conflicts slightly with the notion introduced in [8,
Definition 3.6.5], where convexity automatically entails (by definition) the finiteness
of the metric.

Per the discussion in [10, Remark 6.9], CCMet is symmetric monoidal with the
tensor product (X, dX)⊗ (Y, dY ) given by the Cartesian product X × Y as a set,
together with the `1 metric:

dX⊗Y ((x, y), (x′, y′)) := dX(x, x′) + dY (y, y′) , ∀x, x′ ∈ X , ∀y, y′ ∈ Y .

It is a natural question (asked in passing in loc.cit.) whether this monoidal
structure is closed. The existence of an internal hom object

[X,Y ] ∈ CCMet

makes sense for each pair of objects (X, dX) and (Y, dY ) in CCMet: by definition,
it would be the object representing the contravariant functor

CCMet(−⊗X,Y ) : CCMetop → Set .

Naturality in X or Y , when these objects exist, follows from this characterization
and Yoneda (e.g. [1, Corollary 6.19]).

[10, §6] also considers the category CMet of complete metric spaces (i.e. CCMet
sans convexity). It is monoidal closed, with

(2-1) [X,Y ]CMet ∼= (CMet(X,Y ), dsup) :

see [3, Remark 2.2 and Example 2.3 (2)]. Since CCMet is monoidal and full in
CMet, the following simple remark tells us how the respective internal homs would
relate to one another.

Lemma 2.2. Let V ⊆ V0 be a full monoidal subcategory of a monoidal closed
category. For objects X,Y ∈ V, the internal hom [X,Y ]V exists if and only if
the object [X,Y ]V0 ∈ V0 has a coreflection in V, and in that case [X,Y ]V is that
coreflection.
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Proof. Indeed, [X,Y ]V would have precisely the same universal property as the
V-coreflection of [X,Y ]V0 : representing the contravariant Set-valued functor

V(−⊗X,Y ) ∼= V0(−⊗X,Y ) ∼= V0(−, [X,Y ]V0)
on V. �

As in the above equation, we occasionally decorate the internal hom by the
category where it is intended to live: [X,Y ] is also [X,Y ]V .

We will need some more metric-geometry vocabulary, for which we refer to [14,
Chapter 1] and [8, Chapter 2]. A small amount of care is needed in adapting some
statements from the former source, where ‘metric space’ has the more conventional
meaning allowing only for finite metrics [14, Introduction].

First, as we recall shortly, the distance of a complete convex metric space can,
in a sense, be recovered from contractive paths in the space. The relevant notions
follow ([14, Definitions 1.2 and 1.7] or [8, Definitions 2.1.6, 2.1.10 and 2.3.1]).

Definition 2.3. Let (X, d) be a metric space.
• The length `(f) of a continuous curve f : [a, b]→ X is

`(f) := sup
n∑
i=0

d
(
f(ti), f(ti+1)

)
,

where the supremum is taken over all selections of intermediate points
a = t0 ≤ t1 ≤ · · · ≤ tn = tn+1 = b .

• A curve f : [a, b]→ X is rectifiable if `(f) <∞.
• The path metric d` attached to d is

d`(x, y) := inf `(f), f : [a, b]→ X, f(a) = x and f(b) = y .

• (X, d) is a path metric space if d = d`.
• A path metric space (X, d) is strict (and its metric is strictly path) if any two

points x, x′ with d(x, x′) <∞ can be connected by a path of length d(x, x′).

Remarks 2.4.
(1) It is immediate from the definition of d` that d ≤ d`, but in general the

inequality is strict. Indeed, as observed in [14, Example 1.4 (a)], even
the topologies induced by the two metrics are generally distinct: path
components in the d-topology are clopen (both closed and open) in the
d`-topology.

This same class of examples also shows that even when d takes only
finite values, d` might not: d`(x, y) =∞ whenever x and y are in different
path components.

(2) [14, Remark following Proposition 1.6] notes that for any (X, d), the
resulting metric space (X, d`) is in fact a path metric space because the
construction d 7→ d` is idempotent:

(d`)` = d` .

We take this for granted implicitly below.
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(3) It is not difficult to see that if (X, d) is complete then so is (X, d`): see the
proof of Proposition 2.9.

(4) Our notion of ‘strictly path’ is somewhat weaker than that of [8, Definition
2.1.10]; the latter automatically implies that all distances are finite.

Indeed, loc.cit. asks that any two points x and x′ be the endpoints of a
continuous map from an interval (of length precisely d(x, x′), but this is
beside the point here). If d(x, x′) =∞ then x and x′ lie in distinct clopen
components in the topology induced by d, so this cannot happen.

Some of the results in [8] seem to ignore the issue of infinite distances,
so that some care is required in applying them to generalized metric spaces:
for [8, Theorem 2.4.16, part 1.] to hold, for instance,
• one must assume the metric is finite;
• or extend the notion of ‘strictly path’ to possibly ∞-valued metrics,

as in the present definition;
• in which case, for [8, Lemma 2.4.8] to hold, one would have to also

modify [8, Definition 2.4.7] of midpoints by requiring the defining
constraint only for finite-distance pairs (as in Remark 2.8).

As we are working with categories of metric spaces where morphisms are contrac-
tive, it is perhaps worth noting the following alternative description of the d 7→ d`
construction.

Lemma 2.5. For a metric space (X, dX) and points x, x′ ∈ X the path metric
dX,` can be recovered as

(2-2) dX,`(x, x′)
= inf{` ∈ R≥0 | ∃ contraction ϕ : [0, `]→ (X, dX), ϕ(0) = x , ϕ(`) = x′} .

Proof. Consider a rectifiable curve

f : [a, b]→ X , a 7→ x , b 7→ x′ .

By [8, Proposition 2.5.9] it decomposes as f = ϕ ◦ α for non-decreasing α : [a, b]→
[0, `(f)] and an arc-length-parametrized ([8, Definition 2.5.7 and discussion following
Remark 2.5.8])

ϕ : [0, `(f)]→ X , 0 7→ x , `(f) 7→ x′ .

We now have `(f) = `(ϕ) (i.e. composition with a non-decreasing map makes no
difference to the length), and ϕ is contractive. �

And an immediate consequence that we will take for granted repeatedly in the
sequel:

Corollary 2.6. A path metric space is strict in the sense of Definition 2.3 if and
only if all finite infima (2-2) are achieved (i.e. are actual minima).

It is a classical result of Menger’s [22] that complete convex metric spaces are
strict path metric spaces. Much more is true though; before stating the full result,
recall ([18, §2.5], [6, Definition 14.2] and [14, Definition 1.9]):
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Definition 2.7. Let (X, d) be a metric space.
A metric segment or minimizing geodesic in X is an isometry f : [a, b]→ X from

a finite interval (with its usual distance function) to X.
We refer to f(a) and f(b) as the endpoints of the segment or say that the segment

(geodesic) connects them.

Menger’s theorem, referred to above, says that not only are complete convex
metric spaces strictly path, but in fact, for any two points x, y (with d(x, y) <∞
in our present context of generalized metric spaces), there is a minimizing geodesic
connecting x and y; see for instance [13, unnumbered Theorem preceding Lemma
2.1] or [6, Theorem 14.1] for proofs (the result also appears as [18, Theorem 2.16]).

Remark 2.8. We have now come full-circle back to path metrics: for a complete
metric space (X, d), the following are equivalent:

(a) convexity;
(b) (X, d) is strictly path in the sense of Definition 2.3;
(c) any two x, x′ ∈ X with d(x, x′) <∞ have a midpoint: a point y with

d(x, y) = d(x′, y) = d(x, x′)
2 .

Indeed, (a) implies (b) by Menger, while (b) ⇒ (c) and (c) ⇒ (a) are clear.

Lemma 2.2 suggests that we should study coreflections of CMet in CCMet.
The following result describes the circumstances when these exist.

Proposition 2.9. Consider an object (X, dX) ∈ CMet.
(1) The path metric d := dX,` of Definition 2.3 is a complete generalized metric

on X.
(2) X has a coreflection in CCMet precisely when (X, d) is strict in the sense

of Definition 2.3, in which case (X, d) ∈ CCMet is the coreflection.

Proof. We tackle the claims in turn.
(1) The triangle inequality follows from the fact that contractions

[0, `]→ X , [0, `′]→ X

ending and respectively starting at the same point splice together to a contraction
defined on [0, `+ `′]. The non-degeneracy condition

d(x, y) = 0⇒ x = y

being obvious (for instance because d dominates dX), we do indeed have a gene-
ralized metric. As for completeness: note first that a d-Cauchy sequence (xn)n is
certainly dX -Cauchy, because d ≥ dX . Such a sequence will thus converge to some
x ∈ X in the original dX metric. We can now find positive integers

n0 < n1 < · · ·
such that d(xnk−1 , xnk) < 1

4k for k ≥ 1. We thus have contractive curves[1
4 + · · ·+ 1

4k−1 ,
1
4 + · · ·+ 1

4k
]
→ X
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connecting xnk−1 and xnk respectively. For fixed k those with indices k and higher
splice together to a contractive curve[1

4 + · · ·+ 1
4k−1 ,

1
3

]
→ X

connecting xnk−1 and x, whence the conclusion that xnk → x in the d-topology.
(2) If 1 ∈ CCMet is the one-point space (and hence the monoidal unit of both

CMet and CCMet) then the functors CCMet(1,−) and CMet(1,−) are both
forgetful to Set. It follows from this that a coreflection of (X, dX) ∈ CMet in
CCMet must be of the form
(2-3) id : (X, d′)→ (X, dX)
for some alternative distance d′ ≥ dX , to be determined (when it exists). On to
the two implications that constitute claim (2).

