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ON LIE SEMIHEAPS AND TERNARY PRINCIPAL BUNDLES

Andrew James Bruce

Abstract. We introduce the notion of a Lie semiheap as a smooth manifold
equipped with a para-associative ternary product. For a particular class
of Lie semiheaps we establish the existence of left-invariant vector fields.
Furthermore, we show how such manifolds are related to Lie groups and
establish the analogue of principal bundles in this ternary setting. In particular,
we generalise the well-known ‘heapification’ functor to the ambience of Lie
groups and principal bundles.

1. Introduction and Motivation

1.1. Introduction and Background. Prüfer [24] and Baer [1] introduced the
notion of a heap (also known as a torsor or groud or herd) as a set with a ternary
operation satisfying some natural axioms including a generalisation of associativity.
A heap should be thought of as a group in which the identity element is absent.
Given a group, it can be turned into a heap by defining the ternary operation
as (x, y, z) 7→ xy−1z. In fact, up to isomorphism, every heap arises from a group
in this way. Conversely, by selecting an element in a heap, one can reduce the
ternary operation to a group operation, such that the chosen element is the identity
element. However, we do not quite have an equivalence of categories here as passing
from a heap to a group is not natural (there is a lot of choice here). That said,
there is an isomorphism of categories between pointed heaps and groups. We will
show that this isomorphism carries over to the smooth setting.

A semiheap (sometimes also referred to as a semitorsor) is a set S, equipped
with a ternary operation [x, y, z] ∈ S that satisfies the para-associative law[

[x1, x2, x3], x4, x5
]

=
[
x1, [x4, x3, x2], x5

]
=
[
x1, x2, [x3, x4, x5]

]
,

for all xi ∈ S. A semiheap is said to be an abelian semiheap if [x1, x2, x3] =
[x3, x2, x1] for all xi ∈ S. A semiheap is a heap when all its elements are biunitary,
i.e., [y, x, x] = y = [x, x, y], for all y and x ∈ S. We remark that a general semiheap
is not associated (up to isomorphism) with a group, this is a particular property of
heaps. However, every semiheap can be embedded in an involuted semigroup. For
more details about heaps and related structures the reader should consult Hollings
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& Lawson [15] who discuss Wagner’s original development of the theory. We remark
that generalised heaps were studied by Wagner in the context of coordinate atlases
of smooth manifolds.

In this paper, we extend the definition of a semiheap to the category of smooth
manifolds, i.e., we will study Lie semiheaps as a natural generalisation of Lie
groups. As a side remark, the notion of the “Lie category” goes back to Ehresmann
(1959) and Grothendick (1960/61). We then proceed to define and study semiheap
bundles, which are akin to principal bundles in the ternary setting. We show that
principal bundles provide a class of semiheap bundles. The main complications as
compared with the standard situation with Lie groups is that we do not have an
identity element, and the left/right translations are not diffeomorphisms. While
left-invariant vector fields make sense, and we will explore this, one cannot construct
a finite dimensional Lie algebra associated with any Lie semiheap. Thus, many of
the statements found in standard Lie theory are somewhat obscured. None-the-less,
there is still a rich and potentially useful theory here to be uncovered.

1.2. Motivation. The main motivation for this work comes from the recent rene-
wed interest in ternary operations such as trusses, which are “ring-like" structures
with a ternary “addition" (see [5, 6, 7, 10]). In particular, the question of defining
geometry based on ternary operations has arisen. With this in mind, the first
steps in this direction was to find geometric examples of heaps and semiheaps,
and from there attempt to replace binary operations with ternary ones. A very
recent observation by Breaz, Brzeziński, Rybołowicz & Saracco, (see [3]), is that
affine spaces can be defined without reference to vector spaces, using two ternary
operations; one entirely on the set and the other representing an action of the field
of scalars. This reformulation is consistent with the idea that we should not fix
an observer or gauge when formulating physics. Here, selecting the zero vector is
like picking an observer in physics. Even in high school physics, energy, voltage
and position are not ‘absolutely measurable’, but one needs to fix a zero point
and measure things relative to this chosen point - mathematically one should be
thinking in terms of torsors. A gauge or frame-independent formulation of analytical
dynamics requires affine bundles and, because of this, Grabowska, Grabowski and
Urbański (see [12]) defined Lie brackets on sections of affine bundles - this too has
been reformulated by Brzeziński using ternary operations (see [8]). Semiheaps and
ternary algebras have been applied to quantum mechanics (see [4, 16, 17]). Heaps
also appear in knot theory in various guises (see for example [25]).

We must of course mention torsors in algebraic geometry, which are generalisa-
tions of principal bundles in algebraic topology. Torsors in this setting can also be
viewed as generalising Galois extension as found in abstract algebra. There are deep
links here with various branches of mathematical physics, including deformation
quantisation (see, for example, [20]). It is also remarkable that heaps and trusses
appear behind elliptical curves and their endomorphisms (see [9].)

Another source of motivation comes from the applications of nonassociative
algebras in geometry and geometric mechanics, for example smooth loopoids
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of Grabowski & Ravanpak (see [13, 14]). Ternary operations are, by definition,
nonassociative.

A Historical Note. After the first draft of this paper, the author was notified
that semiheap bundles were considered by Konstantinova in 1978, albeit in Russian,
see [19]. However, the author has been unable to obtain this paper to compare
their constructions and statements with those presented here.

2. Lie Semiheaps

2.1. Semiheaps. In this subsection we review, and slightly reformulate the notion
of a ternary multiplication and a semiheap. Nothing in this subsection is new. Our
main reference is Hollings & Lawson [15]. Let S ∈ Set be a set (possibly empty).
We define S(n) := S × S × · · · × S where there are n-factors, and similar for set
theoretical maps. The group S3 acts on S(3) in a canonical way. Specifically, and
vital for our later needs,

s13 : S(3) −→ S(3)

(x, y, z) 7−→ (z, y, x) .

A ternary multiplication/product we write as

µ : S(3) −→ S

(x, y, z) 7−→ [x, y, z] .

When convenient, we will write µ(x, y, z) for the ternary multiplication.

Definition 2.1. A set (possibly empty) equipped with a ternary product (S, µ)
is a semiheap if the product is para-associative, i.e., the following diagram is
commutative:

S(2) × S(3) S × S(3) × S S(3) × S(2)

S(3) S(3) S(3)

S

��

1
(2) × µ

��

1× (µ ◦ s13)× 1

��

µ× 1
(2)

**UUUUUUUUUUUUUUUUUUUUUUUUUUU

µ
��

µ

ttiiiiiiiiiiiiiiiiiiiiiiiiiii

µ

The para-associative property concretely means

[x1, x2, [x3, x4, x5]] = [x1, [x4, x3, x2], x5] = [[x1, x2, x3], x4, x5] ,

for all xi ∈ S. A semiheap is a heap if every element of the semiheap is biunitary,
i.e., y = [x, x, y] = [y, x, x].
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Example 2.2. Let M be a smooth manifold, then the set of smooth functions on
M can be considered as a semiheap with the ternary operation being [f1, f2, f3] :=
f1f2f3. As the algebra of smooth functions is commutative, the para-associativity
of the ternary product is clear.