(⇐) We already know from part (1) that 2-2 is a complete generalized metric.
Note furthermore that any contraction f : (Y, dY )→ (X, dX) with Y convex factors
through a contraction to (X, d) with d as in (2-2): any two points yi ∈ Y , i = 0, 1
are (by [18, Theorem 2.16]) the endpoints of a metric segment

γ : [0, dY (y0, y1)]→ Y ,

so we have a contractive curve
ϕ := f ◦ γ : [0, dY (y0, y1)]→ X

with ϕ(0) = x0 := f(y0) and ϕ(dY (y0, y1)) = x1 := f(y1). It follows, then, that
(2-4) dY (y0, y1) ≥ d(x0, x1)
for the distance d of (2-2). This shows that id : (X, d)→ (X, dX) will indeed be a
coreflection provided (X, d) is convex, which it is by Remark 2.8.

(⇒) If a coreflection exists, we have already noted it must be of the form (2-3)
for some metric d′. It remains to argue that the infima (2-2) are achieved when
finite and that (2-2) is the distance function on the coreflection.

To that end, let x, x′ ∈ X with d(x, x′) < ∞ meaning simply that there are
contractive curves connecting x and x′. Any such curve with domain [0, `] will factor
through (2-3) and hence ` ≥ d′(x, x′). But then the infimum (2-2) also dominates
d′(x, x′); the opposite inequality was noted above, in the proof of (⇐) (see (2-4)),
so that d′ = d.

Finally, the fact that the infimum is in fact achieved then follows from Menger’s
[18, Theorem 2.16] again: every x, x′ ∈ X with d(x, x′) <∞ are the endpoints of
a metric segment of length d(x, x′). �

We now have the following description of (potential) internal homs in CCMet.

Corollary 2.10. Let (X, dX) and (Y, dY ) be two objects in CCMet.
(1) If [X,Y ] ∈ CCMet exists, then it must be CCMet(X,Y ) equipped with

the following metric:

(2-5) d(f, g) :=
min{` | ∃ contractive ϕ : [0, `]→ (CCMet(X,Y ), dsup), ϕ(0) = f, ϕ(`) = g} ,
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where
dsup(f, g) := sup

x∈X
dY
(
f(x), g(x)

)
.

In particular, the existence of the internal hom requires that the minimum
be achieved whenever the infimum is finite.

(2) Conversely, if the minima (2-5) are achieved for arbitrary
f , g ∈ CCMet(X,Y ) for which the respective infimum is finite, then (2-5)
defines a generalized metric on CCMet(X,Y ) making it into the internal
hom.

Proof. This is an immediate application of Lemma 2.2, Proposition 2.9 and the
description (2-1) of internal homs in CMet. �

Some preparatory remarks follow, aimed at giving sufficient conditions for the
existence of internal homs in CCMet.

Proposition 2.11. Let (X, dX) ∈ CMet be a complete generalized metric space.
If the finite-radius closed balls of X are compact, then

(a) the same holds for the internal hom [Y,X]CMet for any compact (Y, dY ) ∈
CMet;

(b) and (X, dX) satisfies the condition in Proposition 2.9 (2), and thus it has
a coreflection in CCMet.

Proof. The arguments are very similar, and both rely on Ascoli’s theorem ([23,
Theorem 47.1]) characterizing relatively compact spaces of maps in the compact-open
topology [23, Definition preceding Theorem 46.8].

(a) As recalled in (2-1), the internal hom is simply the space of contractions
with the supremum norm. Every family of contractions being equicontinuous [23,
Definition preceding Lemma 45.2], this is the case in particular for the radius-r
ball B ⊂ [Y,X]CMet (r ∈ R>0) around a contraction f : Y → X. For each y ∈ Y
the set

{f ′(y) | f ′ ∈ B}
is contained in a finite-radius ball of X and is thus relatively compact by assumption.
The relative compactness of B in the compact-open (hence uniform, Y being
compact) topology on

cont(Y → X)
now follows from Ascoli’s theorem. Clearly, though, closed balls in [Y,X]CCMet are
also closed in the compact-open topology (indeed, even in the point-open topology
of [23, Definition preceding Theorem 46.1], which is weaker).

(b) Writing d := dX,` for brevity, we have to argue that

d(x, x′) := inf{` | ∃ contraction ϕ : [0, `]→ (X, dX), ϕ(0) = x, ϕ(`) = x′}

is achieved as an actual minimum whenever it is finite.
Suppose d(x, x′) = r ∈ R>0, and hence we have contractive curves

[0, λr]→ X , 0 7→ x , λr 7→ x′
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for λ > 1 arbitrarily close to 1. Rescaling, this means λ-Lipschitz curves

γλ : [0, r]→ X , γλ(0) = x , γλ(r) = x′.

The family {γλ}λ is equicontinuous by the λ-Lipschitz condition, and each set

{γλ(t) | λ} for t ∈ [0, r]

is contained in a (compact, by assumption) finite-radius ball in X. It follows
that {γλ}λ is relatively compact, and as λ ↘ 1 some subnet will converge to a
contraction

[0, r]→ X, 0 7→ x, r 7→ x′.

This finishes the proof, the coreflection claim being a consequence of Proposition
2.9 (2). �

Remark 2.12. The path space (X, dX,`) of Definition 2.3 will not, in general,
have compact finite-radius closed balls, even if X does; [14, Example 1.4 (b+)]
illustrates this phenomenon.

One first recovers the standard topology on X := Rn from the metric

dX(x1, x2) := |t1 − t2|+ min(ti)‖s1 − s2‖
1
2 ,

where
xi = tisi , ti ∈ R≥0 , si ∈ Sn−1

are the respective polar-coordinate descriptions of xi. Note also that dX has the
same bounded sets as the usual Euclidean metric, since the dX -distance to the
origin equals the usual distance (to the origin again).

As [14, Example 1.4 (b+)] observes, the corresponding path distance dX,` induces
on Rn the strongest topology for which the ray embeddings

ιs : R≥0 3 t 7→ ts ∈ Rn , s ∈ Sn−1

are continuous. In (X, dX,`) the unit sphere Sn−1 is discrete, infinite, and contained
in the closed unit ball around the origin.

We can now state the aforementioned sufficiency result for internal-hom existence.

Theorem 2.13. Let (X, dX) and (Y, dY ) be two objects in CCMet with Y compact.
If either of the following equivalent conditions holds then the internal hom [Y,X] ∈
CCMet exists:
• X is locally compact;
• closed balls are compact in X.

Proof. X is a path metric space in the sense of Definition 2.3 by [18, Theorem
2.16], so indeed local compactness is equivalent to closed balls being compact, by
the Hopf-Rinow theorem ([14, following Definition 1.9] or [8, Theorem 2.5.28]). The
two points of Proposition 2.11 show that [Y,X]CMet has a coreflection in CCMet,
and Lemma 2.2 finishes the proof. �
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2.1. On and around gluing. In order to argue that (Theorem 2.13 notwithstan-
ding) the category CCMet is not closed, we construct examples via the gluing
procedure outlined in [8, §3.1.2].

Definition 2.14. (a) Let (X, d) be a metric space and ‘∼’ an equivalence
relation on X. Define the quotient semi-metric ([8, Definition 3.1.12]) d∼
on X/ ∼ by

d∼(x, x′) := inf
n∑
s=0

d(ps, qs) ,

with the infimum taken over all tuples with

p0 = x , qn = x′ and qs ∼ ps+1 ∀ 0 ≤ s ≤ n− 1 .

The quotient metric space (X/d∼, d∼) (or the metric space obtained by
gluing (X, d) along ‘∼’) is constructed from the semi-metric d∼, by identi-
fying pairs of points with zero distance.

(b) Consider metric spaces (Xi, di), i ∈ I and (X, d) equipped with contractions

ιi : (X, d)→ (Xi, di) .

The metric space ∐
X

Xi or
∐
ιi

Xi

obtained by gluing Xi along X is constructed by
• first forming the disjoint union

∐
i(Xi, di) equipped with the original

distances di on the individual Xi and infinite distances across distinct
Xi (as in [8, Definition 3.1.15]);

• and then gluing that disjoint union as in item (a), along the relation
with equivalence classes

{ιi(x) | i ∈ I} for x ∈ X .

We use points ps and qs as in Definition 2.14 frequently, so it will be handy to
have a term for the notion.

Definition 2.15. For an equivalence relation ‘∼’ on a space X and points x, x′ ∈ X
a ∼-chain connecting x and x′ (or just ‘chain’ when the relation is understood) is
a sequence of pairs ps, qs ∈ X, 0 ≤ s ≤ n with

p0 = x, qn = x′, qs ∼ ps+1 , ∀ 1 ≤ i ≤ n− 1 .

We will have to construct certain pathological convex metric spaces by gluing,
which requires that said glued spaces be strictly path (Remark 2.8). While [8,
paragraph following Exercise 3.1.13] notes that the property of being path survives
gluing, examples are easily produced of strictly path spaces which glue to non-strictly
path quotients:

Example 2.16. Consider the family

(Xε, dε) := [0, 1 + ε] , ε > 0
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with their usual interval distances, glued along the embeddings

ιε : 2∞ → Xε

identifying the two-point space with the endpoints of said intervals. The result

(X, d) :=
∐
ιε

(Xε, dε)

of the gluing procedure consists of length-(1 + ε) intervals with a common pair of
endpoints a distance of 1 apart. Said points are not connected by any curves of
length precisely 1 though, by construction: the curves [0, 1+ε]→ X have respective
lengths 1 + ε.

In the category Met of (possibly non-complete) metric spaces with contractions
the pushout of a pair

ji : Y → Xi , i = 1, 2
is nothing but the disjoint union X1

∐
X2 glued along the relation identifying

j1(y) ∼ j2(y) , y ∈ Y .

By contrast, a pushout

(2-6) Y

X1

X2

X

j1 ι1

j2 ι2

in CMet is the completion of that glued space. The qualification is crucial, as the
gluing alone need not produce a complete space:

Example 2.17. Let
• X1 be the disjoint union of intervals [`2n, r2n] of respective lengths 1

22n for
n ∈ Z≥0 (with infinite distances between points on distinct intervals);

• X2 be the disjoint union of intervals [`2n+1, r2n+1] of respective lengths 1
22n+1

for n ∈ Z≥0;
• Y a countable discrete metric space;
• and ji, i = 1, 2, respectively, the identifications of Y with

– the endpoints of the “even intervals”, minus the leftmost:

r0, `2, r2, `4, r4, . . .

– the endpoints of the “odd intervals”:

`1, r1, `3, r3, . . .

The glued space X1
∐
Y X2 is the splicing together of all of the intervals, consecuti-

vely, alternating between even and odd. It is, in short, a (non-complete) half-open
interval of length 2.

It will be convenient to glue only under circumstances that avoid the issues
exhibited by Example 2.17, in that completeness is automatic. This entails imposing
some constraints on the maps ji in a pushout diagram (2-6).
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Definition 2.18. For a constant C > 0, a map f : (X, dX)→ (Y, dY ) between two
metric spaces is C-expansive if

dY (fx, fx′) ≥ CdX(x, x′) , ∀x, x′ ∈ X .

This is meant to hold for all pairs of points, including those with dX(x, x′) =∞.

Remark 2.19. The Lipschitz maps (as most of ours are) that are also C-expansive
are precisely the bi-Lipschitz maps of [8, Definition 1.4.6].

We refer to colimits of diagrams

(2-7) ji : Y → Xi, i ∈ I

consisting of common-source arrows as ‘pushouts’, even when the family consists
of more than two arrows. In the language of [1, Exercise 11L], say, these would be
multiple pushouts, but context should serve as sufficient guard against ambiguity.

It will be convenient to set up some language and conventions for handling such
diagrams and their colimits. Denote by

X :=
∐
Y,i

Xi

the pushout in Met, i.e. the gluing of the disjoint union
∐
iXi along the relation

identifying, for each y ∈ Y , all ji(y) ∈ Xi (in the sense of Definition 2.14; so this
entails identifying distance-0 pairs of points). The maps (2-7) will typically be
one-to-one for us, as will the canonical contractions ιi : Xi → X. For that reason,
we occasionally identify Xi with its image ιi(Xi) ⊆ X.

By definition, for points x and x′ in X the distance dX(x, x′) is the infimum of
the sums

(2-8)
n∑
s=0

d(ps, qs)

for ∼-chains (ps, qs)s as in Definition 2.15, where

ji(y) ∼ ji′(y) , ∀y ∈ Y , ∀i, i′ ∈ I .

It is harmless to make a number of simplifying assumptions on the ∼-chains in
question.

Definition 2.20. Let (2-7) be morphisms in Met with the induced relation ‘∼’
on
∐
iXi. A ∼-chain (ps, qs)ns=0 connecting p0 = x and qn = x′ is streamlined if

• for each s, the points ps and qs are a finite distance apart in
∐
Xi (and in

particular belong to the same Xi). For chains not satisfying this condition the
sum (2-8) is infinite, so they contribute nothing to the infimum;

• no qs is equal to the point ps+1 (to which it is supposed to be equivalent).
Indeed, otherwise we can always collapse the chain to a shorter one without
increasing (2-8): if qs = ps+1 then

d(ps, qs) + d(ps+1, qs+1) = d(ps, qs) + d(qs, qs+1) ≥ d(ps, qs+1) .
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In particular, this second condition ensures that the “intermediate” points
q0, p1, q1, . . . , pn

all belong to images ji(Y ) ⊆ Xi: they must be equivalent to points they are not
equal to.

The following result will be helpful in constructing various examples with desired
properties by gluing, while making sure that completeness and the path property
are preserved.

Theorem 2.21. Let 1 ≥ C > 0 and consider a family
ji : Y → Xi , i ∈ I

of C-expansive morphisms in CMet.
(a) The canonical maps

ιi : Xi → X :=
∐
Y,j

Xj

into the pushout in Met are C-expansive.
(b) The distance dX between points in the image of Y through the canonical

map
ι := ιi ◦ ji : Y → X (arbitrary i)

can be computed as

(2-9) dX(ιy, ιy′) = inf
i,y

n∑
s=0

dXis (jisys, jisys+1) , y, y′ ∈ Y ,

where the infimum is taken over all
i = (i0, i1, . . . , in) ⊂ I and y = (y = y0, y1, . . . , yn+1 = y′) ⊂ Y .

In particular, ι : Y → X is also C-expansive.
(c) For x ∈ Xi and x′ ∈ Xi′ with i 6= i′ we have

(2-10) dX(ιix, ιi′x′) = inf
y,y′∈Y

(
dXi(x, jiy) + dX(ιy, ιy′) + dXi′ (ji′y

′, x′)
)
.

(d) For x, x′ ∈ Xi the distance dX(ιix, ιix′) is the smaller of (2-10) (with
i′ = i) and dXi(x, x′).

(e) The space X is automatically complete, and hence also the CMet-pushout
of the ji.

Proof. We prove the statements in the order in which they were made.
(a) Consider two points x, x′ in some Xi0 , for i0 ∈ I arbitrary but fixed

throughout the proof, and a streamlined chain (Definition 2.20) (ps, qs)ns=0
connecting ιi0x and ιi0x

′.
The intermediate pair (ps, qs), 0 < s < n is contained in, say, Xi, with

ps = ji(ys) , qs = ji(ys+1) , y• ∈ Y
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(that there are such y• follows from the assumption that the chain is
streamlined). We then have

d(ps, qs) = dXi(ps, qs)
= dXi(ji(ys), ji(ys+1))
≥ CdY (ys, ys+1) by C-expansivity
≥ CdXi0 (ji0(ys), ji0(ys+1)) j• are contractive.

The effect of this is that we can always move intermediate pairs from Xi

back into Xi0 , at the cost of expanding distances but never by a larger
factor than 1

C . In other words, (2-8) dominates
CdXi0 (p0, qk) = CdXi0 (x, x′) .

This, though, is precisely the C-expansivity claim for the map ιi0 : Xi0 → X.
(b) The second claim, on C-expansivity, follows from (2-9) and the C-expansivity

of the individual ji : Y → Xi. We thus focus on the first claim, to which
end we write δ(y, y′) for the right-hand side of (2-9):

δ(y, y′) := inf
i,y

n∑
s=0

dXis (jisys, jisys+1) , y, y′ ∈ Y .

It satisfies the triangle inequality by construction and is bi-Lipschitz to
the original metric dY , so is also a complete metric on Y . One inequality
between the two distances is obvious:

(2-11) dX(ιy, ιy′) ≤ δ(y, y′) , ∀y, y′ ∈ Y
simply because all maps in sight are contractive.

By Definition 2.20, in a streamlined chain (ps, qs) connecting jiy and ji′y′,
all points ps and qs belong to various images of Y through j• : Y → X•:

ps = jis(ys) , qs = jis(ys+1) ,
with y0 = y and yn = y′. It follows that (2-8) dominates

δ(y, y1) + δ(y1, y2) + · · ·+ δ(yn−1, y
′) ≥ δ(y, y′) ,

and hence
dX(ιy, ιy′) ≥ δ(y, y′) , ∀y, y′ ∈ Y .