Example 2.3. Let M be a smooth manifold, then the set of nowhere vanishing
smooth functions on M can be considered as a heap with the ternary operation
being [f1, f2, f3] := f1(f2)−1f3.

Example 2.4. Consider the group of diffeomorphisms between two smooth mani-
folds Diff(M,N). Then we have a natural heap structure given by

[φ1, φ2, φ3] := φ1 ◦ φ−1
2 ◦ φ3 ,

for all φi ∈ Diff(M,N).

Example 2.5. Let (M, g) be a Riemannian manifold. Then on the set of vector
fields on M we can define a ternary product as

[X,Y, Z] := X g(Y, Z) .
The fact that g(W,X)g(Y,Z) = g(W,Xg(Y,Z)) = g(Y, g(X,W )Z) for arbitrary
vector fields implies that the ternary product is para-associative, i.e., we have a
semiheap on the set of vector fields on a Riemannian manifold. There is also a
heap structure on any vector space (or more generally an affine space) given by
{X,Y, Z} := X − Y + Z, which is independent of any Riemannian structure or
similar.

Remark. The analogue construction for a symplectic manifold (M,ω) does not
quite give a semiheap as ω(W,X) = −ω(X,W ) and so there is an extra sign present
when examining the para-associativity.

Example 2.6. Let C(E) be the affine space of linear connections on a vector
bundle π : E → M . Then C(E) is canonically a heap with the ternary operation
being [∇1,∇2,∇3] := ∇1 −∇2 +∇3.

Definition 2.7. Let (S′, µ′) be a semiheap and let S ⊆ S′ be a subset. Then S
is a subsemiheap of S′ if it is closed with respect to the ternary product. In other
words, (S, µ := µ′|S) is a semiheap.

Definition 2.8. Let (S, µ) and (S′, µ′) be semiheaps. A homomorphism of semi-
heaps is a map φ : S → S′ that satisfies

φ ◦ µ = µ′ ◦ φ(3) .

Concretely, a map is a homomorphism of semiheaps if
φ[x1, x2, x3] = [φ(x1), φ(x2), φ(x3)]′ ,

for all xi ∈ S. We thus obtain the category of semiheaps, which we denote as
SHeap.

Example 2.9. If (S, µ) is a subsemiheap of (S′, µ′), then the inclusion map
ι : S ↪−→ S′ is a homomorphism of semiheaps.
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Example 2.10. Let φ : (M, g)→ (M ′, g′) be an isometry of Riemannian manifolds.
We observe that

φ∗
(
Xg(Y, Z)

)
= φ∗(X)g(Y,Z) = φ∗(X)g′(φ∗(Y ), φ∗(Z)) ,

and so an isometry induces a homomorphism of the associated semiheaps.

Definition 2.11. Let (S, µ) and (S′, µ′) be semiheaps and φ : (S, µ)→ (S′, µ′) be
a homomorphism of semiheaps. Then the homomorphic image of φ is the set

φ(S) = {a ∈ S′ | ∃x ∈ S such that a = φ(x)} ⊆ S′ .

A standard argument from universal algebra, that is sets with operations,
establishes the following.

Proposition 2.12. Let φ : (S, µ) → (S′, µ′) be a homomorphism of semiheaps.
The homomorphic image φ(S) ⊆ S′ is a semiheap.

Definition 2.13. Let (S, µ) be a semiheap and fix a pair (x1, x2) ∈ S(2). The map
Rx1x2 : S −→ S

x 7→ [x, x1, x2]
is a right translation. Similarly, the map

Lx1x2 : S −→ S

x 7→ [x1, x2, x]
is a left translation.

We will denote the set of right translations of a semiheap by R(S) and the set
of left translations of a semiheap by L(S).

Proposition 2.14. Let (S, µ) be a semiheap. Then the sets R(S) and L(S) of
right and left translations, respectively, are semigroups.

Proof. We will consider right translations as these are of importance for bundles.
The case of left translations follows in more-or-less the same way.

(1) The composition of two right translations is a right translation:
Rx3x4 ◦Rx1x2(−) = Rx3x4([−, x1, x2])

= [[−, x1, x2], x3, x4]
= [−, x1, [x2, x3, x4]]
= Rx1[x2,x3,x4](−) .

(2) Associativity of the composition:(
Rx5x6 ◦Rx3x4

)
◦Rx1x2 = Rx3[x4,x5,x6] ◦Rx1x2

= Rx1[x2,x3,[x4,x5,x6]]

= Rx1[x2,x3,x4],x5,x6]

= Rx5x6 ◦Rx1[x2x3x4]

= Rx5x6 ◦
(
Rx3x4 ◦Rx1x2

)
. �
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For left translations, it can directly be shown that Lx1x2 ◦ Lx3x4 = L[x1x2,x3]x4

and that we have associativity of the composition of left translations.

Definition 2.15. Let (S, µ) be a semiheap and fix a pair (x1, x2) ∈ S(2). The map
Cx1x2 : S −→ S

x 7→ [x1, x, x2]
is a centric translation.

Warning. Due to para-associativity, we do not have a semigroup structure on the
set of centric translations. The composition of centric translations is not a centric
translation.

Proposition 2.16. Left and right translations on a semiheap S commute, i.e., for
all xi ∈ S,

Lx1x2 ◦Rx3x4 = Rx3x4 ◦ Lx1x2 .

Proof. Let xi and x ∈ S. Then directly
Lx1x2

(
Rx3x4(x)

)
= [x1, x2, [x, x3, x4]] = [[x1, x2, x], x3, x4] = Rx3x4

(
Lx1x2(x)

)
,

using the para-associative property. �

2.2. Lie Semiheaps. Recall that a Lie group is a group object in the category of
smooth manifolds, i.e., a smooth manifold equipped with three smooth maps, the
unit, inverse and multiplication maps, that satisfy the standard axioms of a group.
The reader may consult Mac Lane [22, pages 75–76] for details of group objects in
categories. A Lie semiheap is a semiheap object in the category of smooth manifolds.
That is, a smooth manifold together with a ternary operation that satisfies the
axioms of a semiheap (see Definition 2.1). More formally, we make the natural
definition of a Lie semiheap.

Definition 2.17. A Lie semiheap is a semiheap object in the category of real,
finite dimensional, Hausdorff and second countable smooth manifolds. In particular,
the map µ : S(3) → S is a smooth map. A Lie semiheap homomorphism is a smooth
map ψ : S → S′ that is also a semiheap homomorphism.