Having noted the opposite inequality in (2-11), we are done.
(c) Consider a streamlined chain (ps, qs)ns=0 connecting x and x′. As in the

proof of part (b), for intermediate values 0 < s < n (if any) we have
ps = jis(ys) , qs = jis(ys+1) , y• ∈ Y .

This means that
n−1∑
s=1

d(ps, qs) ≥
n−1∑
s=1

dX(ιys, ιys+1) ,

so we may as well replace the original sum (2-8) with a (no-larger) three-term
sum as in (2-10), with y = y1 and y′ = yn.
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If there are no intermediate values 0 < s < n, i.e. the sum (2-8) has at
most two terms, then at least one of x and x′ belongs to the respective
image of Y . If that is the case for x′, say, then take y′ = j−1

i′ (x′) in (2-10).
(d) This is very similar to the preceding argument, the only difference being

that we also have to consider single-term sums (2-8).
(e) We take it for granted that Cauchy sequences with convergent subsequences

are themselves convergent ([23, Proof of Lemma 43.1]).
For a Cauchy sequence (xn)n in X there are two possibilities to consider:

either some subsequence is contained in a single ιi(Xi) ⊆ X, or not. In
the former case that subsequence is Cauchy, hence the image of a Cauchy
sequence in Xi by the C-expansivity of ιi : X → X (part (a)), hence
convergent by the completeness of Xi.

In the latter case the Cauchy property implies (via part (c), for instance)
that we can find, for arbitrarily small ε, arbitrarily large n with xn within
ε of ι(Y ) ⊆ X. Or: a subsequence (xnk)k with

dX(xnk , ι(Y )) −→
k

0 .

This in turn gives a sequence yk ∈ Y with
dX(xnk , ιyk) −→

k
0 .

In particular (ιyk)k is Cauchy (because (xnk)k is), and hence so is (yk)k by
the C-expansivity of ι (part (b)). Y being complete, (yk), (ιyk) and hence
also (xnk) are all convergent. As observed, so, then, is (xn)n.

This concludes the proof. �

Theorem 2.21 will be quite useful as-is, but it is perhaps worth noting that the
proof provides more:

Theorem 2.22. Consider a family
ji : Y → Xi , i ∈ I

of Ci-expansive morphisms in CMet for 1 ≥ Ci > 0 such that
C := inf

i
Ci > 0 .

The canonical maps
ιi : Xi → X :=

∐
Y,i

Xi

into the pushout in Met are iC-expansive respectively, where

iC := inf
j 6=i

Cj

is the infimum over all of the Cj indexed by indices other than i.

Proof. The claim follows from the proof of Theorem 2.21 (a): in transporting
distances over from Xi, i 6= i0 back to Xi0 , C-expansivity (in the earlier result’s
notation) was used only for

ji : Y → Xi
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(not for i0). For that reason, the argument delivers a lower bound of i0C for the
shrinkage of distances in Xi0 . �

A sample application of Theorem 2.21:
Proposition 2.23. Let (2-7) be a family of C-expansive morphisms in CMet for
some 1 ≥ C > 0 and assume that
• the Xi are convex in the sense of Definition 2.1;
• the infima (2-10) are all achieved for arbitrary i 6= i′ ∈ I and x ∈ Xi, x′ ∈ Xi′ ;
• as are the infima (2-9), for arbitrary y, y′ ∈ Y .

The pushout X :=
∐
Y,iXi is then convex.

Proof. This is a fairly straightforward consequence of Theorem 2.21. Consider, to
fix ideas, x ∈ Xi and x′ ∈ Xi′ for i 6= i′ with finite distance in X (per Definition
2.1, there is nothing to check for infinite-distance pairs).

Theorem 2.21 (c) gives us the distance dX(ιix, ιi′x′) via (2-10). That infimum
is by assumption achieved for two specific points y, y′ ∈ Y , and in turn the middle
term of that sum can be obtained (again by assumption) as

dX(ιy, ιy′) = dXi0 (ji0y, ji0y′)
for some i0 ∈ I. But now we can
• connect x to jiy in Xi with a minimizing geodesic (because Xi is assumed

convex);
• similarly, connect ji′y′ to x′ in Xi′ with a minimizing geodesic;
• and also connect, once more minimally, ji0y and ji0(y′) in Xi0 .

Splicing together these three metric segments will give one such segment connecting
ιix and ιi′x

′ in X, as desired.
The argument proceeds analogously for i = i′, etc. �

A variant of Proposition 2.23:
Corollary 2.24. Let (2-7) be a family of C-expansive morphisms in CMet for
some 1 ≥ C > 0 and assume that
• the Xi are convex in the sense of Definition 2.1;
• Y is compact;
• and the infima (2-9) are achieved for arbitrary y, y′ ∈ Y .

The pushout X :=
∐
Y,iXi is then convex.

Proof. The compactness of Y automatically implies the second condition in
the statement of Proposition 2.23, hence the conclusion by applying that earlier
result. �

The discussion thus far will help produce an example that shows CCMet not
to be closed, answering a question posed in [10, discussion following Remark 5.9].
Example 2.25. Consider a closed connected Riemannian manifold X0 equipped
with its path metric d0 [24, §7.2, Definition 2.4], together with
• a closed geodesic γ0 : [0, 1] → X0 representing a non-trivial element of the

fundamental group. Any non-trivial free homotopy loop class contains a closed
geodesic, by a classical theorem of Cartan [24, §12.2, Theorem 2.2].
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• and a point p0 ∈ X0 \ γ0 in the same connected component as γ0.
We can form an abstract object (Y, dY ) of CMet as follows. First, fix some

large L:

(2-12) L > max (1, max{d0(p0, γ0(t)) | t ∈ [0, 1]}) .

Y will then consist of a closed length-1 geodesic and a point having distance 2L
to all points of the geodesic. Embed Y into (X0, d0) in the obvious fashion: by
identifying the closed geodesic with γ isometrically and the isolated point with p0.

Next, we also embed (Y, dY ) into closed Riemannian manifolds (Xε, dε), ε ∈ [0, 1]
so that
• the closed geodesic in Y is again identified isometrically with a closed length-1

geodesic γε in Xε;
• while the isolated point of Y maps to a point pε ∈ Xε, admitting a unique

minimal-length geodesic connecting it to every point in γε, with that length
equal to L+ ε.

This can be arranged by altering the usual Riemannian metric on a sphere, with
γε being an equator and pε a pole.

We now have the full package for gluing: embeddings jε : (Y, dY )→ (Xε, dε) for
ε ∈ R≥0. That the glued space

(X, dX) :=
∐
Y

(Xε, dε)

is complete convex (i.e. an object of CCMet) now follows from Theorem 2.21
(e) (completeness) and Corollary 2.24 (convexity): closed connected Riemannian
manifolds are convex [24, §7.2, Corollary 2.7], Y is compact, and the infimum (2-9)
is achieved by the embedding into X0 by (2-12).

The claim now is that the internal hom [S1, X]CCMet does not exist, where S1 is
the unit-length circle. Indeed, consider the embedding ι : S1 → X identifying the
circle with the closed geodesic to which all γε ⊂ Xε collapse. That embedding can
be homotoped to the constant map

ct : S1 → pε ∈ Xε → X (any i ∈ [0, 1])

along Xε ⊂ X, ε > 0 by paths of respective length L+ ε (but no shorter), whereas
in X0 the closed geodesic is by assumption not homotopic to a constant map. It
follows that the distance between

ι : S1 → X and ct : S1 → X

in [S1, X]CMet is L, but that infimum is not achievable by a path of length L. By
Corollary 2.10, the internal hom in CCMet (rather than CMet) does not exist.

2.2. Limits along trees and automatic completeness. One handy procedure
for producing metric spaces (employed below, a number of times) is to repeatedly
glue metric segments of various lengths to the same initial space. This is a (perhaps
infinite) iteration of the pushout construction discussed in §2.1, so results that
ensure the automatic completeness of such glued spaces will be useful. Such results
are the focus of the present subsection.
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It will be convenient to consider colimits along graphs rather than categories;
the former can be turned into the latter via the free category construction of [4,
§1.7] or [21, §II.7]. Per those sources:

Definition 2.26. An oriented graph (or just plain ‘graph’, unless specified other-
wise) is a quadruple

(E, V, ∂i) = (E, V, ∂0, ∂1)
consisting of
• a set E of edges;
• a set V of vertices;
• and source and target maps ∂0 : E → V and ∂1 : E → V respectively.

We also refer to the source and target of e ∈ E as the extremities or vertices of e.

The reader should picture edges as

∂1(e) ∂0(e).e

The usual graph-theoretic language (paths, cycles, etc.) applies, with the caveat
that much of the combinatorial literature on graphs tends to assume an edge is
uniquely determined by its source and target: see e.g. [7, §§I.1 and I.2] or [11,
§§1.1-1.5].

Definition 2.27. Let Γ := (E, V, ∂i) be a graph.
• An oriented path (or just ‘path’) of length n is a sequence (ei)ni=1 of edges

with ∂1(ei) = ∂0(ei+1) for all 1 ≤ i ≤ n− 1. Pictorially:

• • · · · • • •e1e2en

We will also occasionally refer to the empty path based at a vertex v ∈ V ,
consisting of no edges at all (and hence of length 0).

• An oriented cycle (or just ‘cycle’) is a path (ei)ni=1 such that ∂1(en) = ∂0(e1)
(i.e. the target of the last arrow is the source of the first; the path returns to
its origin).

• Unoriented paths and cycles are defined as their oriented cousins, except that
for each i only the weaker requirement

∂`(ei) = ∂κ(ei+1) , κ, ` ∈ {0, 1}

is made:

· · · • • • •e1e2e3

is an unoriented path, for instance.
• Paths and cycles (oriented or not) are simple if there are no coincidences

among their constituent edges.
• For a simple unoriented path (ei)ni=1 of length n ≥ 2 its starting point is the

vertex v0 of e1 not shared by e2 is there is such a vertex, or the single vertex
of e1 is the latter is a loop. Similarly, a simple unoriented path’s destination
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vn is the vertex of en not shared by en−1 if one exists, or the single vertex of
the loop en otherwise.

We will then also refer to it as a path from v0 to vn, or say that it starts at
v0 and ends at vn.

The terminology applies to length-1 paths too, in which case there is an
ambiguity: a single edge might constitute an unoriented path from its source
to its target, or vice versa.

• An edge e in a simple unoriented path (ei)ni=1 from v0 to vn is coherent (with
the path) if in listing the vertices

v0, v1, . . . , vn−1, vn

in order, so that
{vi−1, vi} = {∂0ei, ∂1ei} , ∀1 ≤ i ≤ n ,

the source ∂0e is listed immediately before the target ∂1e (rather than after).
• Γ is connected if every two vertices are extremities of edges belonging to a

common unoriented path.
• Γ is a forest if it has no simple unoriented cycles;
• and a tree if it is in addition connected.
Recall from [4, §1.7] (or [21, §II.7, Theorem 1]):

Definition 2.28. The free category C(Γ) on a graph Γ = (E, V, ∂i) has
• V as its set of vertices;
• the (oriented) paths of Γ as morphisms;
• the empty paths as identity morphisms;
• and concatenation of paths as composition.

Via this construction, we transport terminology involving categories to graphs.
Thus, Γ-functors are functors defined on C(Γ), Γ-colimits are colimits of such
functors, etc.

In order to state Theorem 2.31 recall also ([11, discussion preceding Proposition
1.3.2])
Definition 2.29. The distance between two vertices x, y ∈ V of a graph (E, V, ∂i)
is the length of a shortest unoriented path containing edges having x and y as
endpoints; it is zero if x = y and infinite if no such paths exist.

The diameter of a graph is the supremum of the distances between pairs of
vertices.
Remark 2.30. It is easy to see that for a tree the diameter is also the supremum
of the lengths of simple unoriented paths; this is implicit in the proof of Theorem
2.31.
Theorem 2.31. Let Γ = (E, V, ∂i) be a forest consisting of finite-diameter trees,
1 ≥ C > 0, and

V 3 v F7−−−−−→ (Xv, dv) ∈ CMet
a Γ-functor sending edges to C-expansive maps.
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(a) For every vertex v of Γ, the canonical morphism from Xv to the colimit
(X, d) := lim−→F ∈Met

in Met is CNΓ,v -expansive where
NΓ,v := max

simple paths (ei) starting at v
]{coherent edges in (ei)}.

(b) That colimit is automatically complete, and hence also a colimit in CMet.

Proof. It is harmless to work with a tree Γ, since a colimit over a forest will be a
coproduct of colimits over its connected components (i.e. constituent trees).

We proceed by induction on diam(Γ). When it is zero the graph is a vertex, and
there is nothing to prove (N = 0 will do). A tree with diameter 1 is an edge e, so a
functor thereon is a C-expansive contraction

(Xe, dX,e)←− (Ye, dY,e) .
The colimit is Xe and we are once more done, taking N = 1. We now take for
granted the claim for smaller diameters, assuming diam(Γ) ≥ 2.

(1) Pruning leaf sources. A leaf [11, §1.5] is a vertex attached to a single
edge, and a source is a vertex that is not the target of any edges. Consider
the tree Γ′ ⊆ Γ obtained by deleting the respective edges ev adjacent to
leaf sources v:

Γ′

v

v′

v′′
ev

ev′

ev′′

Assume for the moment that we have proven the claims for Γ′ (on which
more below). We have an isomorphism

lim−→(F |Γ′) ∼= lim−→F ,

so completeness follows (i.e. part (b)). Furthermore, for vertices v of Γ′ we
have

NΓ,v = NΓ′,v,

so for them claim (a) for Γ′ entails it for Γ as well. On the other hand, for
source leaves v0 in the original Γ we have

NΓ,v0 = NΓ,v1 + 1 ,
where v1 is the target of the unique Γ-edge incident to v0. For that reason,
claim (a) for v1 ∈ V (Γ′) entails the analogous claim for v ∈ V (Γ).

Now, consider the effect of pruning edges ev whose sources are leaves.
Should the deletion of ev expose a new leaf source

• ew←−−−−− w
(that used to be the target of the now-absent ev), ev and ew are composable
to a path. This observation replicates, and since there is a bound of diam(Γ)
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on the length of an unoriented path the diameter also caps the number of
times this pruning procedure can be repeated.

In conclusion, we can henceforth assume that all leaves are sinks (i.e.
targets only) without affecting the desired conclusions.

(2) All leaves are sinks. Because every path of maximal length must contain
(an edge adjacent to) a leaf, Γ consists of a tree Γ′ of strictly smaller
diameter connected to the leaves v via their unique respective incident
edges ev:

Γ′
v

v′

v′′

ev

ev′

ev′′

We have the induction hypothesis for Γ′, and (X, d) can be obtained as the
pushout of the morphisms

X ′ := lim−→ (F |Γ′)
ιv−−−−−→ Yv0 , leaves v0 ,

where
• we are suppressing metrics to keep the notation simple;
• Yv0 is the two-arrow pushout of

X∂0ev

F (ev)−−−−−−−→ Xv

and

(2-13) X∂0ev
canonical map−−−−−−−−−−−−→ X ′;

• and ιv is the resulting canonical map from X ′ into that pushout.
Now, because F (ev) is assumed C-expansive, Theorem 2.22 shows that
all ιv are also C-expansive (even though (2-13) will typically be only
CN -expansive for some possibly large N , by induction).

Part (b) (completeness) already follows from this and Theorem 2.21 (e)
by induction.

As for part (a), we have two types of vertices to check it against:
• those belonging to the smaller tree: w ∈ V (Γ′). The conclusion holds

for them, in Γ′, with respective exponents NΓ′,w. But every unoriented
path in Γ starting at w can always be prolonged until it eventually
contains a leaf-incident edge ev terminating at v, whence

(2-14) NΓ,w = NΓ′,w + 1 .

The conclusion follows from the induction hypothesis, together with
the fact that since ιv is C-expansive (as noted), so is

X ′ → X := lim−→F ,

by Theorem 2.21 (a).
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• the leaves v themselves. Unoriented paths in Γ starting at v must
traverse the incoherent edge ev terminating at v, so must pass through
the vertex w := ∂0ev ∈ V (Γ′).
On the other hand, an unoriented Γ′-path starting at w (in particular,
one that contains the maximal number NΓ′,w of coherent Γ′-edges)
can always be prolonged in Γ until it contains ev′ for some other leaf
v′ (not being reduced to a single vertex, the tree contains at least two
leaves).
Because the new edge ev′ is also coherent for the path, this argument
shows that

(2-15) NΓ,v = NΓ′,w + 1 .

To finish, observe that
– the canonical map (2-13) is CNΓ′,w -expansive by induction;
– hence so is the canonical map Xv → Yv into the pushout, by

Theorem 2.22;
– while Yv → X is C-expansive by yet another application of Theorem

2.22 and the noted C-expansivity of ιv.
Composing

Xv
C
NΓ′,w -expansive−−−−−−−−−−−−−−−→ Yv

C-expansive−−−−−−−−−−−→ X

produces an expansive map with constant

CNΓ′,w · C = CNΓ′,w+1 = CNΓ,v

by (2-15), and we are done.

This concludes the argument. �

Theorem 2.31 can presumably be generalized in a number of ways, but not too
cavalierly.

Examples 2.32. (1) Dropping the finite-diameter condition, even for tree coli-
mits of isometries (i.e. C = 1 in Theorem 2.31), can invalidate completeness.
Consider the graph
•

•
•

•
• · · · •

•
• · · ·

The top row is assigned closed segments of respective lengths 1
2n , n ≥ 1

decreasing rightward, the bottom row is assigned points (i.e. singletons,
regarded as objects of CMet), and the arrows are identifications with
endpoints, splicing together the segments.

The colimit in Met is then a length-1 half-open segment, hence not
complete.