Remark. The notion of a topological semiheap is evident as a semiheap object
in the category of topological spaces and so the ternary product is continuous.
We will restrict attention to the smooth case in this paper. Moreover, complex
Lie semiheaps can similarly be defined as semiheap objects in the category of
complex manifolds, so in particular, the ternary product is holomorphic. One can
also consider Lie semiheaps in the category of supermanifolds - the functor of points
is expected to be a useful concept in this context. We will only consider real and
finite dimensional manifolds here.
The resulting category of Lie semiheaps we denote as LieSHp. Within this category
is the full subcategory of Lie heaps, which we denote as LieHp. Specifically, the
forgetful functor F : LieHp→ LieSHp, which forgets the biunitary property of all
elements, is is full, faithful, and injective. Generically, we will not distinguish Lie
heaps and Lie semiheaps, but rather consider Lie heaps as particular Lie semiheaps.
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Furthermore, there are other full subcategories AbLieSHp of abelian Lie semiheaps,
and AbLieHp of abelian Lie heaps.
Remark. Recall that the category of Lie groups is, similarly, a full subcategory
of the category of Lie semigroups. The forgetful functor in this case forgets the
identity element and the inverse map.
Example 2.18. If (S, η) is a Lie semiheap, then (S, ηop) is also a Lie semiheap
where we define [x, y, z]op := [z, y, x]. Clearly, a Lie semiheap is abelian if and only
if ηop = η.
Example 2.19. A singleton {?} considered as a zero-dimensional smooth manifold
has a unique heap operation {?}×{?}×{?} → {?}. This ternary product is smooth
and so we have the trivial Lie (semi)heap.
Example 2.20. The empty set ∅, can be considered (conventionally) as a smooth
manifold and comes with a unique heap operation ∅ × ∅ × ∅ → ∅. This ternary
product is by definition smooth and so we have the empty Lie (semi)heap.
Remark. Universal statements hold for the empty set, however existence state-
ments are false. Thus, the empty set is not a (Lie) group as we require the existence
of an identity element.
From the well-known observations about the category of smooth manifold and
semiheaps, the following is evident (see [22, page 20] for the notion of initial and
terminal objects).
Proposition 2.21. The empty semiheap is the initial object on the category of
Lie semiheaps. The trivial Lie semiheap is the terminal object in the category of
semiheaps.

We will need a slightly modified notion of a Lie semiheap in which a distinguished
point is identified.
Definition 2.22. A pointed Lie semiheap is a triple (S, µ,pt), such that (S, µ)
is a Lie semiheap, and pt ∈ S is a distinguished point. A pointed Lie semiheap
homomorphism φ : (S, µ,pt)→ (S′, µ′,pt′) is a Lie semiheap homomorphism such
that φ(pt) = pt′. The resulting category of pointed Lie semiheaps will be denoted
as LieShp∗.

There is the obvious forgetful functor LieShp∗ → LieShp in which the distin-
guished point is forgotten.
Example 2.23. Any Lie group can be considered as a pointed Lie semiheap (in fact
a pointed Lie heap). In particular, if G is a Lie group, then we define [g1, g2, g3] :=
g1g
−1
2 g3. As a map µ : G(3) → G, it is clear that the ternary multiplication is

smooth as, by definition, the group product and inversion are smooth. If ψ : G→ G′

is Lie group homomorphism, then it is also a Lie semiheap homomorphism. This is
easily seen from the properties of a Lie group homomorphism, i.e., ψ[g1, g2, g3] =
ψ(g1g

−1
2 g3) = ψ(g1)ψ(g2)−1ψ(g3) = [ψ(g1), ψ(g2), ψ(g3)]′. The distinguished point

is the identity element e ∈ G. Furthermore, for any Lie group homomorphism we
have that ψ(e) = e′.
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The previous example shows that we have a functor from the category of Lie
groups to the category of pointed Lie semiheaps. More formally, we have the
following definition - already a well known result in the setting of groups and heaps.

Definition 2.24. The heapification functor is the functor
H : LieGrp −→ LieShp∗ ,

that on objects acts as
(G,m, i) 7−→ (G,µ) ,

where µ(g1, g2, g3) = [g1, g2, g3] := g1g
−1
2 g3, the distinguished point is the identity

element e ∈ G, and on morphisms ψ : G→ G′, acts as ψH := ψ.

As a matter of notation, we will set SG := H(G) = (G,µ, e) to denote the
pointed Lie (semi)heap associated with a Lie group G.

We remind the reader that a functor is full if it is surjective on the hom sets and
is faithful if it is injective on the hom sets. A functor is said to be fully faithful if
is full and faithful, i.e., is a bijection between the hom sets.

Proposition 2.25. The heapification functor is fully faithful.

Proof. As the heapification functor does not change a given Lie group homomor-
phism, it is just considered as being in a different category, it is obviously faithful.
The only thing to check is that any ψ̄ : SG → SG′ is also a group homomorphism.
Note that, by definition we have ψ̄(e) = e′. As a homomorphism of semiheaps, it
must be the case that

ψ̄(g1g
−1
2 g3) = ψ̄(g1)

(
ψ̄(g2)

)−1
ψ̄(g3) .

Setting g2 = e in the above gives ψ̄(g1g3) = ψ̄(g1)(ψ̄(e))−1ψ̄(g3) = ψ̄(g1)e′ψ̄(g3) =
ψ̄(g1)ψ̄(g3). This result implies that we have a group homomorphism, and so the
heapification functor is full. �

Remark. If we consider the category of Lie semiheaps, rather than the category
of pointed Lie semiheaps, then the resulting heapification functor is not fully
faithful as there is no reason why ψ̄(e) = e′ for an arbitrary homomorphism of
Lie semiheaps. However, it may still be convenient to consider the range of the
heapification functor as LieShp.

Example 2.26. Rn with its standard topology and smooth structure is an abelian
Lie group with respect to addition. The associated heap operation is thus [x, y, z] :=
x − y + z. The distinguished point is the zero element 0 ∈ Rn.

Example 2.27. R×, the set of non-zero real numbers, with its standard topology
and smooth structure is an abelian Lie group with respect to multiplication. The
associated heap operation is thus [x, y, z] := xy−1z. The distinguished element is
1 ∈ R×.

Example 2.28. Combining the two previous examples, the exponential map
(R,+)→ (R×, ·) induces a homomorphism of the associated pointed Lie semiheaps.
Explicitly,

ex−y+z = exe−yez = ex(ey)−1ez .
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We note that the target category of the heapification functor can be restricted to
the category of pointed Lie heaps, which we denote as LieHp∗. We then have a
functor going in the other direction, which is again, well known in the context of
heaps and groups.

Definition 2.29. The groupification functor is the functor

G : LieHp∗ −→ LieGrp ,

which acts on objects as
(H,µ, e) 7−→ (H,m, i) ,

where m(x1, x2) := [x1, e, x2], and i(x) = x−1 := [e, x, e]. Furthermore, the group
identity element is e ∈ H. On morphisms φ : (H,µ, e)→ (H ′, µ′, e′) the groupifica-
tion functor acts as φG := φ.

Note that as the ternary product is by definition smooth, the corresponding
group structure is also smooth and the target category of the groupification functor
is the category of Lie groups.

Proposition 2.30. The groupification functor is fully faithful.