(2) Even finite graphs will not do, for either of the claims in Theorem 2.31,
if loops are allowed (even if C = 1, i.e. the connecting morphisms are
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isometries). Consider for instance a diagram in CMet of the form

(2-16) (X, d) ϕ

as we now describe.
• (X, d) is the portion of the first quadrant above a hyperbola:

(X, d) := {(x, y) ∈ R2
≥0 | xy ≥ 1} ,

with the usual Euclidean distance.
• the isometry ϕ shifts everything up by 1:

ϕ(x, y) := (x, y + 1) .
The colimit in Met consists of the equivalence classes of forward orbits

(2-17) Ox := {ϕnx | n ∈ Z≥0} , x ∈ X

under the action of the monoid generated by ϕ with the usual set-distance
induced by d, i.e.

d(Ox, Oy) = inf{d(p, q) | p ∈ Ox, q ∈ Oy} ,

and two such orbits declared equivalent when the distance between them
vanishes.

The (images of the) points
( 1

2n , 2n
)
, n ∈ Z≥0 form a Cauchy sequence:

the successive distances between their ϕ-orbits are, respectively, 1
2n .

Clearly though, that sequence has no limit in the quotient.
(3) The same effect can easily be replicated with finite graphs without single-edge

loops:

X X

ϕ

id

or

X

X

X

X

id ϕ

id id

say.
(4) On the other hand, it was crucial that the isometry ϕ of (2-16) not be

bijective. In other words, the colimit in Met of a diagram (2-16) with a
metric isomorphism ϕ will automatically be complete if the original space
(X, d) is.

This follows from the simple remark recorded as Lemma 2.33 below,
given that for an isomorphism ϕ the diagram (2-16) can be regarded as a
functor defined on a groupoid.
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Lemma 2.33. A colimit in Met of a functor

F : G → CMet

defined on a groupoid is automatically complete, and hence also a colimit in CMet.

Proof. Since the colimit in question is the coproduct of the restrictions F |Gi to
the connected components of G, it is enough to assume G is connected to begin
with. But then it will be equivalent (as a category) to a group Γ, so the colimit in
Met is the coequalizer of the isometries constituting a group action

Γ× (X, d)→ (X, d) .

Such a coequalizer is obtained by identifying the orbits (2-17) to single points and
further identifying those that are distance zero apart. If (Oxn)n is a Cauchy sequence
in that quotient then we can assume, perhaps after passing to a subsequence, that

d(Oxn , Oxn+1) < 1
2n , ∀n ≥ 1 .

Having fixed x1, some x ∈ Ox2 is less than 1
2 from it by assumption, and upon

translating x by some g ∈ Γ we may as well assume that x = x2. Similarly, we can
assume d(x2, x3) < 1

22 , etc.
The limit of (xn)n in the complete space (X, d) will map to a limit of (Oxn)n. �

Remark 2.34. Lemma 2.33 only gives an analogue of part (b) of Theorem 2.31;
the corresponding version of (a) does not hold in general, of course (since the
identification of a Γ-orbit to a single point decreases positive distances to zero).

2.3. The convex pseudo-reflection. The gluing results above make it very easy
to produce convex metric spaces by simply attaching the possibly-missing metric
segments.

Definition 2.35. Let (X, d) be a metric space.
• For points x, x′ ∈ X with d(x, x′) <∞ the (x, x′)-convex completion X

x,x′ is
the space obtained by gluing a length-d(x, x′) metric segment with endpoints
x and x′ to X.

• More generally, for a set S of finite-distance point-pairs in X the S-convex
completion XS is the space obtained by gluing a metric segment as above, for
each pair in S.

• Finally, the convex completion Xcvx is obtained by gluing one metric segment
connecting every finite-distance pair of distinct points.

The construction X 7→ X
cvx is a version of the weak reflection described in [10,

Remark 6.9] (hence the title of the present subsection), with some differences. The
following result, for instance, makes it clear that in order to produce a convex
metric space one need not iterate the construction recursively.

Not only is Xcvx, as the name suggests, convex, but we can forego the redundant
gluing.
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Proposition 2.36. Let (X, d) be a complete metric space and S ⊂ X2 a set of
finite-distance pairs of points containing all pairs which are not connected in X by
a metric segment.

The S-convex completion X
S of Definition 2.35 is complete and convex.

Proof. Note first that every metric-segment gluing is a pushout (ordinary, not
multiple) for a pair of arrows

2δ → γ and 2δ → X :

the identification with the endpoints of a segment γ of length δ := d(x, x′) and with
the two points x, x′ ∈ X. These embeddings are both isometries, so we can apply
the above discussion on C-expansive maps with C = 1. This implies in particular,
by Theorem 2.21 (a), that in every such gluing the original space (to which the
segment is being glued) embeds isometrically into the glued space; we use this
implicitly and repeatedly.

By construction, XS is the directed union of the partially-“convexified” XF for
finite sets F ⊆ S of point-pairs in X. We now turn to the claims.

(1): Completeness. This is a consequence of Theorem 2.31 (b): XS is the
colimit in Met along the tree obtained by gluing the various sub-trees

X

2δ
γ

along the common vertex X. This produces a tree of diameter ≤ 4, so Theorem
2.31 applies with C = 1.

(2): Convexity. As noted, X itself embeds into XS isometrically. It follows
that, by construction, any two points therein are (if a finite distance apart) the
endpoints of a metric segment.

Points on the same glued metric segment γ are connected by a portion of γ itself
(which embeds isometrically into XS by Theorem 2.21 (a) with C = 1).

On the other hand, for a point x ∈ X and one y ∈ γ on one of the glued
segments, d(x, y) <∞ implies that the distances from x to the endpoints p and q
of γ are also finite. Furthermore, Theorem 2.21 (c) shows that

d(x, y) = min (d(x, p) + d(p, y), d(x, q) + d(q, y)) .

In either case we have the desired metric segments in X
S : for p, say, there is one

connecting x to p (either originally in X or attached upon constructing XS) and
one connecting p to y ∈ γ (a portion of γ itself).

Finally, for points on distinct glued segments γ 6= γ′ we can fall back on the
preceding argument by first enlarging X with the addition of one segment, and
then further gluing the other. �

In particular, taking for S the set of all finite-distance point-pairs, we have

Corollary 2.37. For any complete metric space (X, d) the convex completion Xcvx

of Definition 2.35 is convex and complete.
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3. Path spaces and the path coreflection

Example 2.25 highlights one reason why CCMet is inadequate as an enriching
category: lack of closure. As seen in Remark 2.8, convexity essentially means being
strictly path; if we compromise on the stricture, coreflections are much easier to
come by. Denoting by CPMet the category of complete path metric spaces (in
the sense of Definition 2.3), we have the following version of Proposition 2.9;

Proposition 3.1. For a complete metric space (X, dX) ∈ CMet the associated
path metric space (X, dX,`), equipped with the identity contraction

(3-1) id : (X, dX,`)→ (X, dX) ,

is a coreflection of (X, dX) in CPMet.

Proof. The completeness of the metric dX,` is part of Proposition 2.9, the fact
that it is indeed a path metric was observed in Remark 2.4 (2), and the universality
property of (3-1) is not harder to prove than the analogous claim in Proposition
2.9. �

This affords an analogue of Corollary 2.10. Before stating it, we observe that
the setup of Lemma 2.2 obtains for CPMet, just as it did for CCMet.

Lemma 3.2. The full subcategory

CPMet ⊂ CMet

of complete path metric spaces contains the monoidal unit and is closed under
tensor products, so is a full monoidal subcategory.

Proof. The monoidal unit is the one-point space, whose metric is obviously path.
As for closure under tensor products, consider complete path metric spaces (X, dX)
and (Y, dY ) and points

(x, y), (x′, y′) ∈ X × Y = X ⊗ Y

with
` := dX⊗Y

(
(x, y), (x′, y′)

)
= dX(x, x′) + dY (y, y′)

finite. We can concatenate
• a path

[a, b]→ X ∼= X × {y} , a 7→ (x, y) , b 7→ (x′, y)
of approximate length dX(x, x′);

• and a path

[b, c]→ Y ∼= {x′} × Y , b 7→ (x′, y) , b 7→ (x′, y′)

of approximate length dY (y, y′)
to obtain a path in X ⊗ Y of length close to `. In short: (X ⊗ Y, dX⊗Y ) is a path
metric space. �

Finally, the CPMet-specific version of Corollary 2.10:
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Corollary 3.3. The monoidal category CPMet of complete path metric spaces is
closed: for objects (X, dX) and (Y, dY ) in CPMet we have

[X,Y ]CPMet = (CMet(X,Y ), dsup,`) ,

the path space attached to the internal hom (2-1).

Proof. A consequence of Lemma 2.2 (which applies by Lemma 3.2) and Proposition
3.1. �

The coreflection
CMet→ CPMet

of proposition 3.1 allows us to make sense of the CPMet-valued “internal hom”
[Y,X]CPMet even for arbitrary X and Y in CMet (not CPMet!): simply coreflect
the original internal hom [Y,X]CMet. We will use this notation without further
comment in the sequel.

Theorem 3.4 summarizes the ways in which CPMet is better behaved than
CCMet as a subcategory of CMet.

Theorem 3.4. The full subcategory ι : CPMet ⊂ CMet is closed under colimits,
and in particular cocomplete.

Proof. The statement holds for arbitrary coreflective subcategories of cocomplete
categories; since our inclusion is indeed coreflective by Proposition 3.1, we are
done. �

Furthermore, we know from [3, Example 2.3 (2)] that CMet is locally presentable;
it turns out that so is CPMet.

Theorem 3.5. The category CPMet of complete path metric spaces is locally
ℵ1-presentable.

Proof. We already know from Theorem 3.4 that C := CPMet is cocomplete; by
[2, Theorem 1.20], it remains to show that it has a strong generator consisting of
ℵ1-presentable objects. This means [2, §§0.5 and 0.6]:
• a set S of ℵ1-presentable objects;
• so that every object X ∈ C admits an extremal epimorphism

(3-2) e :
∐

S → X

from a coproduct of objects S ∈ S;
• in the sense that e is epic and for any factorization

(3-3) e = m ◦ −

with monic m, the latter is an isomorphism.
The generator S consists of the finite segments [0, `] for ` ∈ R≥0. Clearly, these
spaces are ℵ1-presentable (as is every complete separable metric space). Moreover,
every path metric space is a quotient of the disjoint union (i.e. coproduct) of its
rectifiable curves, so we indeed have an epimorphism (3-2) (canonical, since we are
surjecting from the disjoint union of all finite-length paths).
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It remains to argue that (3-2) is extremal, for which purpose we fix a factorization
(3-3) through a monomorphism m. CPMet is a concrete category (over Set, or
a construct in the language of [1, Definition 5.1]) whose forgetful functor to Set
is representable by the one-point space. This implies [1, Corollary 7.38] that its
monomorphisms are precisely the injections.

It then follows that m is bijective: surjectivity is immediate from (3-3) and
the fact that e is itself onto. Naturally, m is also contractive, as are all maps in
sight. On the other hand though, m cannot strictly decrease any distances: points
x, x′ ∈ X a finite distance ` apart are connected by paths of lengths

`+ ε , arbitrarily small ε > 0 ,
so their preimages through m are at most `+ ε apart no matter how small ε > 0
is. It follows that m is an isometry onto X, i.e. an isomorphism. �

Remark 3.6. It mattered, in the proof of Theorem 3.5, that the set S consisted
of all segments of arbitrary finite lengths. Had we chosen a smaller S, consisting,
say, of only the singleton, the argument would have fallen through: every metric
space (X, d) (path or not) admits a contractive bijection

(discrete X)→ (X, d)
from its own discrete version, with infinite distances between distinct points. Plainly,
that morphism is epic but not extremally so. Having a rich supply of segments
in S allowed the last part of the argument (wherein we connected points with
“almost-metric-segments”) to go through.

4. Complements and asides

4.1. Tensors over CMet. One natural question, given their CMet-enrichment,
is whether the various categories mentioned above are tensored over CMet in the
sense of [17, §3.7]: whether, in other words, for each X ∈ CMet and B ∈ C (the
category of interest) the functor
(4-1) homCMet

(
X,homC(B,−)

)
: C → CMet

is representable (note that we are regarding hom spaces in both CMet and C as
objects in CMet; so enrichment is used repeatedly to make sense of the concept).
If that is the case, we denote the representing object by X ⊗ B. The aim here
is to note that this cannot be the case for C∗1 ; in fact, a fairly strong negation of
tensor-existence holds:

Theorem 4.1. For a unital C∗-algebra B ∈ C∗1 and a complete metric space
(X, d) ∈ CMet the tensor product X ⊗B over CMet exists if and only if one of
the following conditions holds:
• X is empty, in which case X ⊗B = C (initial object in C∗1);
• X is a singleton, whence X ⊗B ∼= B;
• or X is non-empty and B is at most 1-dimensional (i.e. {0} or C), so that
X ⊗B ∼= B.

Naturally, this implies
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Corollary 4.2. The category C∗1 of unital C∗-algebras is not tensored over CMet.

Some auxiliary notation will be useful in handling (possible) tensors over CMet,
both in C∗1 and, later, in C∗c,1. Note that the Set-valued version of (4-1) is always
representable, with C either C∗1 or C∗c,1. In both cases the representing object, which
we denote by

X ⊗Set B ∈ C = C∗1 or C∗c,1 ,
can be constructed as follows:
• first form the coproduct of copies Bx of B indexed by x ∈ X;
• and then impose the additional constraints

‖ax − ax′‖ ≤ d(x, x′) , ∀a ∈ B1 := unit ball of B

where ax ∈ Bx denotes the copy of a ∈ B.
We thus always have a canonical identification

(4-2) homC(X ⊗Set B,−) ∼= homCMet
(
X,homC(B,−)

)
of Set-valued functors. Both sides are metric spaces, and the metric tensor product
X ⊗B ∈ CMet will exist precisely when that canonical morphism is isometric. In
that case, of course, we will have

(4-3) X ⊗B ∼= X ⊗Set B .

We take this discussion for granted in the sequel.
Proof of Theorem 4.1. That the tensor products are as described in the three
listed cases is an easy check, so we focus on proving the converse: that as soon as

dimB ≥ 2 and |X| ≥ 2

the metric tensor product (4-3) (which would otherwise have to coincide with the
corresponding Set-tensor product) does not exist. To that end we will construct
• a net

(fα)α = (fx,α, x ∈ X)α
of X-tuples of morphisms

fx,α : B → A

such that

‖fx,α − fx′,α‖∞ ≤ d(x, x′) on the unit ball B1 ⊂ B ;

• with each (fx,α)α converging, respectively, to some fx : B → A uniformly in
x and on the unit ball B1;

• but such that the morphisms

fα : X ⊗Set B → A

respectively induced by fx,α do not converge to the corresponding morphism

f : X ⊗Set B → A

induced by fx uniformly on the unit ball of X ⊗Set B.
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This will then show that the identification (4-2) (evaluated at A) is only one of
sets, and not a homeomorphism.

We start with the fx : B → A (which will later be the limits, respectively, of
(fx,α)α); they will all be equal to a fixed (unital) embedding

ι : B → A := B(H) = bounded operators on a Hilbert space H;
one always exists, by the Gelfand-Naimark theorem ([5, Corollary II.6.4.10]). We
will typically suppress ι and identify B with its realization inside A = B(H).

Because B is assumed at least 2-dimensional, there must be a unitary u ∈ B
that fails to commute with some unitary vα ∈ B(H). Furthermore, we can choose
vα to be arbitrarily close to 1, so that

‖vα − 1‖ −−−−→
α

0

(the αs are the elements of an otherwise unspecified directed poset).
Fix distinct elements x0,1 ∈ X (assumed to exist: |X| ≥ 2). If vα is sufficiently

close to 1 then it is connectable to 1 by a short path of unitaries ([26, Proposition
4.2.4 and its proof]), so in particular we can assume those paths are shorter than
` := d(x0, x1). We can now
• map {x0, x1} contractively to the endpoints of a segment Iα of length ‖vα−1‖;
• extend that map to a contraction from X to Iα, given that the latter is an

injective object in the category Met [18, Theorem 4.7];
• and further map Iα contractively onto a path γα of unitaries connecting 1

and vα, so as to obtain a contraction
(4-4) ϕα : X → γα ⊂ B(H), ϕα(x0) = 1, ϕα(x1) = vα .

Finally, define
fx,α : B → B(H), fx,α := ϕα(x) · ϕα(x)∗.

In words, this is conjugation by the unitary ϕα(x); rescaling the metrics involved
slightly if necessary we can assume that (4-4) were in fact C-contractive for small
C > 0, so that

X 3 x 7→ fx,α ∈ homC∗1
(
B,B(H)

)
is contractive for each α (the right-hand side being metrized as usual, uniformly
on the unit ball of C).

The ϕα take values close to 1 for large α by construction, so the X-uniform
convergence

(fx,α)α → fx = ι : B → B(H)
follows. On the other hand though, consider the unitaries

1 6= wα := vαuv
∗
αu
∗ = fα(ux1u

∗
x0

) ∈ fα(X ⊗Set B).
They converge to 1 in norm, so by the norm-continuity of the spectrum for normal
operators (e.g. [15, Problem 105]) their spectra will be contained in a small but
non-trivial arc around 1 ∈ S1 ⊂ C. It follows that no matter how large α0 and n0
are, we can find

α ≥ α0 , n ≥ n0 , wnα uniformly far from 1.
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In other words, we cannot have convergence

wnα = fα
(
(ux1u

∗
x0

)n
)
−→ f

(
(ux1u

∗
x0

)n
)

= 1

uniformly in n; or again:
fα X−→ f

uniformly on the unit ball of X ⊗Set B. �

Contrast Theorem 4.1 with its commutative version: [9, Proposition 3.11] states
that unlike C∗1 , the category of commutative (unital) C∗-algebras is tensored over
CMet.