Proof. As the groupification functor does not change a given pointed Lie heap
homomorphism, it is just considered as being in a different category, it is obviously
faithful. Fullness following using the direct observation that xy−1z = [x, y, z]. Then
applying an arbitrary Lie group homomorphism φ̄ : G(H)→ G(H ′) shows that

φ̄([x, y, z]H) = φ̄(xy−1z) = φ̄(x)φ̄(y)−1φ̄(z) = [φ̄(x), φ̄(y), φ̄(z)]H′ ,

which established the desired result. �

Recall that two categories C and D are isomorphic if there exists two functors
F: C → D and G: D → C such that FG = 1D and GF = 1C . That is, there is a
one-to-one correspondence between objects and morphisms. As it can easily and
directly be shown that the on objects the heapification and groupification functors
are mutual inverses - a fact well known in the algebraic setting – we have the
following theorem.

Theorem 2.31. There is an isomorphisms of categories between LieGrp and
LieHp∗.

Proposition 2.32. Let M be a smooth manifold, (S, µ) be a Lie semiheap, and
φ, ψ : M → S be diffeomorphisms. Then M inherits two Lie semiheap structures,
µφ and µψ, that are canonically isomorphic.

Proof. The ternary structures inherited are the obvious ones, i.e., we set

[m1,m2,m3]φ := φ−1[φ(m1), φ(m2), φ(m3)]
[m1,m2,m3]ψ := ψ−1[ψ(m1), ψ(m2), ψ(m3)] .

We first need to show that these ternary structures are para-associative. We chose
to study the structure associated with φ, but, of course, the case of ψ follows.
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Using the para-associativity of the ternary multiplication on S and the fact that
φφ−1 = 1, we observe that

[[m1,m2,m3]φ,m4,m5]φ = φ−1[φφ−1[φ(m1), φ(m2), φ(m3)], φ(m4), φ(m5)]
= φ−1[φ(m1), φφ−1[φ(m4), φ(m3), φ(m2), φ(m5)]](2.1a)
= φ−1[φ(m1), φ(m2), φφ−1[φ(m3), φ(m4), φ(m5)]] .(2.1b)

We then note that (2.1a) is identical to [m1, [m4,m3,m4]φ,m5]φ, and that (2.1b)
is identical to [m1,m2, [m3,m4,m5]φ]φ. Thus, we have para-associativity of the
induced ternary operations. Note that φ is a Lie semiheap homomorphism from
the induced structure to the one on S.

Next we need to show that ψ−1 ◦ φ : M →M is a Lie semiheap homomorphism
between the two induced structures. Clearly, as a composition on diffeomorphisms
is itself a diffeomorphism, we will have an isomorphism of Lie semiheaps. Directly,

ψ−1φ[m1,m2,m3]φ = ψ−1φφ−1[φ(m1), φ(m2), φ(m3)]
= ψ−1[φ(m1), φ(m2), φ(m3)]
= ψ−1[ψψ−1φ(m1), ψψ−1φ(m2), ψψ−1φ(m3)]
= [ψ−1φ(m1), ψ−1φ(m2), ψ−1φ(m3)]ψ ,

as required. A similar statement holds for φ−1 ◦ ψ. �

We can modify Proposition 2.32 by considering a pointed Lie semiheap (S, µ,pt).
If we set φ−1(pt) = m and ψ−1(pt) = n, then we have a diffeomorphism of pointed
manifolds ψ−1 ◦ φ : (M,m)→ (M,n). The following proposition is thus evident.

Proposition 2.33. Let M be a smooth manifold, (S, µ, pt) be a pointed Lie
semiheap, and φ, ψ : M → S be diffeomorphisms such that φ−1(pt) = m and
ψ−1(pt) = n. Then the two inherited pointed Lie semiheaps (M,µφ,m) and
(M,µψ, n) are canonically isomorphic.

Let (S, µ) and (S′, µ′) be Lie semiheaps. Then S × S′ is, of course, a smooth
manifold. A ternary product on the Cartesian product can be defined as

[(x1, y1), (x2, y2), (x3, y3)] :=
(
[x1, x2, x3], [y1, y2, y3]

)
.

Clearly, the ternary product is para-associative and smooth. Thus, the Cartesian
product of Lie semiheaps is again a Lie semiheap. It remains to argue that the
Cartesian product is a categorical product.

Proposition 2.34. In the category of Lie semiheaps, LieSHp, the Cartesian product
is a categorical product.

Proof. The preceding discussion shows that the Cartesian product of two Lie
semiheaps is again a semiheap. We only have to demonstrate the universal property.
Let (S, µ) and (S′, µ′) be Lie semiheaps. We then define the projection maps (which
are clearly homomorphisms of Lie semiheaps)

πS : S × S′ → S , πS′ : S × S′ → S′ .
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Let (T, ν) be any Lie semiheap and consider the pair of Lie semiheap homomor-
phisms

φS : T → S , φS′ : T → S′ .

The universal property is that given the above homomorphisms, there exists a
unique Lie semiheap homomorphism φ : T → S × S′, such that the following
diagram is commutative:

T S

S′ S × S′

//
φS

��

φS′

$$J
J

J
J

J
J

J
J

J

φ

OO

πS

oo

πS′

We claim that the required map is φ(−) :=
(
φS(−), φS′(−)

)
. Clearly this map is

smooth and renders the above diagram commutative. It is easy to check that this
map is a Lie semiheap homomorphism. �

Recall that the tangent functor (see [18, Chapter I]) is a functor from the
category of smooth manifolds to the category of smooth manifolds that

(1) on objects, sends M to its tangent bundle TM , and
(2) on morphisms, ψ : M → N gets sent to Tψ : TM → TN .

A fundamental property of the tangent functor is that it preserves products, i.e.,
T(M × N) ∼= TM × TN , and given ψ : M → M ′ and χ : N → N ′, T(ψ × χ) ∼=
Tψ × Tχ.

Proposition 2.35. Let (S, µ) be a Lie semiheap. Then (TS,Tµ) is also a Lie
semiheap.

Proof. We need to check that Tµ : (TS)(3) → TS is para-associative. We start
with the para-associative property of (S, µ)

µ ◦ (1(2) × µ) = µ ◦ (1× (µ ◦ s13)× 1) = µ ◦ (µ× 1
(2)) ,

and apply the tangent functor. Using the properties of the tangent functor, and
via minor abuse of notation, we observe that

Tµ ◦ (1(2) × Tµ) = Tµ ◦ (1× (Tµ ◦ s13)× 1) = Tµ ◦ (Tµ× 1
(2)) ,

thus we have the para-associative property. �

Definition 2.36. Let (S, µ) be a Lie semiheap. The Lie semiheap (TS,Tµ) will
be referred to as the tangent Lie semiheap of (S, µ).

If we have a pointed Lie semiheap (S, µ,pt), then the tangent functor produces
the pointed Lie semiheap (TS,Tµ, 0pt).
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2.3. Left-invariant Vector Fields. The notion of a left-invariant vector field
directly generalises to the setting of Lie semiheaps.

Definition 2.37. Let (S, µ) be a Lie semiheap. Then a vector field X ∈ Vect(S)
is said to be a left-invariant vector field if

l∗ ◦X = X ◦ l∗ ,

for all l ∈ L(S). The vector space of all left-invariant vector fields is denoted as
VectL(S).

Proposition 2.38. The space of left-invariant vector fields VectL(S) on a Lie
semiheap (S, µ) is a Lie subalgebra of the Lie algebra of vector fields.

Proof. We only need to show that the space is closed under the standard commu-
tator bracket. Explicitly, assuming X,Y ∈ VectL(S) we have

l∗ ◦ [X,Y ] = l∗ ◦ (X ◦ Y − Y ◦X) = l∗ ◦X ◦ Y − l∗ ◦ Y ◦X
= X ◦ Y ◦ l∗ − Y ◦X ◦ l∗ = [X,Y ] ◦ l∗ .

�

The left-invariant condition can be expressed as

(dLxy)zXz = X[x,y,z] ,

for all x, y and z ∈ S. For fixed (x, y) ∈ S(2), the derivative map is understood as
the linear map

dLxy : TzS −→ T[x,y,z]S .

In order to further discuss properties of left-invariant vector fields, we will specialise
to a particularly nice class of pointed Lie semiheaps.

Definition 2.39. A pointed Lie semiheap (S, µ,pt =: x0) is said to be a biunital
Lie semiheap if the distinguished point is biunital, i.e., [x, x0, x0] = x = [x0, x0, x]
for all points x ∈ S. Homomorphisms of biunital Lie semiheaps are homomorphisms
of pointed Lie semiheaps. The resulting category we denote as BULieShp.

Proposition 2.40. The set of left-translations L(S) on a biunital Lie semiheap is
a monoid.

Proof. Via Proposition 2.14, we know that L(S) is a semigroup. We only need to
show the existence of the identity. We claim that Lx0x0 = 1L(S). Directly,

Lx0x0 ◦ Lyz = L[x0,x0,y]z = Lxy ,

Lyz ◦ Lx0x0 = L[y,z,x0]x0 = [[y, z, x0], x0,−] = [y, z, [x0, x0,−]] = Lyz .

�

Remark. The same statement holds for right-translations on a biunital Lie semi-
heap.

Proposition 2.41. Let (S, µ, x0) be a biunital Lie semiheap. Then any point x ∈ S
can be reached from x0 via a left-translation.
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Proof. Observe that for any x ∈ S
Lxx0(x0) = [x, x0, x0] = x .

�

Remark. The definition of a left-invariant functions is clear, i.e., l∗f = f for all
l ∈ L(S). This condition implies, for biunital Lie semiheaps, that

f(x) = f([x, x0, x0]) = f(x0) ,
and so left-invariant functions are constants. This conclusion is not evident on
general Lie semiheaps.

Note that (dLxx0)x0 : Tx0S −→ TxS is not, in general, an isomorphism as the
underlying left-translation is not a diffeomorphism. In other words, (dLxx0)x0 will,
in general, have a non-trivial kernel. This complicates the question of the existence
and dimension of the the space of left-invariant vector fields.

Proposition 2.42. Let (S, µ, x0) be a biunital Lie semiheap. The map V : S → TS
given by x 7→ (dLxx0)x0v for a given (non-zero) v ∈ Tx0S, defines a smooth vector
field on S that is left-invariant, such that V (x0) = v.

Proof. From Proposition 2.41, we know that any point in S can be reached from
x0 via a left-translation and so the map V is well defined. It is clear that V can be
considered as a vector field, a priori, which may not be smooth. To see smoothness,
obverse that that V being smooth is equivalent to V (f) being smooth for all
f ∈ C∞(S). With this in mind, let γ ∈ C∞(I, S) be a smooth curve such that
γ(0) = x0 and γ′(0) = v. Then,

v(f) = d
dt

∣∣∣∣
t=0

f ◦ γ(t) , V (f) = d
dt

∣∣∣∣
t=0

f ◦ Lxx0 ◦ γ(t) .

Furthermore, consider the map γ̂ : S(2) × (−ε, ε) → S(3) defined as (x, y, t) 7→
(x, y, γ(t)). This map is clearly smooth in t as we have defined it in terms of a
smooth curve. Thus,

f ◦ Lxx0 ◦ γ(t) = (f ◦ µ ◦ γ̂)(x, y, t) ,
is smooth as it is the composition of smooth maps, and so V (f) is smooth.
Left-invariance follows via direct calculation, i.e.,

V[x,y,z] = (dL[x,y,z]x0)x0v = (dLxy)z ◦ (dLzx0)x0v = (dLxy)zVz .
Given that Lx0x0 = 1S , it is evident that V (x0) = v. �

In the other direction we have the following.

Proposition 2.43. Let (S, µ, x0) be a biunital Lie semiheap. Then the value of
any left-invariant vector field at an arbitrary point x ∈ S is determined by its value
at x0.

Proof. From Proposition 2.41, we know that any point in S can be reached from
x0 via a left-translation. Thus,

(dLxx0)x0 : Tx0S −→ TxS ,
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is well defined for all x ∈ S. The left-invariance of a vector field implies that

Xx = (dLxx0)x0Xx0 ,

and thus Xx0 determines the value of Xx for all points x ∈ S. �

Consider the map

Φ: S × Tx0S −→ TS

(x, v) 7−→ (x, (dLxx0)x0v) .

Clearly, the above is a smooth bundle map (over the identity on S), however this is
not an isomorphism in general. Thus, the tangent bundle of a biunital Lie semiheap
need not, in general, be trivialisable, i.e., biunital semiheaps are not necessarily
parallelisible.

Let us pick a basis {eα}α=1,...,n (not necessarily the coordinate basis) of Tx0S
of a biunital Lie semiheap (assuming dimS = n). We can then construct the “not
everywhere vanishing” left-invariant vector fields viz

Eα(x) := (dLxx0)x0eα ,

and build other left-invariant vector fields as linear combinations of these. However,
we make no claim that this is a basis for the left-invariant vector fields. For instance,
these vector fields may be singular. None-the-less, we have the following.

Theorem 2.44. Let (S, µ, x0) be a bunital Lie semiheap. Then non-zero left-inva-
riant vector fields exists.

Recall that we have an isomorphism of categories between the categories of
Lie groups and pointed Lie heaps, see Theorem 2.31. We then have the following
expected result.

Proposition 2.45. Let (G,m, i) be a Lie group. Then the set of left-invariant
vector fields on G coincides with the set of left-invariant vector fields on the
associated pointed Lie heap H(G) = (G,µ, e).

Proof. Assume X ∈ Vect(G) is left-invariant on the associated Lie heap H(G),
i.e., for all x, y and z ∈ G, (dLxy)zXz = X[x,y,x]. Given that [x, y, z] = x · y−1 · z
implies that, setting y = e (the group identity), Lxe = Lx (on the right we mean
left-translations in the group sense). Thus,

(dLx)zXz = (dLxe)zXz = X[x,e,z] = Xx·z ,

and so X is left-invariant in the group sense. In other words, VectL(H(G)) ⊂
VectL(G).