4.2. Finite presentability. [3, Proposition 5.19] classifies those finite metric
spaces that are (enriched) ℵ0-generated in CMet with respect to the class of
isometries: they are precisely the discrete ones (i.e. those with infinite pairwise
distances; see Section 1). As we will soon see, assuming finiteness is not necessary:

Theorem 4.3. The objects in CMet isometry-ℵ0-generated in the enriched sense
are precisely the finite discrete metric spaces.

A number of preliminary observations will simplify the main line of attack. The
following terminology will be useful.

Definition 4.4. The finite-metric components (or just plain ‘components’, when
context permits it) of a metric space are the maximal subspaces on which the
metric takes finite value.

Clearly, an object of CMet is the coproduct of its finite-distance components
([8, Exercise 1.1.2 and discussion preceding it]); the same goes for Met.

Lemma 4.5. An isometry-ℵ0-generated object in CMet has finitely many compo-
nents.

Proof. Every space (X, d) is the directed union of its subspaces XF , unions of
finite families F of X-components. ℵ0-generation then requires that X be equal to
one of the XF , for otherwise the identity X → X would not be approximable by a
morphism X → XF . �

Lemma 4.5 reduces the problem to finite coproducts. Note next that it is enough
to consider the individual components themselves.

Lemma 4.6. Let Xi ∈ CMet, 1 ≤ i ≤ n be a finite family of objects. The
coproduct

X :=
n∐
i=1

Xi

is isometry-ℵ0-generated in the enriched sense if and only if the Xi are.

Proof. This is almost entirely formal. If

Y = lim−→
α

Yα
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is a directed colimit of isometries, then the canonical morphism

lim−→
α

hom(X,Yα)→ hom(X,Y ) in CMet

is

lim−→
α

hom(X,Yα) ∼= lim−→
α

n∏
i=1

hom(Xi, Yα)

∼=
n∏
i=1

lim−→
α

hom(Xi, Yα) (see below)

→
n∏
i=1

hom(Xi, Y )

∼= hom(X,Y ) .

The second isomorphism is the commutation of finite products and directed colimits
of isometries in CMet, which is vary similar to the analogous statement in the
category of sets ([21, §IX.2, Theorem 1]), and admits a parallel proof.

This is an isomorphism if and only if the individual components

lim−→
α

hom(Xi, Yα)→ hom(Xi, Y )

are, hence the conclusion. �

Consequently:

Corollary 4.7. The isometry-ℵ0-generated objects in CMet are those that
• have finitely many finite-distance components;
• all of which are themselves isometry-ℵ0-generated.

Proof. Immediate from Lemmas 4.5 and 4.6. �

Proof of Theorem 4.3. Corollary 4.7 reduces the problem to showing that a
non-empty finite-distance ℵ0-generated object (X, d) (fixed throughout the sequel)
must be a singleton. The proof proceeds in a number of stages.

(1) X is compact. Given that it is complete by assumption, this will follow
from [23, Theorem 45.1] as soon as we show that X is totally bounded [23,
§45, Definition preceding Example 1]: for every ε, X can be covered with
finitely many ε-radius balls. To see this, note that X is the directed union
of its finite subspaces (equipped with the restricted metric)

(X, d) = lim−→(F, d), F ⊆ X finite.

Finite generation in the present (enriched) context means that for every
ε > 0 the identity X → X is uniformly ε-approximable by a contraction
X → F , whence every point is within ε of one of the finitely many elements
of F .
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(2) X is a singleton. Suppose not. We can then fix ε > 0 sufficiently small
that (by finite generation) the identity X → X is uniformly ε-close to a
contraction

X
π−−−−→ F ⊆ X

factoring through some non-singleton finite F ⊆ X. The fibers

Xp := π−1(p) , p ∈ F

are clopen (i.e. closed and open) and partition X; denote by ` > 0 the
smallest distance between two of them, say Xp and Xq. By compactness
that distance is actually achieved:

` = d(Xp, Xq) := inf{d(x, y) | x ∈ Xp, y ∈ Xq}

is in fact a minimum:

d(x, y) = ` for some x ∈ Xp , y ∈ Xq .

The embedding ι : 2` → X sending the two points to x and y now admits
a contractive retraction (i.e. left inverse) r : X → 2` sending Xp to one of
the points and everything else to the other point.

That the ℵ0-generation property survives under retractions is a simple
exercise, so 2` must be isometry-ℵ0-generated. This, though, contradicts
[3, Proposition 5.19].

This finishes the proof. �

The precise analogue of Theorem 4.3 holds in CPMet:

Theorem 4.8. The objects in CPMet isometry-ℵ0-generated in the enriched
sense are precisely the finite discrete metric spaces.

Proof. The CPMet version of Corollary 4.7 goes through just as easily, so we are
again reduced to showing that a non-empty finite-distance (X, dX) ∈ CPMet is
isometry-ℵ0-generated only if it is a singleton (the ‘if’ implication being obvious).

The proof strategy for this last claim will be very different, as most devices
employed in the proof of Theorem 4.3 are absent here (we cannot work with finite
spaces, etc., since every metric in sight must be path). We instead proceed to
construct a non-approximable morphism

(4-5) ι : (X, dX)→ (Y, d := dY ) ∼= lim−→(Yn, dY |Yn)

for (isometrically embedded) Yn ⊂ (Y, d) as follows.
• First, attach a metric segment Γx of length 1 to every point x ∈ X. This

attachment occurs only at a single endpoint of Γx (which then becomes
identified with x); the other endpoint is, say, px.

Denote this (intermediate) space by (Z, dZ). It is complete by Theorem
2.31, as in the proof of Proposition 2.36. It is also of course a path metric
space, being a gluing of such [8, discussion following Exercise 3.1.13].
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• Next, connect any two newly-added points
p ∈ Γx , q ∈ Γy , x 6= y ∈ X

on distinct segments Γx and Γy with a metric segment Γp,q of length dZ(p, q).
The result (once more a complete path metric space) will be our (Y, dY ).
• This all falls within the scope of Theorem 2.21 with C = 1: first gluing

along points to produce Z, and then gluing along isometrically embedded
two-point spaces. It follows from the selfsame Theorem 2.21 that the various
component spaces (the original (X, d), the segments Γx and the Γp,q) all
embed isometrically into the end result (Y, dY ).

We henceforth refer to the single ambient distance dY as d.
• As just noted, the initial space (X, dX) embeds isometrically into (Y, d); that

identification is the map (4-5).
• It remains to identify the Yn ⊆ Y , which we index by positive integers n ∈ Z>0.

By definition, Yn consists of
– the points on the partial segments

Γx,n :=
{
p ∈ Γx | d(p,X) = d(p, x) ≥ 1

n

}
, x ∈ X;

– and the points on those Γp,q that connect these:
Γp,q for p ∈ Γx,n , q ∈ Γy,n , x 6= y .

By construction, the Yn are path metric spaces: points on the same Γx,n are already
on a metric segment (Γx,n itself), while those on distinct γn,x0,1 , x0 6= x1 are
connected by their own dedicated metric segment (one of the Γp,q). It is also clear
that Y is the directed colimit (in Met, or CMet, or CPMet) of the Yn, as the
near endpoints of the Γx,n respectively approach x ∈ X uniformly in n.

It remains to argue that if X has at least two points, then ι : X → Y is not
arbitrarily approximable in the path-metric sense by morphisms into the Yn.

Consider two points x0 6= x1 ∈ X. Since the latter is path, there is a path
γ : (I := [0, 1])→ X

connecting x0 and x1 (not necessarily a contraction). To flesh out what it would
take to prove the claim, suppose ι were approximable by morphisms X → Yn,
which would then have to be connectable to ι by short paths in CPMet(X,Yn).
Composing with γ : I → X, this means that the latter would be connectable to
paths γn : I → Yn by a path in

Cont(I → Y ) := continuous maps I → Y

of arbitrarily small length. To reach a contradiction, suppose γn : I → Yn is
uniformly close to γ. The endpoints of γn must then lie on Γp,q for p and q on
Γx′0,n and Γx′1,n respectively, for small

d(x′0, p) , d(x′1, q) , d(x0, x
′
0) and d(x1, x

′
1) .

In particular, this imposes a uniform positive lower bound on the distance d(p, q),
and hence a uniform lower bound ` > 0 (dependent only on d(x0, x1) > 0 and
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nothing else mentioned here) on the lengths of the segments Γp,q that such a γn
must traverse. But then any path connecting, say, the midpoint of Γp,q with a point
on X ⊆ Y must have length at least `

2 , and hence cannot be arbitrarily small.
This concludes the proof. �

The following consequence of (the proof of) Theorem 4.8 answers (negatively)
the question of whether metric segments are isometry-ℵ0-generated, asked in [10,
Remark 6.9].

Corollary 4.9. The objects in CCMet isometry-ℵ0-generated in the enriched
sense are precisely the finite discrete metric spaces.

Proof. If (X, d) is convex then the spaces Y and Yn constructed in the proof of
Theorem 4.8 are also convex, for instance by Proposition 2.36. �
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