In the other direction, assume that X is left-invariant in the group sense. Then
sending x 7→ x · y−1 for an arbitrary point y ∈ G, shows that

(dLxy)zXz = (dLx·y−1)zXz = Xx·y−1·z = X[x,y,z] ,

and so VectL(G) ⊂ VectL(H(G)). In conclusion, as one is the subset of the other
and vice versa, VectL(G) = VectL(H(G)) . �
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As sets and indeed real vector spaces VectL(G) and VectL(H(G)) are isomorphic.
This is also true of the Lie algebras as the bracket is unchanged on the identification
of the two vector spaces. Given that the categories of Lie groups and pointed Lie
heaps are isomorphic we make the following observation.

Corollary 2.46. The Lie algebra of left-invariant vector fields on a pointed Lie
heap (S, µ, x0) is of finite dimension n = dimS, and is isomorphic to the Lie
algebra g of the associated Lie group G(S).

2.4. Towards Multiplicative Structures. In this subsection we will make some
preliminary definitions of what one could mean by multiplicative functions, forms
and vector fields on a Lie semiheap. We will defer the question of their existence and
further properties for now. For a review of the notion of multiplicative structures
on Lie groups and groupoids the reader can consult Kosmann-Schwarzbach [21].

Recall that R can be considered with its standard topology and smooth structure
as a Lie (semi)heap with the “+−+” operation, i.e.,

[u, v, w]R := u− v + w .

Functions on S are, by definition, smooth maps S → R. We are thus led to the
following.

Definition 2.47. Let (S, µ) be a Lie semiheap. A function f ∈ C∞(S) is said to
me a multiplicative function if it is a Lie semiheap homomorphism from (S, µ) to
(R, [−,−,−]R), i.e.,

f([x, y, z]) = f(x)− f(y) + f(z) ,
for all x, y and z ∈ S. If S is a pointed Lie semiheap, then we further insist on the
condition f(x0) = 0 for a function to be multiplicative.

We notice that the zero function, i.e., f(x) = 0 for all x ∈ S, is trivially
multiplicative. As for k-forms, we make the following definition.

Definition 2.48. Let (S, µ) be a Lie semiheap. A k-form Θ ∈ Ωk(S) is said to be
a multiplicative k-form if

µ∗Θ = pj∗1Θ− pj∗2Θ + pj∗3Θ ,

where pji : S(3) −→ S is the projection onto the i-th factor.

We directly observe that for multiplicative 0-forms
(µ∗f)(x, y, z) = f([x, y, z]) = f(x)− f(y) + f(z) ,

and so multiplicative 0-forms are precisely multiplicative functions.
Recall that given a vector field X ∈ Vect(X), its local flow is a smooth map

Φ: I × S −→ S ,

where I ⊂ R is an open interval containing 0, such that
(1) Φ(0, x) = x for all x ∈ S, and
(2) d

dt
∣∣
t=t0

Φ(t, x) = XΦ(t0,x) for all x ∈ S and t0 ∈ I.
For convenience we write Φt(−) := Φ(t,−).
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Definition 2.49. Let (S, µ) be a Lie semiheap. A vector field S ∈ Vect(S) is said
to be a multiplicative vector field if its local flow is a Lie semiheap homomorphism,
i.e.,

Φt[x, y, z] = [Φt(x),Φt(y),Φt(z)] ,
for all t ∈ I and x, y, z ∈ S.

2.5. The Ternary Coalgebraic Structure of Functions. Recall that C∞(S)
is a nuclear Fréchet algebra, and so C∞(S) ⊗̂C∞(S) ∼= C∞(S ×S) with respect to
any reasonable topology, for instance the projective and injective topologies (see for
example [27, Part III]). Similar statements hold for any finite number of (suitably
completed) tensor products. When required, we will denote the multiplication map
in C∞(S) as m: C∞(S)× C∞(S)→ C∞(S), and the unit map as η : ?→ C∞(S)
(the unit function 1C∞(S) is the constant function with value 1, i.e., 1C∞(S)(x) = 1
for all x ∈ S).

Definition 2.50. Let (S, µ) be a Lie semiheap. Then the associated canonical
ternary comultiplication ∆: C∞(S) → C∞(S) ⊗̂C∞(S) ⊗̂C∞(S) is defined as
∆f := µ∗f = f ◦ µ.

More explicitly, for basic elements we can write ∆f(x1⊗x2⊗x3) = f
(
[x1, x2, x3]

)
.

Example 2.51. Consider a Lie group G and its associated heap SG. Then given
any function f on SG (and so on G) ∆f(g1 ⊗ g2 ⊗ g3) := f(g1g

−1
2 g3). This should

be compared with the usual comultiplication on the algebra of functions on a Lie
group.

Proposition 2.52. Let (S, µ) be a Lie semiheap. Then the associated canonical
ternary comultiplication satisfies the following properties.

(1) ∆ is R-linear;

(2) ∆(f1f2) = ∆f1 ∆f2 for all f1, f2 ∈ C∞(S);

(3) ∆ ◦ η = η(3), where η(3) is the unit map for C∞(S × S × S);

(4) The following identity holds

(2.2) (1(2) ⊗∆) ◦∆ = (1⊗ (∆ ◦ s12)⊗ 1) ◦∆ = (∆⊗ 1
(2)) ◦∆ .

Proof.
(1) R-linearity is clear as ∆ is defined by the pullback of the ternary multipli-

cation.

(2) Similarly, the pullback is an algebra homomorphism, so we have the result.

(3)
(
∆◦η

)
(pt)(x1⊗x2⊗x3) = ∆1C∞(S)(x1⊗x2⊗x3) = 1C∞(S)[x1, x2, x3] = 1.

As xi are arbitrary, we have the result.
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(4) Let f ∈ C∞(S) be an arbitrary smooth function. The para-associative law
for the semiheap ternary multiplication means

f([x1, x2, [x3, x4, x5]]) = f([x1, [x4, x3, x2], x5]) = f([[x1, x2, x3], x4, x5]) ,
which can be written as

(1(2) ⊗∆)∆f = (1⊗ (∆ ◦ s12)⊗ 1)∆f = (∆⊗ 1
(2))∆f .

�

We refer to the identity (2.2) as para-coassociativity. Note that, just as with
associativity and coassociativity, para-coassociativity is para-associativity, but with
the direction of arrows reversed.
Remark. Ternary Hopf algebra were studied by Borowiec, Dudek & Duplij see [2].
Note the structures they consider are not the same as presented here. Quantum
heaps, loosely, Hopf algebras without a counit, were introduced Škoda in [26].
We then note that

(
C∞(S),m, η,∆

)
consists of a unital associative (commutative)

algebra
(
C∞(S),m, η

)
and a “ternary para-coassociative coalgebra”

(
C∞(S),∆

)
such that ∆ is a unital associative algebra homomorphism. This should be compared
with the definition of a bialgebra (see, for example [11, Chapter 2]).

Example 2.53. The set Rn can be considered as either a vector space or a smooth
manifold in the standard ways. Obviously, TpRn ∼= Rn for any point p ∈ Rn. The
standard scalar product on the vector space Rn induces a Riemannian metric on
Rn (as a smooth manifold). That is,

〈up, vp〉 = u · v = uivjδji ,

where u = uiei (etc.) in some chosen basis of TpRn. We view (ui, vj) as global
coordinates on Rn × Rn. The smooth manifold Rn has the structure of a Lie
semiheap, which can be conveniently specified using the pullback of the chosen
coordinates. Specifically

µ∗ : C∞(Rn) −→ C∞(Rn × Rn × Rn)
µ∗xi = uivjwkδkj ,

were we have coordinates xi on Rn and (uj , vk, wl) on Rn × Rn × Rn ∼= R3n.

2.6. Smooth Semiheap Actions. The notion of an action of a Lie group on a
manifold generlises to Lie semiheaps. We make the following definition.

Definition 2.54. Let M be a smooth manifold and (S, µ) be a Lie semiheap. A
right action of S on M is a smooth map

σ : M × S(2) −→M

(m,x, y) 7→ σxy(m)
such that the compatibility condition

σx3x4 ◦ σx1x2 = σx1[x2,x3,x4] ,

holds. A smooth manifold M , equipped with a semiheap action will be referred to
as a S-space.
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We will change notation slightly, where convenient, and set m/ (x, y) := σxy(m),
where m ∈M and (x, y) ∈ S(2).
Remark. The notion of a left semiheap action is clear. However, as we are in-
terested in generalising principal bundles, right actions are more natural for our
purposes.
A right semiheap action can be considered as a map τ : S(2) → HomMan(M,M). By
fixing x1 = x, we observe that the compatibility condition is described by a map
τx : S(3) → HomMan(M,M) given by (x1, x2, x3) 7→ τ(x, [x1, x2, x3]).

Example 2.55. The trivial action of a Lie semiheap S on a smooth manifold M
is defined by

m / (x, y) = m,

for all m ∈M and (x, y) ∈ S(2).

Example 2.56. Let S be a Lie semiheap. Then S can be considered as a S-space
via the right translation map (see Definition 2.13). Note that, in general, the right
translation map Rx1x2 : S → S is not a diffeomorphism.

Example 2.57. Let ψ : S → S′ be a homomorphism of Lie semiheaps. We can
then define an action of S on S′ as

S′ × S(2) −→ S′

(y, (x1, x2)) 7→ [y, ψ(x1), ψ(x2)]′ .
The observation that

[[y, ψ(x1), ψ(x3)]′, ψ(x4), ψ(x5)]′ = [y, ψ(x1), ψ[x3, x4, x5]]′ ,
which follows from para-associativity and the definition of a homomorphism of
semiheaps, establishes that we have constructed an action in this way.

Example 2.58. As a specific case of the above example, consider the affine line A
equipped with it’s heap structure {t1, t2, t3} = t1 − t2 + t3. This is clearly a Lie
heap with respect to the standard smooth structure. Let (S, µ) be an arbitrary Lie
semiheap, and let ϕ : A→ S be a homomorphism of Lie semiheaps. Then we have
a Lie heap action

σ : S × A(2) −→ S

(x, (t1, t2)) 7−→ [x, ϕ(t1), ϕ(t2)] .

Definition 2.59. Let (S, µ) be a Lie semiheap and let M and N be S-spaces.
Then a smooth map ψ : M → N is said to be S-equivariant if for all m ∈M and
(x, y) ∈ S(2)

ψ
(
m / (x, y)

)
= ψ(m) / (x, y) .

Example 2.60. Let G be a Lie group and M be a right G-space. We denote
the action M × G → M as (m, g) 7→ ag(m). One can build a (semi)heap action
M ×G(2) →M by setting

(m, g1, g2) 7−→ ag−1
1 g2

=: σg1g2 ,
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and the ternary product is defined as [g1, g2, g3] := g1g
−1
2 g3. To show that we do

indeed have an action, observe that
σg3g4 ◦ σg1g2 = ag−1

3 g4
◦ ag−1

1 g2
= ag−1

1 g2g
−1
3 g4

= ag−1
1 [g2,g3,g4] = σg1[g2,g3,g4] .

Let N be a another G-space equipped with the heap action as above. If ψ : M → N
is a G-equivariant map, then it is also SG-equivariant.

Example 2.61. As a specific example of the previous example, recall that a flow
on a smooth manifold M is a smooth action of the additive group of real number
(R,+)

ϕ : M × R −→M ,

such that for all m ∈M and, t1 and t2 ∈ R
ϕ(m, 0) = m, ϕ(ϕ(m, t1), t2) = ϕ(m, t1 + t2) .

The group structure can be replaced by the heap structure [t1, t2, t3] = t1 − t2 + t3.
A Lie heap action

σ : M × R(2) −→M

(m, (t1, t2)) 7−→ ϕ(m,−t1 + t2) .

The category of S-spaces is evident and we denote it by ManS , with Ob(ManS)
being (smooth) S-spaces and Hom(ManS) being S-equivariant maps.

The orbit of an element m ∈M is the set of points that can be reached from m
using the elements of S, i.e.,

m / S(2) := {m / (x1, x2) | (x1, x2) ∈ S(2)} .
However, like semigroup and monoid actions, we do not, in general, have an
associated equivalence relation. Thus, we cannot construct the orbit set using
equivalence classes as one would with group actions. This needs to be taken into
account with the starting definition with semiheap bundles.

3. Semiheap and Principal Bundles

3.1. Semiheap Bundles. We now proceed to mimic as closely as possible the
definition of a principal bundle in terms of a fibre bundle with a compatible
group action (see for example [23, Chapter 9.4]), but now in the setting of Lie
semiheaps. Our approach is to consider a S-space together with a compatible local
trivialisation.

Definition 3.1. A semiheap bundle consists of the following.
(1) A S-space P ;

(2) A surjective submersion π : P → M , such that the action of S on M is
trivial;

(3) An open cover {Ui}i∈I of M and a collection of S-equivariant diffeomor-
phisms

ti : π−1(Ui)
∼→ Ui × S ,
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where the action on Ui × S is right translation on the Lie semiheap, such
that the following diagram is commutative

π−1(Ui) Ui × S

Ui

//
ti

''OOOOOOOOOOOOOO

π ��
prj1

We will denote a semiheap bundle as a triple (P,M, S). The collection {(Ui, ti)}i∈I
we refer to as a local equivariant trivialisation.

Note that the action is trivial on M , and so preserves the fibres, i.e., if π(p) = m,
then π(p / (x, y)) = m.
Remark. We have no notion of a free action as there is no identity element. An
action is transitive if for every pair of points p, q ∈ π−1(m), there exists a pair
x, y ∈ S such that p / (x, y) = q. We will not insist on transitivity in our definition
of a semiheap bundle. This should be compared with the definition of a principal
bundle.

Example 3.2. Any Lie semiheap can be considered as a semiheap bundle over a
single point, {m} × S → {m}, where the action is the right translation.

Example 3.3. A trivial semiheap bundle is the Cartesian product P = M × S,
where M is a smooth manifold and S a Lie semiheap, together with the canonical
projection onto the first factor. The action of S on P is simply the right action,
i.e., (m,x, x1, x2) 7→ (m, [x, x1, x2]).

Definition 3.4. Let (P,M, S) and (P ′,M ′, S′) be semiheap bundles. Then a
semiheap bundle homomorphism is a pair (Φ, ψ), where ψ : S → S′ is a Lie semiheap
homomorphism, and Φ: P → P ′ is a (smooth) bundle map (over φ : M → M ′)
that is ψ-equivariant in the sense that

Φ(p / (x, y)) = Φ(p) / (ψ(x), ψ(y)) ,
where p ∈ P , and x, y ∈ S.

In this way, we obtain the category of semiheap bundles, which we denote as
SemiBun. The objects, Ob(SemiBun) are semiheap bundles, and the homomorphisms,
Hom(SemiBun) are ψ-equivariant maps. If S = S′ and ψ = 1S , then we obtain the
subcategory of S-bundles, which we denote as SemiBunS .

Proposition 3.5. Let (P,M, S) be a semiheap bundle. Then each fibre Fm :=
π−1(m) is non-canonically isomorphic as a Lie semiheap to S.

Proof. Let {(Ui, ti)}i∈I be a local equivariant trivialisation of (P,M, S) and
consider p ∈ π−1(Ui) (we set π(p) = m). Clearly, π−1(m) =: Fm → {m} × S ∼= S,
specifically ti(p) = (m,x) ∼= x as the point m ∈ Ui is fixed. As standard, the fibre
at any point is non-canonically diffeomorphic to S.

From Proposition 2.32 we know how to proceed. Let p, q and r ∈ Fm be arbitrary
points. Assume that m ∈ Ui. We then define a ternary operation using the local
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trivialisation as [p, q, r]i := t−1
i [ti(p), ti(q), ti(r)]. We know this is an induced Lie

semiheap structure on the fibre at m. Picking another local trivialisation, say
(Uj , tj), with m ∈ Uj , we know that t−1

j ti is a canonical isomorphism between the
two induced Lie semiheap structures. �

The above proposition tells us that a semiheap bundle is a smooth family of Lie
semiheaps for which each member is (non-canonically) diffeomorphic to a given Lie
semiheap.
Example 3.6. Consider a Euclidean vector bundle (E, g) of rank q. By employing
an orthonormal trivialisation {(Ui, ti)}i∈I each

π−1(Ui)
ti−→ Ui × Rq

are isometries where Rq is equipped the standard Euclidean structure, which we
denote as δ. Then Rq can be considered as a semiheap by defining [x1, x2, x3] :=
x1 δ(x2, x3). Similarly, each fibre can be considered as a semiheap using gm. An
action on E can be defined fibrewise as

Em × Rq × Rq −→ Em

(v, x1, x2) 7→ vδ(x1, x2) = vgm(t−1
i (x1), t−1

i (x2)) .
To check this is a semiheap action we observe that

gm(t−1
i (x1), t−1

i (x2))gm(t−1
i (x3), t−1

i (x4))
= gm(t−1

i (x1), t−1
i (x2) gm(t−1

i (x3), t−1
i (x4))) .

Note this action is smooth, as it is built from smooth operations, and is tri-
vial on the base M . Furthermore, note that δ(x1, x2) = gm(t−1

i (x1), t−1
i (x2)) =

gm(t−1
j (x1), t−1

j (x2)), and so the action is well-defined. Thus, any Euclidean vector
bundle can then be considered as a semiheap bundle with the semiheap being the
Euclidean space considered as a semiheap.
3.2. Principal Bundles as Semiheap Bundles. We now proceed to generalise
the heapification functor to the setting of bundles. In particular, principal bundles
will provide a class of semiheap bundles, thus showing the category contains
interesting and useful objects.
Proposition 3.7. Any principal bundle (P,M,G) is canonically associated with
the semiheap bundle (P,M, SG).
Proof. Let (P,M,G) be a principal bundle, and we denote the principal action
(which is free and transitive) as (p, g) 7→ ag(p). We can build a semiheap action via
Example 2.60, that is, we set p / (g1, g2) := ag−1

1 g2
(p) and [g1, g2, g3] := g1g

−1
2 g3.

Thus, P is a SG-space, and so we have the first part of Definition 3.1. The second
part is automatic as π : P →M is a surjective submersion. By definition, we have a
local G-equivariant trivialisation of a principal bundle, {(Ui, ti)}i∈I . Let us consider
a given point p ∈ P and set ti(p) = (m, g). Then, using the G-equivalence of each ti

ti(p / (g1, g2)) = ti
(
ag−1

1 g2
(p)
)

=
(
m, gg−1

1 g2
)

=
(
m, g / (g1, g2)

)
.

Thus, each ti is SG-equivariant, and so we have the third part of Definition 3.1. �
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Proposition 3.8. Canonically associated with any homomorphism of principal
bundles (Φ, ψ) : (P,M,G)→ (P ′,M ′, G′) is a homomorphism of semiheap bundles
(P,M, SG)→ (P ′,M ′, SG′).
Proof. From Definition 2.24, we see that the Lie group homorphism ψ : G→ G′

is also a Lie semiheap homomorphism. The equivariance of the map Φ shows that
Φ
(
p / (g1, g2)

)
= Φ

(
ag−1

1 g2
(p)
)

= a′ψ(g1)−1ψ(g2)(p) = Φ(p) / (ψ(g1), ψ(g2)) ,

and thus we canonically have a homomorphism of semiheap bundles. �

The previous two propositions led us to the following definition.
Definition 3.9. The bundle heapifiction functor is the functor

H : Prin→ SemiBun

that acts on objects as (P,M,G) 7→ (P,M, SG) and on homomorphisms it acts as
the identity.

It is clear that the bundle heapification functor is faithful, however, it is not
full. There are more morphisms as semiheap bundles than as principal bundles.
We note that in the neighbourhood of every point of M , the fibres of a principal
bundle can be given the structure of the group G by choosing an element in each
fibre to be the identity element. Thus, the fibres are not canonically pointed. There
is, in general, no privileged canonical point associated with an arbitrary principal
bundle. This means that there is no immediately obvious way to ‘force’ the bundle
heapification functor to be full as we have done for the heapification functor for
Lie groups.

4. Concluding Remarks

We have made an initial study of Lie semiheaps and semiheap bundles. Impor-
tantly, we have constructed heapification functors that shows that Lie groups and
principal bundles provide natural examples of Lie semiheaps and semiheap bundles,
respectively.

In this introductory paper, we have only made an initial study of ternary
operations, and in particular semiheaps, in differential geometry. There are plenty
of open questions here:
• Can we find further examples of Lie semiheaps and bundles that are not

directly connected to Lie groups and principle bundles?
• Can one say more about the existence of left-invariant vector fields on general

Lie semiheaps?
• How much of the theory of connections on principal bundles generalises to

the setting semiheap bundles?
• Can Lie semiheaps be used to describe generalised symmetries in geometric

mechanics, for example?
More generally, the rôle ternary operations in differential geometry has hardly been
explored. We hope, in part, to rectify this in future publications.
Acknowledgement. The author thanks Tomasz Brzeziński for introducing him
to ternary operators and comments on earlier drafts of this work.
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